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Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of 
multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into 
mature mRNAs and regulate gene expression in multiple ways. They comprise at 
least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP 
U). Many of these proteins are components of the spliceosome complex and 
can modulate alternative splicing in a tissue-specific manner. Notably, while 
genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence 
associate these proteins to various neurodevelopmental and neurodegenerative 
disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic 
lateral sclerosis, or dementias, highlighting their crucial role in the central 
nervous system. This review explores the evolution of the hnRNPs family, 
highlighting the emergence of numerous new members within this family, and 
sheds light on their implications for brain development.
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1 Introduction

The exact number of protein-coding genes within the human genome remains a subject 
of intensive discussion, with estimated number that dropped from 30,000 to 40,000 since the 
initial publication of the human genome (Lander et al., 2001; Venter et al., 2001) to less than 
20,000 today (Morales et al., 2022; Nurk et al., 2022). If each gene encoded a single protein, 
the estimated size of the proteome would be approximately 20,000. However, around 95% of 
the human multi-exon genes are able to produce multiple protein sequences (Pan et al., 2008; 
Wang et  al., 2008), resulting in a number of distinct human proteins exceeding 70,000 
(Aebersold et al., 2018). This extended protein diversity is the result of alternative splicing, a 
process that generates, in a tissue specific manner, several mRNA transcripts from the same 
gene. Notably, the brain is one of the organs with the highest number of splicing events (Mazin 
et  al., 2021), making it particularly sensitive to defects in this process (Grabowski and 
Black, 2001).

The mRNA splicing is a multi-step process catalyzed by various small nuclear 
ribonucleoprotein (snRNP) particles that dynamically assemble, along with other proteins, in 
a macromolecular machinery called the spliceosome. Splicing starts with the recognition of 
specific sequences at the exon-intron boundaries by the spliceosome. Alternative splicing 
additionally involves cis-acting regulatory sequences, that, through their interaction with 
trans-acting splicing factors, modulate the activity of nearby splice sites. Splice site selection 
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is followed by two successive transesterification reactions that lead to 
the removal of the intron and the joining of neighboring exons, 
ultimately yielding to mature mRNA (reviewed by Wilkinson 
et al., 2020).

Among the two major classes of splicing factors, one finds the 
heterogeneous nuclear ribonucleoproteins (hnRNPs). hnRNPs 
constitute a family of 20 canonical multifunctional RNA-binding 
proteins (RBPs) in mammals, named from A (HNRNP A1) to U 
(HNRNP U) (Chaudhury et  al., 2010). As components of the 
spliceosomal assembly, these proteins modulate alternative splicing. 
Strikingly, although genes encoding those canonical hnRNPs are 
ubiquitously expressed, genetic variants altering their sequence mainly 
lead to neurodevelopmental or neurodegenerative disorders, such as 
intellectual disability, epilepsy, microcephaly, amyotrophic lateral 
sclerosis, or dementias, pointing out their key role in the central 
nervous system (Purice and Taylor, 2018; Low et  al., 2021). Yet, 
compared to their dysfunction in cancer, the significance of hnRNPs 
in neurological disorders remains largely unexplored (Figure  1). 
Nevertheless, two recent developments mark a growing interest in 
hnRNPs brain-related disorders (Figure 1): (i) the initiation, in 2018, 
of a clinical study (Natural History Study of hnRNP-related Disorders; 
ClinicalTrials.gov ID: NCT03492060), that aims to examine 
neurological traits in individuals with variants in any hnRNP genes 
with the ultimate goal to define a hnRNP neurodevelopmental 
syndrome and propose common therapeutic interventions; and (ii) 
the creation, in 2023 and 2024, of two foundations, the HNRNP 
Family Foundation in USA1 and the HNRNP Japan,2 dedicated to 
support patients and families living with hnRNP-related 
neurodevelopmental disorders.

1 https://www.hnrnp.org

2 https://hnrnpjapan.org

In this review, we provide updated insights into the implications 
of hnRNPs in neurodevelopmental and neurodegenerative 
disorders, by exploring the evolution of hnRNPs in mammalian 
genomes, their differential expression and localization and their 
physiological roles with a particular focus on the developing and 
aging brain.

2 Evolution of the hnRNP family

2.1 Identification of the major protein 
members of the hnRNP family

The hnRNPs, which belong to the RNA-binding protein family, 
have been named after their initially identified role in packaging 
heterogeneous nuclear RNA (hnRNA) (Beyer et  al., 1977). The 
classification of hnRNP members started with the recognition of the 
“core” hnRNP proteins (categorized into the A, B, and C groups) as 
major components of this family (Beyer et al., 1977). However, the 
wide range of molecular weights, spanning from 34 to 120 kDa (Choi 
and Dreyfuss, 1984) as well as similarities in the structure and 
sequence of hnRNPs with the same molecular weight have severely 
hampered identification of other members. Thanks to extensive 
sequence and structural analyses, hnRNP family is now defined as 20 
canonical hnRNP sub-families designated from A (hnRNP A1) to U 
(hnRNP U) (Piñol-Roma et al., 1988), each of them being composed 
of several paralogues and in some cases, even distantly related proteins 
(Martinez-Contreras et al., 2007; Figure 2A). Yet, the classification of 
some hnRNP members is still under debate (Han et al., 2010b; Busch 
and Hertel, 2012; Geuens et al., 2016).

In the following sections, we will expand the discussion beyond 
the major hnRNPs initially identified by the Dreyfuss Lab (Dreyfuss 
et al., 1993). We will emphasize the emergence of hnRNP-like or 
minor members due to their conserved structure compared to 
canonical hnRNPs, but also highlight other mechanisms, such as 

FIGURE 1

Number of records retrieved from PubMed including keywords “hnRNPs and cancer” or “hnRNPs and neurological disease” in the period 1977–2023. 
Date of search: March 11, 2024.
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FIGURE 2

Structure and identity of members of hnRNP families. (A) Protein sequence comparison of hnRNPs by multiple sequence alignment program, Clustal 
Omega (https://www.ebi.ac.uk/jdispatcher/msa/clustalo). The protein sequences of the hnRNPs used correspond, for each member, to the highest 
expressed hnRNP isoform in the human cerebral cortex, identified via a ENST reference number (Ensembl Transcrit number) using the GTEx Transcript 
Browser program (https://www.gtexportal.org/home/transcriptPage) (Supplementary Table S1). The protein sequences corresponding to these 
isoforms were identified on the NCBI database from the ENST reference number (Supplementary Table S1). The percentage identity between members 

(Continued)
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alternative splicing and gene duplication, that further extend and 
add complexity to the exhaustive characterization of the 
hnRNP family.

2.2 Conserved structure across members 
of the hnRNP family

The analysis of the amino acid (aa) sequence of hnRNP members 
revealed multiple distinct RNA-binding domains (RBD), including 
RNA recognition motifs (RRM), quasi-RNA recognition motifs 
(qRRM), Arg-Gly-Gly repeat domain (RGG), or K homology domains 
(KH) (Dreyfuss et al., 1993), in all major members of the hnRNP 
family, except hnRNP U (Figure 2B). Close to the RBDs, hnRNP 
proteins also typically feature unstructured auxiliary domains with 
clusters rich in certain aa, such as acidic aa, glycine or proline (Geuens 
et al., 2016). Those auxiliary domains play dual roles in regulating 
protein–protein interactions and, in certain cases, subcellular 
localization. As example, the hnRNP A1 contains a nucleo-
cytoplasmic shuttling (NS) domain named M9 within its auxiliary 
domain, characterized by its glycine-rich composition (Siomi and 
Dreyfuss, 1995). As such, hnRNPs show a modular composition 
arising from the combinations and arrangements of various domains, 
such as RBD and auxiliary domains, that increase their functional 
diversity (Han et al., 2010a).

The presence of several RBDs confer to hnRNPs the ability to bind 
multiple RNA sequences simultaneously (Singh and Valcárcel, 2005). 
Moreover, in addition to their binding to RNA, hnRNPs are 
concurrently engaged in protein–protein interactions. The interactions 
of hnRNPs with both proteins and RNA partners/targets are facilitated 
by their RBDs but also likely by low complexity domains (LCDs) 
within intrinsically disordered regions (IDRs) (Calabretta and 
Richard, 2015) or auxiliary domains (Biamonti and Riva, 1994; 
Cartegni et al., 1996).

As such, the model depicting the assembly of hnRNP G (RBMX) 
on exon 7 of SMN2 pre-mRNA showed that hnRNP G (RBMX) binds 
to RNA directly through its N-terminal RRM, and indirectly via the 
interaction of its C-terminal LCD with the splicing factor Tra2-β1 
(Moursy et  al., 2014). More recently, Van Lindt and collaborators 
demonstrated that hnRNP A2 interacts with various RNA molecules 
through a Try/Gly-rich motif located in the middle of IDR (Van Lindt 
et al., 2022), as previously suggested for the IDR LCDs of hnRNP A1 
that is 72% identical to the IDR of hnRNP A2 (Abdul-Manan et al., 
1996). Of note, LCDs present in hnRNPs are thought to participate in 
liquid–liquid phase separation resulting in the formation of 
membraneless organelles like nuclear speckles, processing bodies, and 
stress granules (discussed section 3.1).

Given the conserved RBD structure observed across various 
hnRNPs, RBPs with such domains have been proposed as members of 
the hnRNP family. Accordingly, the extensively studied TAR DNA 

binding protein 43 (TDP-43) is often associated to the hnRNP family 
and is well documented as a protein partner of many other hnRNPs 
(D'Ambrogio et al., 2009). On the same line, Raver1, that displays 
three RRM and that forms complexes with other hnRNP proteins, has 
also been qualified as a multidomain hnRNP-like protein. Further 
investigations have revealed, based on sequence similarities within 
RRM and their general domain organization, that Raver1 has a related 
gene called Raver2, therefore classified as new member of the hnRNP 
family (Hüttelmaier et al., 2001; Kleinhenz et al., 2005). Two other 
RBPs, Msi2 and Msi1, are considered as members of the hnRNP 
family due to their structurally conserved sequences with hnRNP A/B 
and hnRNP D (AUF1), which are notably characterized by the 
presence of two copies of RRMs and one auxiliary domain (Sakakibara 
et al., 2001). Finally, a RBP known as cold-inducible RNA-binding 
protein (CIRBP) (Nishiyama et al., 1997), initially recognized for its 
role in response to cold stress, is also referred to as hnRNP A18 due 
to high sequence homology with members of the hnRNP family 
(Sheikh et  al., 1997). Indeed, the human hnRNP A18 (CIRBP) 
comprises a structured N-terminal domain with an RRM, and a 
C-terminal low-complexity region containing the RGG and RSY 
regions (Bourgeois et al., 2020).

As RBDs, IDRs, or LCDs can also bind single-stranded DNA 
(ssDNA) (Dettori et al., 2021), hnRNPs have been thought to interact 
with DNA. As such hnRNP E1 (PCBP1) and members of the hnRNP 
A/B family, including hnRNPs A1, A2/B1, and A3, have been 
documented to associate with single-stranded telomeric DNA and 
therefore participate in telomere biogenesis (McKay and Cooke, 1992; 
LaBranche et al., 1998; Ding et al., 1999; Moran-Jones et al., 2005; 
Tanaka et al., 2007; Mohanty et al., 2021). In vitro experiments have 
demonstrated that hnRNP U can bind ssDNA through its C-terminal 
glycine-rich region (Kiledjian and Dreyfuss, 1992). A binding affinity 
test of TDP-43 has also revealed an interaction with single-stranded 
DNA fragments derived from the HIV-1 TAR sequences (Kuo et al., 
2009). Other evidence comes from hnRNP G (RBMX) that is 
recruited, in response to replication stress, to repetitive DNA sites 
where it activates the genome surveillance pathway (Zheng et  al., 
2020). This function is independent of hnRNP G (RBMX) interaction 
with nascent RNA but involved a poorly characterized RBD, termed 
RBM1CTR and located within the middle of the hnRNP G (RBMX) 
protein (Zheng et  al., 2020). Of note, like hnRNP G (RBMX) 
(Adamson et al., 2012), the RRM of many other hnRNPs, including 
hnRNP R (Ghanawi et al., 2021), hnRNP U (Britton et al., 2014), 
hnRNP P2 (FUS) (Mamontova et al., 2023) and hnRNP D (Alfano 
et al., 2019), mediates their recruitment to ssDNA sites upon DNA 
damage to ultimately facilitate DNA damage response. These roles do 
not always require a direct binding to DNA but are rather dependent 
of β-H2AX or PARP1 proteins, that are known to mediate the 
recruitment of repair proteins to the DNA lesion. Furthermore, the 
knockdown of hnRNP K leads to DNA repair defects and initiates a 
DNA damage response (DDR) upon gamma irradiation. This process 

of hnRNP families can be found in Supplementary Table S2. (B) Schematic representation of the canonical structure for hnRNP sub-families. The 
schematic illustrates various domains: RRM (RNA recognition motif), qRRM (quasi RNA recognition motif), KH (K-homology domain), RGG (Arg-Gly-Gly 
repeat domain), NLS (Nuclear localization signal), PY-NLS (Proline/Tyrosine Nuclear localization signal), NTD (Nascent transcripts targeting domain), 
and KNS (hnRNP K nuclear shuttling).

FIGURE 2 (Continued)
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is facilitated by the upregulation of DDR genes such as p21 and p53 
(Wiesmann et al., 2017). Although there is increasing evidence for 
roles of hnRNPs in the regulation of genome stability, as highlighted 
in recent reviews (Klaric et al., 2021; Provasek et al., 2022), we will 
focus, in the next section of this review, on their function within 
the spliceosome.

2.3 Factors contributing to the large 
membership of the hnRNP family

2.3.1 Alternative splicing of hnRNP transcripts
Transcripts encoding major hnRNPs are themselves subjected to 

alternative splicing (Ezkurdia et al., 2012). It emerges that: (1) nearly 
all hnRNP members exhibit various isoforms, (2) one isoform 
frequently appears dominant in expression, and (3) different isoforms 
are expressed depending on the tissue (see section 3). The hnRNP I 
gene (also known as PTBP1) comprises 15 exons. Exon 9 undergoes 
alternative splicing, leading to the generation of multiple isoforms 
(Romanelli et  al., 2000). The exclusion of exon 9 decreases the 
inhibitory function of hnRNP I (PTBP1) and enables the initiation of 
a specialized alternative splicing program specific to the brain 
(Gueroussov et  al., 2015). The hnRNP R gene is also subjected to 
alternative splicing, resulting in the production of two unique protein 
isoforms, hnRNP R1 and hnRNP R2. hnRNP R1 comprises 633 aa, 
whereas hnRNP R2 lacks 38 aa distributed across its acidic domain 
and RRM. The expression patterns of hnRNP R1 and hnRNR R2 vary 
significantly depending on the tissue. While hnRNP R1 exhibits 
ubiquitous expression and significantly higher levels compared to 
hnRNP R2, the latter shows low expression levels specifically in neural 
tissue (Huang et al., 2005; Cappelli et al., 2018). hnRNP Q exhibits 
close structural similarities to hnRNP R and undergoes alternative 
splicing, resulting in three isoforms of hnRNP Q denoted as Q1–Q3 
(Mourelatos et  al., 2001). Several alternatively spliced hnRNP E2 
(PCBP2) mRNAs exist, with the full transcript isoform serving as a 
model for the retrotransposition event that gave rise to the hnRNP E1 
(PCBP1) intronless gene (Makeyev et  al., 1999). The principal 
constituents of the hnRNP A family (hnRNP A1, hnRNP A2/B1, 
hnRNP A3) are also alternative spliced. hnRNP A1 produces 
transcripts A1 and A1b, hnRNP A2/B1 is spliced into transcripts B1, 
A2, A2b, and B1b, and hnRNP A3 generates transcripts A3a and A3b 
(Han et al., 2010a). Interestingly, a tissue-specific expression patterns 
of hnRNP A3 isoforms were observed in mice. hnRNP A3b is the 
predominant isoform in all assessed rodent tissues, except in the brain, 
where the unspliced A3a isoform exhibited significant overexpression 
(Han et al., 2010a; Papadopoulou et al., 2012). hnRNP D encompasses 
four isoforms (p45, p42, p40, and p37) with common structural 
elements generated through alternative splicing of a shared 
pre-mRNA. The p42 and p45 isoforms of hnRNP D are predominantly 
located in the nucleus, while the smaller variants (p40 and p37) are 
present in both the nuclear and cytoplasmic compartments (White 
et al., 2013). Strikingly, data of hnRNPs expression that can be found 
in the Genotype-Tissue Expression (GTEx) portal confirmed that 
nearly all hnRNP genes express multiple isoforms. For those that do 
not, this phenomenon is attributed to intronless hnRNP genes, such 
as hnRNP E1 (PCBP1) or RBMXL1, or to genes that are not expressed 
in this tissue, such as hnRNP CL1-4. Finally, it has been shown that the 

alternative splicing of the exon 2 of the hnRNP R transcript results in 
an isoform with a truncated N-terminus, that loses its interaction with 
Yb1 and the associated function in DNA damage repair (Ghanawi 
et al., 2021).

Collectively, it appears that alternative splicing largely contributes 
to the diversity of hnRNPs, by leading to specific expression patterns 
and/or modifying functions through removal or partial alteration of 
some functional domains in the spliced isoforms. Thanks to the 
emergence of the long-read sequencing, we foresee the discovery of 
many other hnRNP isoforms. As a proof of principle, such technology 
has revealed a previously uncharacterized isoform of hnRNP A18 
(CIRBP) and a shift from the canonical CIRBP-201 isoform to the new 
CIRBP-210 isoform in infected epithelial cells (Corre et al., 2023).

2.3.2 Evolution: gene duplication and 
retrotransposition events

The fact that the number of families and number of members 
within a given family expanded with the emergence of more complex 
multicellular organism suggests: (i) that hnRNPs have evolved from a 
common ancestor gene mainly through gene duplication (Busch and 
Hertel, 2012); and (ii) the presence of strong selective pressures acting 
on duplicated hnRNP genes (Busch and Hertel, 2012). The increase in 
the number of major hnRNPs as well as the emergence of additional 
members that could be designated as minor hnRNP members have 
been also attributed to retrotransposition events (Chaudhury et al., 
2010). Retrocopied genes originate from insertion of retro-transcribed 
mRNA into the genome. As such, retrocopies lack introns and 
regulatory sequences found in their parent genes and are often 
non-functional or qualified as “processed pseudogenes” (Hatfield 
et al., 2002). However, in some cases, retrocopies may acquire novel 
functions through the acquisition of mutations or regulatory elements 
present in their genomic location, thereby contributing to genetic 
diversity and evolution (Seczynska and Lehner, 2023).

A striking illustration of the intricate evolutionary processes 
entailing gene duplication and retrotransposition events is exemplified 
by RBMX, encoding hnRNP G on the X chromosome. hnRNP G is 
part of the hnRNP sub-family with the highest number of paralogs 
(duplicated genes within the same species). These paralogs comprise 
duplicated genes with similar intron/exon organizations located on 
the Y chromosome, originating from an ancestral pair of X/Y 
chromosomes (Lingenfelter et al., 2001; Elliott et al., 2019). In humans, 
the long arm of chromosome Y harbors six functional, nearly identical 
copies (RBMY1A1, RBMY1B, RBMY1D, RBMY1E, RBMY1F, and 
RBMY1J), along with over 20 pseudogenes (Elliott et al., 2000; Elliott, 
2004). Unlike hnRNP G (RBMX), which shows ubiquitous expression, 
RBMY genes display a specific expression pattern, primarily in the 
testes (Elliott et  al., 1998). Yet, they are both involved in Tra2β-
dependent pre-mRNA splicing (Venables et al., 2000). In addition to 
the duplicated genes on chromosome Y, hnRNP G (RBMX) has 
undergone multiple retrocopies throughout evolution, resulting in at 
least nine intronless copies present in the human genome (Lingenfelter 
et al., 2001; Elliott et al., 2019). Some of the earliest gene duplications 
and retrocopies, such as the RBMXP1-5 pseudogenes (Stelzer et al., 
2016), are nonfunctional, while others have retained functionality but 
have adopted new expression patterns, as seen for RBMXL2 and 
RBMXL9 whose expression is restricted to the testes and brain 
(Lingenfelter et al., 2001; Ehrmann et al., 2008). In humans, the most 
recent retrocopy located on chromosome 1 (RBMXL1) is ubiquitously 
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expressed and encodes a protein that shares 96% identity with hnRNP 
G (RBMX) (Figure 2A; Lingenfelter et al., 2001).

Various examples of gene duplication and retrotransposition 
events can be also found in other hnRNP sub-families: (1) Like hnRNP 
G (RBMX), hnRNP E has 3 paralogues that arose from two duplication 
events. Interestingly, one of those, PCBP2 (hnRNP E2), has been 
subjected to two evolutionary independent retrotransposition events, 
generating 3 retrocopies, PCBP1 (hnRNP E1), PCBP2P1 and PCBP2P2 
(Makeyev et al., 1999; Makeyev and Liebhaber, 2000). (2) Comparison 
of the domain architecture of the hnRNP A/B family members 
revealed that hnRNP A1 and hnRNP A2, that exhibit a 68% aa identity 
(Biamonti et al., 1994; Mayeda et al., 1994), arose from the duplication 
of a common ancestral gene, rather than from an independent 
assembly of domains (Biamonti et al., 1994). Further investigation into 
this sub-family has revealed in mice that the hnRNP A2 (that gives rise 
to four isoforms, A2, B0a, B0b, and B1) and hnRNP A3 genes have 5 
and 7 (14 in humans) processed pseudogenes, respectively, most of 
them being non-functional (Hatfield et  al., 2002; Makeyev et  al., 
2005), except one hnRNP A2 pseudogene that contains putative 
promoter sequences and may potentially produce a functional protein 
(Hatfield et al., 2002). (3) One isoform of hnRNP I (PTBP1), known 
as PTBP3 has been retrotranscribed and inserted in the genome to 
give rise to the ψhnRNP I pseudogene whose activity remains 
uncertain (Romanelli et al., 2000). (4) Four processed pseudogenes 
have been identified in the hnRNP K sub-family, though none of them 
seem to be functional (Leopoldino et al., 2007).

Although duplication and retrotransposition events clearly 
participate to the expansion of the number of hnRNPs throughout 
evolution, it is puzzling that only few paralogues have been shown 
to be  functional. Also, strong sequence homology (Figure 2A) 
raises the possibility of redundant function among paralogues 
(discussed in section 5). Interestingly, expression of most 
duplicated genes and retrocopies is several folds lower than the 
parent gene (Figure 3), suggesting that processed pseudogenes 
might become critical in specific context, in particular when the 
parent gene is not expressed.

Finally, comparison of the sequences of the highest expressed 
hnRNP isoforms in the cerebral cortex question the need of revising 
the classification of hnRNPs, notably in sub-families. For instance, 
hnRNP R and hnRNP Q that share 82% of sequence homology belong 
to two distinct families, while RALY and RALYL that show up to 47% 
of similarities with hnRNP C are considered as members of the 
hnRNP C family (Figure 2A). In addition, the minimum homology 
within a family ranges from 43% (hnRNP C) to up to 90% [hnRNPs 
C and G (RBMX)] (Figure 2A), suggesting that the homology and 
organization of specific domains might preferentially account to 
define the members of a family.

We anticipate the number of hnRNPs to greatly increase in the 
future thanks to the advent of next-generation sequencing, advanced 
bioinformatics analyses and structural methods, which would 
be  determinant to identify genes resulting from duplication or 
retrotransposition events (Vollger et al., 2019; Feng and Li, 2021).

2.3.3 The relationship between viruses, 
retroviruses and hnRNPs: causes of 
retrotransposition events?

The hnRNP families are involved in various steps of the viral life 
cycle, including biosynthesis (i.e., RNA synthesis, RNA translation) 
and release stages (Wang et  al., 2022). For their replication and 
propagation, viruses rely on host molecular components such as 
splicing factors like hnRNP proteins and SR proteins (Bolinger and 
Boris-Lawrie, 2009; Boudreault et al., 2019). In accordance, it has been 
shown that the expression of hnRNPs are modified following viral 
infection. Interestingly, hnRNPs could be  either upregulated or 
downregulated upon a same viral infection. As an example, during 
HIV-1 infection, hnRNP A1 expression is increased (Monette et al., 
2009) while hnRNPs A2/B1 and H are decreased (Dowling et al., 
2008). Conversely, expression of a given hnRNP could be  either 
increase or decrease depending on the nature of the virus as shown for 
hnRNP A1 that is upregulated during influenza A virus (IAV), HIV-1 
(Monette et al., 2009), and HPV16 (Cheunim et al., 2008) infections, 
and downregulated during infections with porcine epidemic diarrhea 

FIGURE 3

Gene expression of the parental hnRNP members, along with their duplicated and retrotransposed genes within the sub-family across multiple organs. 
Expression profiles of hnRNP sub-family members (A, C, D, E, H, G, L, and U) across various human organs, including the brain, heart, kidney, liver, 
ovary, pancreas, and testis, obtained from CZ CellxGene Discover platform and showing higher expression of the parental genes. The dot plot was 
made using the gene expression normalized as described in the CZ CellxGene Discover platform (https://cellxgene.cziscience.com/).
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virus or snakehead vesiculovirus (Li et al., 2018; Kaur et al., 2022; Liu 
et al., 2023). Moreover many hnRNPs [hnRNP D (Lund et al., 2012), 
hnRNP A1, hnRNP K, hnRNP C1/C2 (Pettit Kneller et al., 2009), 
hnRNP K (Burnham et al., 2007; Brunetti et al., 2015), hnRNP H 
(Redondo et al., 2015), and hnRNP M (Jagdeo et al., 2015)] have been 
shown to relocalize to the cytoplasm following infection with various 
viruses. In the cytoplasm, those hnRNPs likely interact with 
viroplasmic proteins NSP2 and NSP5 that serve as the primary site for 
viral replication and assembly (Dhillon et al., 2018).

Several hnRNPs have also been shown to modulate the viral 
propagation within infected cells. As such, hnRNP G (RBMX) has 
been shown to interact with HIV-1 long terminal repeat (LTR) 
promoter region, where it sustains repressive trimethylation of histone 
H3 lysine 9 (H3K9me3), prevents the recruitment of the RNA 
polymerase II and consequently inhibits HIV-1 transcription (Ma 
et  al., 2020). Conversely, hnRNP A2/B1 interacts with LTR 
G-quadruplexes, functioning as an activator of HIV-1 transcription 
(Scalabrin et al., 2017). hnRNP H1 is crucial for HIV-1 replication, as 
it binds to purine-rich sequences on the viral RNA. Depletion or 
mutation of its binding sites leads to decreased expression of Vif 
protein, hindering viral replication efficiency (Kutluay et al., 2019). 
Furthermore, many hnRNPs have been demonstrated to regulate 
HIV-1 Gag expression: (i) the four isoforms of hnRNP D exert distinct 
effects on HIV-1 Gag expression, with the longest isoforms, p45 and 
p42, enhancing viral Gag synthesis, and the shorter isoforms, p40 and 
p37, inhibiting it (Lund et al., 2012); (ii) hnRNP E1 (PCBP1) reduces 
cap-dependent translation initiation of HIV-1 viral RNA, resulting in 
decreased Gag synthesis (Woolaway et al., 2007); (iii) 21 hnRNPs have 
been identified in at least on affinity purification/mass spectrometry 
screenings that aimed at discovering potential cellular interaction 
partners of HIV-1 Gag (Engeland et al., 2014). Interestingly, 6 of them 
were also shown to bind the HIV-1 5’ UTR (Stake et al., 2015).

Altogether, there data indicate that, on one side, hnRNPs are 
hijacked by viruses for their replication in the host cells, and on the 
other side, this class of protein is very prone to duplication and 
retrotransposition events, raising the possibility that those events 
are correlated.

3 Localization, expression, and 
regulation

3.1 Intracellular localization

Consistent with their well-described role in splicing, the majority 
of hnRNP proteins are found in the nucleus under physiological 
conditions (Piñol-Roma, 1997). For that matter, hnRNPs represent 
one of the most abundant family of proteins in the nucleus (Dreyfuss 
et al., 2002). Nuclear localization of hnRNPs is mediated by classical 
nuclear localization sequence (NLS) as well as non-classical PY-NLS 
(proline-tyrosine NLS, also known as M9 domain) (Piñol-Roma, 
1997; Purice and Taylor, 2018; Khalil et al., 2024). Although, hnRNP 
proteins have been long thought to be excluded from the nucleolus, 
proteomic analysis of the human nucleolus revealed that hnRNPs A1, 
A3, A2/B1, C, G (RBMX), H1, H3, and K are components of the 
nucleolar proteome (Andersen et  al., 2002). Strikingly nucleolar 
association of some of them [hnRNPs K, G (RBMX), and A2/B1] is 
enhanced when transcription is inhibited (Andersen et al., 2002). In 

addition, one recent study used immunofluorescence to show a 
colocalization of hnRNP UL1 with nucleolin, the major nucleolar 
protein, in HeLa cells (Cichocka et al., 2022). However, it is worth 
mentioning that immunogold electron or immunofluorescence 
microscopy did not show any labeling of hnRNP C and A2/B1 in the 
nucleolus of human cells (Romero et al., 1998; Friend et al., 2008), the 
discrepancy with the proteomic data likely coming from the different 
sensitivity in the methods used. On the same line, tagged version of 
hnRNP G (RBMX) (Matsunaga et al., 2012) or hnRNP P2 (FUS) 
(Yang et al., 2014) are not found in the nucleolus after overexpression. 
Although one can argue that tagging or overexpression of hnRNPs 
hamper their nucleolar localization, it is puzzling that hnRNP G 
tagged-proteins that lack its tyrosine-rich region (TRR) but not the 
ones that lack the RRM, localized to the nucleolus (Matsunaga et al., 
2012). Finally, one might anticipate that the advent of highly sensitive 
proteomic methods will increase, in the future, the number of hnRNPs 
associated to the nucleolus.

As shown for pre-mRNA splicing factors, several hnRNPs have 
been found in nuclear speckles. The monoclonal antibody SC35, 
frequently used to mark nuclear speckles, has been used to perform 
immunoprecipitation coupled with mass spectrometry on the 
leukemia human HAP1 cell line. The results revealed numerous 
hnRNPs as interactants, including hnRNP M, hnRNP C, hnRNP K, 
hnRNP G (RBMX), and hnRNP U in the top 50 hits (Ilik et al., 2020). 
A study also reported several hnRNPs [A1, A1L, F, G (RBMX), H1, 
H3, K, R, and UL1] as key components of paraspeckles (Naganuma 
et al., 2012), that are typically located in close proximity to nuclear 
speckles and enriched in specific long non-coding RNAs and RBPs.

It has long been established through pioneering research that 
certain hnRNP proteins exhibit continuous shuttling between the 
nucleus and cytoplasm, rather than remaining exclusively within the 
nucleus (Piñol-Roma and Dreyfuss, 1992). One of the first hnRNP 
proteins described to undergo nucleocytoplasmic shuttling is hnRNP 
A1 (Weighardt et al., 1995), through its M9 domain (also known as 
the PY-NLS) (Izaurralde et al., 1997; Soniat and Chook, 2016). This 
has been then expanded to other hnRNPs (D, E, I, and K). However, 
some hnRNPs are exclusively retained in the nucleus such as hnRNPs 
C and U (Piñol-Roma, 1997) or hnRNP DL (Zhang et al., 2021). In 
the cytoplasm, hnRNPs can have opposite effects on mRNA stability, 
promoting either stabilization or degradation. Indeed, many hnRNPs 
can regulate either positively or negatively rapid mRNA decay. For 
instance, it has been shown that all the hnRNP D isoforms promote 
decay by binding to mRNA-destabilization sequence (Loflin et al., 
1999; Xu et al., 2001; Fialcowitz et al., 2005). Likewise, hnRNP A2/B1 
and hnRNP A1 have been demonstrated to initiate mRNA degradation 
by facilitating the recruitment of the CCR4-NOT deadenylase 
complex through their binding to UAASUUAU sequence in the 
mRNA 3′UTR (Geissler et al., 2016). hnRNPs can also cooperate with 
RBPs from different families to induce mRNA decay, as demonstrated 
for hnRNP F, that serves as a co-factor in TTP/BRF1-dependent 
mRNA degradation (Reznik et al., 2014). Interestingly, this role of 
hnRNP F is independent of its binding to the mRNA targeted for 
decay (Reznik et al., 2014). In contrast, hnRNP I (PTBP1) protects 
mRNAs from degradation by binding to their 3’ UTR and preventing 
the binding of the NMD helicase UPF1 to the 3’UTRs (Ge et al., 2016). 
Two other hnRNPs, hnRNP L, and hnRNP I (PCBP1), possess the 
capability to remove the UPF1 NMD factor from the 3’ UTR of 
particular mRNAs, including CFTR mRNA (Siddiqui et al., 2023), 
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safeguarding these transcripts against NMD (Kishor et  al., 2019). 
Interestingly, various hnRNPs can regulate differently the same 
mRNA. This is exemplified by the regulation of the mouse Period3 
(mPer3) mRNA, that is a binding target for several hnRNPs [D, K, 
I (PTBP1), and Q]: while hnRNP K preserves mPer3 stability, hnRNPs 
D and Q promote its degradation and hnRNP I (PTBP1) show no 
impact on mPer3 stability (Kim et  al., 2011, 2015). Interestingly, 
hnRNPs Q, D, and I (PTBP1) as well as hnRNP R, also contribute to 
the oscillation of the circadian mRNAs Per2, Cry1, and Nat (Kim et al., 
2005; Woo et al., 2009, 2010). Increase stabilization of mRNA has been 
also demonstrated for several hnRNPs, although the underlying 
mechanisms have not been clearly elucidated yet: (i) the stability of 
APP mRNA can be increased by the binding of hnRNPs (F, H1, and 
C) (Rajagopalan et al., 1998; Khan et al., 2021); (ii) the interaction 
between hnRNP H/F and the G-quadruplex located at the 3′ end of 
p53 mRNA reinforces the binding of hnRNP H/F to p53 mRNA, 
increasing its expression in response to DNA damage (Decorsière 
et al., 2011); (iii) hnRNP L binds and stabilizes the BCL2 mRNA, 
which plays a critical role in regulating apoptosis (Lim et al., 2010); 
(iv) hnRNP U has been demonstrated to modulate the expression of 
TNFα and several other mRNAs (GADD45A, HEXIM1, HOXA2, 
IER3, NHLH2, and ZFY) by promoting mRNA stability (Yugami et al., 
2007); (v) hnRNPs E1 (PCBP1) and E2 (PCBP2) regulate the stability 
of the androgen receptor mRNA (Yeap et al., 2002). Several other cases 
of hnRNP E1’s role in the regulation of mRNA stability have been 
reviewed by Chaudhury et al. (2010); (vi) hnRNP E1 (PCBP1) controls 
p63 mRNA stability by binding to its 3’UTR, particularly the CU-rich 
element (Cho et al., 2013).

Another important cytoplasmic function resides in the control of 
translation. First, it has been shown that hnRNP E1 (PCBP1) promotes 
translation by interaction with the IRES of some mRNAs (Gamarnik 
and Andino, 1997; Evans et al., 2003; Pickering et al., 2003). This 
function is shared with many other hnRNP members, as described in 
this review by Godet et al. which extensively analyzes IRES trans-
acting factors (ITAFs) regulating cellular IRESs. Among ITAFs, one 
can find nuclear proteins capable of shuttling between the nucleus and 
cytoplasm to govern IRES-dependent translation, including hnRNPs 
(A1, C, D, E, H2, I, K, L, M, Q, and R) (Godet et al., 2019). Second, 
several evidence highlight the association of several hnRNPs with 
ribosomes: (i) hnRNP C, hnRNP G (RBMX), hnRNP H3, and RALY 
have been found enriched in polysomes fraction during mitosis 
(Aviner et al., 2017); (ii) other hnRNPs [such as hnRNP E1 (PCBP1), 
hnRNP E2 (PCBP2), hnRNP A2/B1, and hnRNP I (PTBP1)] have 
been shown to be associated with polysome under hypoxic conditions, 
while others showed either no change (hnRNP A3) or reduced 
translational engagement (hnRNP C) (Ho et  al., 2020); and (iii) 
hnRNP M distribution shifts from monosome fractions under 
normoxia to polysome fractions under hypoxia, suggesting increased 
translation activity in response to low oxygen levels (Chen et al., 2019).

Cytoplasmic hnRNPs can also orchestrate the transport of mRNA 
molecules to precise locations, notably in axons. A recent study has 
shown that PTBP2 binds and facilitates the trafficking of hnRNP R 
mRNA into axons, consequently enabling the local synthesis of 
hnRNP R within axons (Salehi et al., 2023). Interestingly, hnRNP R 
itself may play a role in the axonal translocation of β-actin mRNA 
(Glinka et al., 2010) or of the non-coding RNA 7SK (Glinka et al., 
2010; Briese et al., 2018), functions that both sustain axonal growth 
(Glinka et al., 2010; Briese et al., 2018). RNA co-immunoprecipitation 

(RIP) with axonal hnRNPs further revealed that various hnRNP 
proteins [AB, A1, A2/B1, A3, D, DL, E2 (PCBP2), E3, F, H1, H2, I, 
PTBP2, PTBP3, K, L, R, and U] work together to regulate mRNA 
transport within axons through their binding to specific mRNA motifs 
(Lee et al., 2018). Strikingly, axotomy increased the axonal transport 
of RNA granules containing hnRNPs (H1, F, and K), which exhibit a 
preference for binding to mRNAs essential for axon regeneration 
(nrn1 and hmgb1) (Lee et al., 2018). On the same line, hnRNP A/B 
interacts with mRNAs encoding proteins involved in axon projection 
and synapse assembly, thereby promoting their local translation and 
accurate expression of the encoded protein at axon terminals in 
olfactory sensory neurons (Fukuda et al., 2023). Although it becomes 
clear that hnRNPs could promote the trafficking of some mRNAs, 
whether hnRNPs bind fully mature mRNAs or whether those are 
spliced or processed while transported remain to be determined.

Cytoplasmic hnRNPs are also involved in the formation of 
membraneless organelles, such as stress granules (SGs). This function 
is conferred by their LCDs, which facilitate liquid–liquid phase 
separation mechanisms responsible for the formation of these SGs 
(Purice and Taylor, 2018). For instance, the LCD of hnRNP A1 
induces liquid–liquid phase separation (LLPS) in vitro and is sufficient 
for recruitment into SGs in cells. Notably, elevating the cytoplasmic 
concentration of hnRNP A1 and closely related RBPs is enough to 
trigger SG formation, supporting the idea of an LLPS-mediated 
mechanism (Molliex et  al., 2015). Interestingly, some hnRNPs, 
including hnRNP A1, hnRNP K and hnRNP H relocalize, under 
cellular stress conditions, to the cytoplasm, where they accumulate in 
SGs, playing a crucial role in the cellular stress recovery (Guil et al., 
2006; Fukuda et al., 2009; Wall et al., 2020). SGs are hallmarks of 
neurodegenerative disorders, particularly amyotrophic lateral sclerosis 
(ALS) and frontotemporal dementia (FTD) (Dudman and Qi, 2020; 
Nedelsky and Taylor, 2022). Interestingly, in an effort to characterize 
the protein composition of SGs, a comprehensive analysis of the 
available dataset by Asadi et al. revealed that many hnRNPs localized 
to SGs in various neurodegenerative conditions including the ALS/
FTD continuum, Alzheimer’s disease (AD), Multiple sclerosis (MS) 
and Motor neuron disease (MND): TDP-43 and hnRNP P2 (FUS) are 
found in many if not all pathological conditions, while hnRNP A2/B1 
and hnRNP A0 are associated to SG in ALS and AD, respectively 
(Asadi et  al., 2021). Through bioinformatics analyses, hnRNP C, 
hnRNP DL, hnRNP H1, hnRNP F, hnRNP A2/B1, and hnRNP 
I (PTBP1) were also predicted to interact with SGs (Asadi et al., 2021).

Altogether, these findings suggest that nucleo-cytoplasmic 
shuttling of hnRNPs might play critical role in regulating the 
localization and/or translation of numerous mRNAs in both 
physiological and pathological contexts.

3.2 hnRNPs expression in the brain

The initial observations came from Dreyfuss and colleagues, who 
reported a higher expression of several hnRNP proteins (A1, C, D, 
F/H, K/J, L, and U) in the brain, ovary, and testis compared to other 
organs (Kamma et al., 1995). More specifically, they also demonstrated, 
using immunostaining, that neurons exhibit significantly stronger 
staining intensity than glial cells for all hnRNP proteins. In particular, 
cerebellar Purkinje cells and large ganglion cells of the basal ganglia 
expressed more hnRNP proteins than small neuronal cells or glial cells 
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(Kamma et al., 1995, 1999). The high expression of hnRNP proteins 
in brain tissues, that correlates with the fact that alternative splicing 
occurs at the highest frequency in the brain (Mazin et al., 2021), has 
been confirmed by genome-wide transcriptomic analyses performed 
in seven different organs (brain, cerebellum, heart, kidney, liver, ovary, 
and testis) at various developmental stages spanning from early 
organogenesis to adulthood in humans (Cardoso-Moreira et  al., 
2019).3 Interestingly, in all organs including brain, the expression of 
hnRNP transcripts strikingly decreases during the perinatal period 
(Cardoso-Moreira et al., 2019; Figure 4). These transcriptomics data, 
along with the GTEX data reanalysis by Gillentine et  al. (2021) 
confirmed that hnRNPs A0, A1, A2/B1, DL, E1 (PCBP1), K, G 
(RBMX), U, and P2 (FUS) are the most highly expressed hnRNPs in 
all brain regions analyzed (Figure 4, ≥150RPKM), with a decrease in 
expression observed during the brain development for almost all of 
them, except for RALYL, GRSF1, hnRNP H2, and hnRNP UL2 
(Cardoso-Moreira et al., 2019; Figure 4). Notably, cerebellum tends to 
show a higher expression of all hnRNP members (Gillentine et al., 
2021). An important point is the different pattern of expression 
observed between the members of a same hnRNP family, as shown for 
hnRNP C, hnRNP I (PTBP1), hnRNP F/H, and U (Cardoso-Moreira 
et al., 2019; Figure 4). Collectively, hnRNP expression in the human 
brain is subject to spatial and temporal regulation. The spatiotemporal 
regulation of hnRNPs is illustrated by: (i) PTBP1 (hnRNP I) and 
PTBP2 (nPTB), whose expressions are almost mutually exclusive. 
During brain development, cells switch from expressing hnRNP 
I  (PTBP1) to PTBP2, thereby contributing to the neuronal 
differentiation process (Boutz et al., 2007), and (ii) hnRNP A1 and one 
of its isoforms, hnRNP A1B show different expression pattern and 
subcellular localization with hnRNP A1B more restricted to the 
central nervous system and found in neuronal processes compared to 
hnRNP A1 (Gagné et al., 2021).

Interestingly, the spatial regulation of hnRNP members differs 
depending on both the brain structure and the cell type. To illustrate 
this, we examine the transcriptional landscape of hnRNPs throughout 
murine corticogenesis (Telley et  al., 2019; Figure  5). The findings 
revealed that the majority of hnRNP members are expressed 
throughout the cortical development in various cell populations, 
including neuronal progenitors (VZ), migrating neurons (IZ), and 
post-migratory neurons (CP). Strikingly, hnRNPs appear to be more 
expressed in neuronal progenitors, as evidenced by hnRNPs F, G 
(RBMX), H2, GRSF1, hnRNP I (PTBP1), L, LL, and M, compared to 
neurons localized in the CP, except for RALYL from the hnRNP C 
sub-family (Telley et  al., 2019). Again, difference of expression 
throughout the cortical plate could be noted for different members of 
the same hnRNP family (Figure 5). This raises the possibility of not 
completely overlapping function of close paralogues. To further 
investigate the spatial expression of hnRNPs in different cell types 
within the brain, we took advantage of the single-cell data resource 
called CZ CellxGene Discover to compare their expression among 
cortical progenitors (radial glial cells), cortical neurons (excitatory 
neurons from different cortical layers, inhibitory interneurons) and 
glia cells (astrocytes, oligodendrocytes, oligodendrocyte precursors) 

3 https://apps.kaessmannlab.org/evodevoapp/

in human4 (Figure 6). The results confirmed the findings from murine 
corticogenesis, demonstrating that radial glial cells exhibited a higher 
expression of hnRNPs compared to cerebral cortex neurons. Among 
the different subtypes of projection neurons (from layer I to layer VI), 
hnRNPs seem to be similarly expressed except hnRNP DL that is 
enriched in deep layer neurons (Figure 6). Interestingly, GABAergic 
interneurons show slightly higher expression of hnRNPs than 
pyramidal neurons, potentially corroborating the distinct splicing 
programs identified in glutamatergic and GABAergic neurons (Feng 
et al., 2021). Specifically, there is higher expression in interneurons for 
hnRNPs (A0, A1, DL, K, and R), whereas RALYL is more expressed 
in pyramidal neurons. Neurons from various layers demonstrate 
robust expression of RALYL. Given the differential expression pattern 
of RALYL in the different neuronal subtypes, one might consider this 
hnRNP as a specific marker to transcriptionally differentiate and 
classify the layer-specific cortical neurons. No significant difference is 
observed between oligodendrocytes and oligodendrocyte precursors. 
However, astrocytes clearly exhibit lower expression of all hnRNPs 
compared to other cell types, thereby corroborating previous 
observations by Kamma et al., who noted reduced staining in glial 
cells compare to Purkinje cells (Kamma et al., 1995; Figure 6).

3.3 Auto- and cross-regulation

The expression of hnRNP proteins is precisely regulated. hnRNPs 
expression is occasionally regulated by others splicing factors such as 
SRp30c (also known as SFRS9) that modulates the alternative splicing 
of hnRNP A1 by inhibiting the use of a 3′ splice site (Simard and 
Chabot, 2002). However, in most cases hnRNP proteins can undergo 
auto- and cross-regulation, notably through AS-NMD, a mechanism 
that couples alternative splicing to nonsense-mediated decay to force 
the production of NMD-sensitive isoforms and thereby adjust the 
level of protein expression (Ni et al., 2007; Müller-McNicoll et al., 
2019). It has been shown that hnRNP A2/B1 alters the splicing of the 
3’UTR of its own mRNA, leading to the production of NMD-targeted 
isoforms (McGlincy et al., 2010). hnRNP I (also known as PTBP1) 
also binds to its own pre-mRNA to suppress the inclusion of exon 11. 
This induces a frameshift, resulting in the creation of a premature 
termination codon in the subsequent exon, consequently directing the 
mRNA for nonsense-mediated decay (Wollerton et  al., 2004). 
Interestingly, hnRNP I can also regulate the level of its PTBP2 (nPTB) 
paralogue by promoting the skipping of PTBP2 (nPTB) exon 10 and 
the subsequent production of an NMD substrate, so that only one of 
the two paralogues are expressed when both genes are transcribed 
(Spellman et al., 2007). On the same line, the closely related paralogs 
hnRNP L and LL (Rossbach et al., 2009), along with hnRNP D (also 
known as AUF1) and hnRNP DL (Kemmerer et al., 2018) have also 
been reported to control their own expression as well as that of each 
other hnRNPs through AS-NMD (Müller-McNicoll et al., 2019). In 
accordance with cross-regulation among the hnRNP families, analysis 
of binding sites for various hnRNPs within the genes encoding the 
different hnRNPs revealed a large network of cross-regulatory 
interactions between hnRNPs (Huelga et al., 2012). Enlarging the 

4 https://cellxgene.cziscience.com/gene-expression
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FIGURE 4

The gene expression profiles of hnRNP proteins in the human brain across various developmental stages. Overview of gene expression profiles of the 
hnRNPs members across human brain from a selection of developmental stages [4-, 8-, 12-, 16-, or 19-wpc (weeks post-conception)], newborn, 
infant, and young adults (25–32  years) using the resource provided by the Kaessmann Lab (Cardoso-Moreira et al., 2019). Expression levels were 
calculated in million mapped reads per kilobase of exon (RPKM). The red dashed line corresponds to hnRNPs that reach at least 150 RPKM. The orange 
dashed line refers to hnRNPs that are close to 150 RPKM. No expression was detected for hnRNP A1L1 (also known as hnRNP A1P6), hnRNP CL2, 
hnRNP CL3, and hnRNP E3.
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FIGURE 5

Spatio-temporal expression of hnRNP members during corticogenesis in mice. Spatio-temporal expression of hnRNP members from a single-cell 
RNAseq analysis in mouse developing cortices (Telley et al., 2019). The data were obtained from the open website (http://genebrowser.unige.ch/
telagirdon/). X axis is time of apical progenitor birth, Y axis represents time of neuron differentiation. SOX2, EOMES (TBR2), and TBR1 have been utilized 
as markers to delineate the ventricular zone (VZ) progenitor, newly generated neurons in intermediate zone (IZ), and post-migratory neurons in the 
cortical plate (CP) respectively.
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modes of regulation of hnRNPs, it has been shown that TDP-43 binds 
to its own mRNA through sequences within the CDS and the 3’UTR 
to target TDP-43 transcripts to degradation likely via the exosome 
system (Ayala et al., 2011).

4 hnRNPs splicing function in the 
brain

In this section, we will focus on the historically described function 
of hnRNPs, the regulation of splicing (Dreyfuss et  al., 1993), 
specifically in the developing brain. Extensive discussion of the other 
functions of hnRNPs in transcriptional regulation, nucleocytoplasmic 
transport, mRNA biogenesis (stability, metabolism, localization) and 
decay, translational regulation, chromatin remodeling or telomere 
maintenance, can be found in recent reviews (Geuens et al., 2016; 
Purice and Taylor, 2018; Bampton et  al., 2020; Low et  al., 2021; 
Brandão-Teles et al., 2023).

Among hnRNPs, hnRNP I (PTBP1) and PTBP2, members of the 
hnRNP I family, are widely described as key splicing factors during 
brain development. One of their main roles is to promote the timely 
expression of synaptic genes during brain maturation. Indeed, both 
hnRNP I (PTBP1) and PTBP2 are involved in the regulation of the 
expression of PSD95, that plays a key role in synapse maturation. In 
progenitors, they both promote PSD95 mRNA decay by suppressing 
the splicing of its exon 18. As progenitors differentiate into neurons, 
both genes are progressively silenced, resulting in exon 18 splicing and 
subsequent PSD95 expression. In accordance, reintroduction of 
hnRNP I (PTBP1) or PTBP2 in differentiated neurons inhibits PSD95 
expression, impairing glutamatergic synapse development (Zheng 
et al., 2012). Recent PTBP2 CLIP-seq analysis in both human cortical 
tissue and neurons derived from induced pluripotent stem cells 
revealed other synaptic genes as novel PTBP2 targets. This includes 

SYNGAP1, a synaptic gene implicated in a neurodevelopmental 
disorder (Dawicki-McKenna et al., 2023). It was shown that PTBP2 
promotes the inclusion of an alternative 3′ splice site in exon 11 of 
SYNGAP1 resulting in the introduction of a premature stop codon and 
degradation of the SYNGAP1 mRNA. Of note, hnRNP I (PTBP1) also 
regulates this splicing event. As for PSD95, progressive downregulation 
of PTBP proteins as neurons mature drives the increased expression 
of SYNGAP1 (Dawicki-McKenna et  al., 2023). Among the other 
synapse-associated targets, Dawicki-McKenna et al. also found the 
glutamate receptor gene GRIN1 to be spliced by PTBP2. This event 
involves the inclusion of a previously unannotated alternative exon, 
resulting in a frameshift in the canonical transcript and reduced 
expression. Yet, the role of hnRNP I (PTBP1) in the regulation of 
GRIN1 has not been addressed (Dawicki-McKenna et  al., 2023). 
Notably, hnRNP I (PTBP1) and PTBP2 could also regulate synapse 
formation through the regulation of expression of the different 
neurexins isoforms, the adhesion molecules that shape neuronal 
synapses (Resnick et  al., 2008). Aside from its roles in synapse 
formation and maturation, PTBP2 plays a role in regulating the timing 
of axonogenesis, notably by regulating the switch from the long to the 
short isoforms of Shootin1, that sequentially regulate axon formation 
and elongation through distinct function on actin cytoskeleton 
(Zhang et  al., 2019). Strikingly, this role is unique to PTBP2. 
Interestingly, the differences in the splicing regulation patterns of 
hnRNP I (PTBP1) and PTBP2 have been shown to arise from shift in 
the expression levels of hnRNP I (PTBP1) and PTBP2 proteins during 
neuronal differentiation. Indeed, hnRNP I (PTBP1) suppresses the 
inclusion of alternative exon 10 in the PTBP2 pre-mRNA, leading to 
the generation of a premature termination codon and its degradation 
through NMD (Boutz et al., 2007). Upon differentiation of progenitors 
to neurons, the repression of hnRNP I  (PTBP1) expression is 
facilitated by the miRNA miR124 (Makeyev et al., 2007) releasing the 
negative regulation of hnRNP I  (PTBP1) on PTBP2 (Boutz et al., 

FIGURE 6

hnRNP expression patterns across various neuronal cell types in the human brain. Expression profiles of hnRNP sub-families in cortical progenitors 
(radial glial cells), cortical neurons (excitatory neurons from different cortical layers, inhibitory interneurons) and glia cells (astrocytes, oligodendrocytes, 
oligodendrocyte precursors) in the human brain. The dot plot was made using the gene expression normalized as described in the CZ CellxGene 
Discover platform (https://cellxgene.cziscience.com/).
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2007). Also, hnRNP I  (PTBP1) is critical to maintain the pool of 
neural progenitor cells (NPCs) by repressing a poison exon in filamin 
A specifically in NPCs. Not least, a human intronic mutation within a 
hnRNP I (PTBP1) binding site in the FLNA gene that prevents the 
usual exclusion of the FLNA poison exon in NPCs, results in a brain-
specific malformation (Zhang et al., 2016). Like hnRNP I (PTBP1), 
hnRNPs H1/H2 have been shown to regulate the ability of the 
progenitors to generate neurons. Indeed, hnRNP H1/H2 proteins bind 
to TRF2 (telomere repeat-binding factor 2) exon 7, inhibiting its 
splicing and thereby inhibiting the production of the exon 7 truncated 
TRF2-S short isoform, that is essential to promote neurogenesis 
(Grammatikakis et al., 2016). Interestingly, as neurogenesis progresses, 
there is a gradual decline in the levels of hnRNP H1/H2 proteins, that 
coincides with an increase in the abundance of TRF2-S. Notably, 
experimental silencing of hnRNPs H1/H2 leads to elevated levels of 
TRF2-S, thereby promoting neurogenesis (Grammatikakis 
et al., 2016).

Other hnRNPs have been identified as important for splicing in a 
physiological context: (i) hnRNP U knockout in mouse dorsal 
telencephalon leads to numerous alternative splicing events, notably 
in Doublecortin that controls axon growth and guidance, Siva1 that 
regulates neural apoptosis and synaptic function, and MDM2, a p53 
negative regulator, which is targeted in brain tumor therapy (Sapir 
et al., 2022); (ii) hnRNP K competes with the constitutive splicing 
factor U2AF65 to control the splicing of several neuronal genes 
including Snap25 (synaptosomal-associated protein 25) during 
neuronal differentiation (Cao et  al., 2012); (iii) whole-genome 
investigation of alternative splicing has revealed the significant 
involvement of hnRNP F/H sub-family in the proliferation and 
differentiation processes of oligodendrocytes (Wang et al., 2012). In 
addition, hnRNPs F/H play a crucial role in regulating the major 
proteolipid protein in oligodendrocytes, underscoring its importance 
in the development and functioning of myelinating cells (Wang 
et al., 2007).

Splicing function of hnRNPs is also clearly associated to 
neurodegeneration condition. First, Spinal Muscular Atrophy (SMA), 
that primarily affects the motor neurons in the spinal cord, involves 
the splicing function of hnRNPs as key factors. The SMN2 gene, which 
encodes the survival motor neuron 2 protein undergoes complex 
splicing regulation, notably splicing of exon 7. This process involves 
the intricate interplay of several hnRNP proteins. Among these, 
hnRNP G (RBMX), hnRNP M, and hnRNP Q, facilitate the inclusion 
of exon 7  in SMN2. Conversely, the depletion of hnRNPs A1/A2 
promotes exon 7 inclusion in SMN2. Remarkably, SMN2 is almost 
identical to SMN1 gene, which is mutated in SMA. Interestingly, 
promoting expression of the full SMN2 isoform containing exon 7 in 
a SMN1 mutated context reduces the severity of SMA (Singh and 
Singh, 2018; Wirth et al., 2020; Wirth, 2021). Second, as extensively 
reviewed by Corsi et al. (2022), there are many hnRNP proteins [D, 
A3, H1, C, R, A2/B1, A1, G (RBMX), E2 (PCBP2), I (PTBP1), and 
PTBP2] that intricately regulate MAPT splicing, impacting the balance 
between various tau isoforms crucial for normal neuronal function 
and implicated in neurodegenerative diseases like Alzheimer’s disease. 
Third, TDP-43 is a central player in the pathogenesis of the 
neurodegenerative disorder Frontotemporal Dementia-Amyotrophic 
Lateral Sclerosis (FTD-ALS). Specifically, the mislocalization of 
TDP-43 in the cytoplasm induces aberrant splicing of several genes: 
(i) activation of a cryptic splice site in the first intron of STMN2 gene 

(encoding Stathmin-2) that compromises axon repair following motor 
neuron injury in ALS (Klim et al., 2019; Melamed et al., 2019; Baughn 
et al., 2023), (ii) insertion of a cryptic exon between exon 20 and 21 
within the UNC13A transcript, a gene that plays important roles in 
neurotransmitter release at synapses. Consequently, this alternative 
splicing event generates a premature stop codon and triggers the 
NMD mechanism to degrade UNC13A pre-mRNA (Brown et  al., 
2022; Ma et al., 2022). Of note, TDP-43 interacts with some hnRNP 
members (A1, A2/B1, and L) that have been recently shown to also 
bind UNC13A RNA and repress cryptic exon inclusion, independently 
of TDP-43 (Koike et al., 2023). Accordingly, this has recently been 
corroborated using a genetically modified neuronal cell line that 
overexpresses either hnRNP L or a GFP control. They demonstrated 
that overexpression of hnRNP L decreases the abnormal inclusion of 
the UNC13A cryptic exon in a siRNA TDP-43 condition and elevates 
the levels of full-length UNC13A in a siRNA scramble condition (Agra 
Almeida Quadros et  al., 2024). They also demonstrated that 
overexpression of hnRNP L does not correct the splicing defect of the 
STMN2 transcripts in a siRNA TDP-43 condition (Agra Almeida 
Quadros et al., 2024).

5 Functional compensation between 
hnRNP members

As seen in the previous sections, members of hnRNP sub-families 
share various structural and functional properties raising the 
possibility that hnRNPs might have redundant functions. Recent 
evidence supports a functional compensation between close 
paralogues. Whether compensatory mechanisms exist across hnRNPs 
from different sub-families need to be demonstrated.

Mouse genetics have suggested some compensatory mechanisms 
among hnRNP proteins. First knockin mouse models carrying HnRnp 
H2 variants found in patients presenting with neurodevelopmental 
disorder have been generated, along with HnRnp H2-KO mice (Korff 
et al., 2023). While the knockin mice recapitulated key clinical features 
observed in human patients, including reduced survival, impaired 
motor and cognitive functions, the HnRnp H2-KO mice displayed no 
discernible phenotypes. Intriguingly, the KO mice exhibited 
upregulated expression of hnRNP H1 while knockin mice failed to 
upregulate hnRNP H1. These findings suggest a compensatory 
mechanism by hnRNP H1 to counteract the loss of hnRNP H2, 
implying that the hnRNP H2-related disorder may result from a toxic 
gain of function or a complex loss of hnRNP H2 function with 
impaired compensation by hnRNP H1 (Korff et al., 2023). Second, 
Vuong et al. demonstrated that overexpression of PTBP1 (hnRNP I) 
rescues the lethality and brain degenerative phenotypes induced by 
the inactivation of PTBP2 (nPTB) in mice. They further showed that 
hnRNP I (PTBP1) partly compensates for splicing defect occurring 
upon Ptbp2 depletion. More importantly, this compensation occurs 
when Ptbp2 is inactivated in dorsal progenitors (Emx1 + cells) but not 
when Ptbp2 is inactivated in the whole brain (Nestin + cells), 
suggesting that the redundancy of the two proteins could be restricted 
to specific cell types during brain development (Vuong et al., 2016).

Additional work in cellular model confirm a potential redundancy 
of hnRNPs: (i) in the context of hnRNP G (RBMX) sub-family, the 
work of David Elliott’s Lab has shown that the defects in splicing 
induced by the loss of hnRNP G (RBMX) in HEK293 cells is 
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compensated by the exogenous expression of its 73% identical 
RBMXL2 retrocopy and even by the more divergent RBMY1A1 
protein (Ehrmann et al., 2019; Siachisumo et al., 2023). The fact that 
two testis-specific proteins can rescue hnRNP G (RBMX) function in 
a different cellular context, strongly argue for common and conserved 
function through evolution. Interestingly, several patients carrying 
mutations in the hnRNP G (RBMX) gene have been reported to 
manifest various syndromes, such as Shashi syndrome and Gustavson 
syndrome (Shashi et al., 2015; Johansson et al., 2023). Yet, there is little 
phenotypic overlap between the two syndromes, suggesting a distinct 
disease-causing mechanism. It has been proposed without being 
demonstrated that phenotypic variations could be linked to hnRNP G 
(RBMX) retrocopies, particularly RBMXL1 and RBMXL9, which are 
known to be  expressed in the brain (Johansson et  al., 2023). As 
demonstrated for RBMXL2 (Siachisumo et  al., 2023), one can 
hypothesize that those two retrocopies could also compensate for 
some splicing defects in those two hnRNP G (RBMX) related brain 
disorders; (ii) in a search for regulator of cell growth, He et al. showed 
that while knockdown of hnRNP A2 leads to growth defects, hnRNP 
A1 and hnRNP A3 depletion did not alter growth unless they are 
simultaneously depleted (He et al., 2005). This result suggests that 
these two hnRNP proteins that show the highest sequence identity 
(Ma et al., 2002) may functionally compensate for each other (He 
et al., 2005); and (iii) hnRNP L (Yu et al., 2009) and its paralog hnRNP 
LL (Liu et  al., 2012) redundantly modulates the splicing of the 
calcium/calmodulin-dependent protein kinase IV (CaMKIV), a 
crucial enzyme involved in signal transduction and gene expression 
regulation. However, it is important to keep in mind that the 
redundancy could be specific to some mRNAs. Indeed, although the 
domain architecture between both proteins is highly conserved, with 
each containing four very similar RRMs, hnRNP L and hnRNP LL are 
very different in respect of their binding preferences: while hnRNP LL 
prefers binding to the CANRCA sequence, hnRNP L shows a broader 
range of preferred target sequences (CANRCA, CAN2RCA, and 
CACA). The biological consequence of the differential sequences 
preferences of hnRNP L and LL can be evidenced by their distinct 
binding to the CD45 regulatory element ESS1, that present seven “CA 
repeat” known to differentially regulate CD45 splicing repression: 
while both hnRNP L and LL can bind CA6-7 repeat, only hnRNP L 
binds to CA2-4 repeats (Smith et  al., 2013). Another example 
illustrating the opposite effects of hnRNP L and hnRNP LL is the 
splicing of the CHRNA1 gene. While hnRNP L promotes the exclusion 
of exon P3A in the CHRNA1 pre-mRNA, hnRNP LL tends to favor its 
inclusion (Rahman et al., 2013).

In sum, the compensatory mechanisms among hnRNPs seem very 
complex ranging from broad overlap in their function to compensation 
of specific splicing event or in specific cellular context. As such, the 
full characterization of functional compensation between hnRNPs 
represent a challenge that can be only met by extensive bench work.

6 hnRNPs and neurodevelopmental/
neurodegenerative disorders

6.1 Neurodevelopmental disorders

Growing evidence link variants in multiple hnRNP genes to 
neurodevelopmental disorders (NDD). These disorders encompass a 

wide spectrum of neurodevelopmental symptoms, including 
developmental delay, microcephaly, brain anomalies, intellectual 
disability, and epilepsy (Gillentine et al., 2021), and have been referred 
as HNRNP-Related Rare Neurodevelopmental Disorders (HNRNP-
RNDDs) by the hnRNP family foundation (see text footnote 1) 
(Gillentine et al., 2021). Though the association with HNRNP-RNDDs 
have been clearly shown for 8 hnRNPs (detailed below), several other 
hnRNPs (AB, D, F, H3, UL1, and UL2) are relevant candidate for 
NDDs (Gillentine et  al., 2021), but this needs to be  formally 
demonstrated. Notably, these candidates do not show a similar 
expression pattern neither in time or space (Figures 4, 5), that would 
explain their association to disease. Interestingly, although the 
molecular mechanism underlying HNRNP-RNDDs have not been 
fully investigated, to date, most of the studies converge toward loss of 
function effect of the identified variants in hnRNPs. Whether all these 
disorders are solely caused by the alteration of the canonical splicing 
function of hnRNPs and how the variants lead to brain phenotype at 
the cellular level is not known.

6.1.1 hnRNP G
hnRNP G is a X-linked gene located at the genetic locus Xq26.3. 

In line with a key function of hnRNP G (RBMX) in brain development, 
a hemizygous 23-base pair deletion, resulting in a frameshift mutation 
and premature termination in the last exon of hnRNP G (RBMX), has 
been identified in males from a large family in North Carolina. All 
affected males present with intellectual disability, craniofacial 
dysmorphism, and other neurological features. This syndrome was 
characterized as the Intellectual developmental disorder, X-linked 
syndromic, Shashi type (Phenotype MIM number: 300986) or 
HNRNPG-RNDD (Shashi et al., 2000, 2015). At the molecular level 
the mode of action of these variants has not been identified yet.

Recently, three affected males from a large Swedish family 
carrying a hemizygous 3-base pair in-frame deletion within exon 5 of 
the hnRNP G gene were diagnosed with Gustavson-type X-linked 
syndromic intellectual developmental disorder (Gustavson et al., 1993; 
Johansson et  al., 2023). Gustavson syndrome is characterized by 
microcephaly, severe intellectual disabilities, optic atrophy with visual 
impairment, hearing loss, spasticity, seizures, and restricted joint 
mobility and therefore differ from the Shashi syndrome (Shashi et al., 
2000, 2015; Johansson et al., 2023). HNRNPG-RNDD spectrum has 
thus been expanded to Intellectual Developmental Disorder, X-linked 
syndromic, Gustavson type (Phenotype MIM number: 309555). The 
3 bp deletion leads to the removal of the proline at position 162. This 
in frame deletion of a single aa could impair protein–protein 
interaction as Pro162 is part of a tri-proline stretch that has been 
shown to facilitate interaction with SH3 domain-containing proteins. 
RNA sequencing of SH-SY5Y overexpressing GFP-tagged WT or 
DelPro162 hnRNP G (RBMX) proteins revealed an enrichment of 
genes involved in RNA polymerase II transcription among the 
differentially expressed genes (Gillentine, 2023; Johansson et  al., 
2023). As mentioned earlier, the most recent retrocopy of hnRNP G, 
RBMXL1, found on chromosome 1, encodes a protein (Q96E39) with 
similar expression pattern and high homology with hnRNP G 
(RBMX) (P38159) (Lingenfelter et al., 2001). Interestingly, although 
the proline 162 is conserved in RBMXL1, the proline 161 that forms 
the tri-proline motif in hnRNP G (RBMX) (PPP–160–162) is mutated 
into a serine (PSP–160–162). It has been suggested that the disruption 
of the tri-proline motif in the retrocopy excludes the possibility that 
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RBMXL1 compensates for the effects of the hnRNP G (RBMX) variant 
observed in the patients (Johansson et al., 2023).

6.1.2 hnRNP H2
As hnRNP G (RBMX), hnRNP H2 map to the chromosome X 

(Xq22.1 locus). Unrelated females carrying distinct variants in the 
hnRNP H2 gene were identified with developmental delay, intellectual 
disability, and autism. They were classified under the Intellectual 
Developmental Disorder, X-linked syndromic, Bain type (Phenotype 
MIM number: 300986) or HNRNPH2-RNDD (Bain et al., 2016, 2021; 
Peron et al., 2020). Interestingly, variants affecting conserved residues 
within the NLS are associated with more severe phenotype compare to 
variants located outside the NLS (Bain et al., 2016), suggesting that gain 
of cytoplasmic localization of the protein severely hampers brain 
development (Bain et  al., 2021). Although, no toxic nuclear or 
cytoplasmic accumulation was observed in muscle tissue biopsies (Bain 
et  al., 2021), investigations of mouse models carrying hnRNP H2 
variants, revealed an accumulation of mutant proteins within cytoplasmic 
RNA granules, confirming a possible gain of function mechanism due to 
the mislocalization of mutant hnRNP H2 protein (Korff et al., 2023).

While initial studies only reported females patients (Bain et al., 
2016, 2021; Peron et al., 2020), some recent studies have documented 
males carrying pathogenic variants in hnRNP H2 (Harmsen et al., 
2019; Jepsen et al., 2019; Somashekar et al., 2020; Kreienkamp et al., 
2022). For instance, Harmsen et al. identified a hemizygous de novo 
missense mutation in a young male diagnosed with the Bain type of 
X-linked syndromic intellectual developmental disorder and 
presenting with developmental delay, intellectual disability, and 
progressive microcephaly. This contradicts the initial hypothesis 
according to which variants in hnRNP H2 are lethal in males during 
embryonic development (Bain et al., 2016, 2021; Peron et al., 2020).

6.1.3 hnRNP H1
hnRNP H1 that encodes the close paralogue of hnRNP H2, is found 

on chromosome 5. A de novo heterozygous variant in the PY-NLS 
(p.R206W) of hnRNP H1 protein has been identified in a young boy 
diagnosed with a neurodevelopmental disorder characterized by 
craniofacial dysmorphism and skeletal and ophthalmological defects 
(Pilch et  al., 2018). These latter clinical features being unique to 
individuals with hnRNP H1 variant, this initial patient (Pilch et al., 2018) 
as well as 7 other patients carrying the same R206W variant, frameshift 
variant, in frame deletion or gene duplication (Reichert et al., 2020) were 
categorized under a related but distinct condition: neurodevelopmental 
disorder with craniofacial dysmorphism and skeletal defects (Phenotype 
MIM number: 620083) or HNRNPH1-RNDD. Strikingly, a variant at 
the corresponding arginine position in hnRNP H2 has also been found 
to be mutated in individuals with Bain Syndrome (Phenotype MIM 
number 300986) (Bain et al., 2016), confirming that variants in those 
two close paralogues lead to distinct NDDs. Of note, the severity of the 
phenotypes due to pathogenic variants in hnRNP H1 is variable, with 
variants in the NLS associated with the more severe phenotypes. Mode 
of action of those variants has not been addressed.

6.1.4 hnRNP C
Recently, hnRNP C has been added to the list of HNRNP-RNDDs 

and classified under Intellectual developmental disorder, autosomal 
dominant 74 (Phenotype MIM number: 620688). Two independent 
studies have identified 13 young individuals, ranging from 17 months 

to 15 years old (7 males and 6 females), carrying deletions in the 
C-terminal (5 patients) or N-terminal region (1 patient), frameshift 
mutations (4 patients), and missense mutations (3 patients) in the 
hnRNP C gene, all variants being found at the heterozygous levels 
(Kaplanis et al., 2020; Niggl et al., 2023). All patients present with 
motor and speech delay, intellectual disability, and facial dysmorphisms 
(Kaplanis et al., 2020; Niggl et al., 2023). Analysis of hnRNP C protein 
level in iPSCs derived from PBMCs obtained from a patient carrying 
a C-terminal deletion revealed haploinsufficiency. At the molecular 
level, hnRNP C knockdown in human cell lines or haploinsufficiency 
in fibroblast cells obtained from a patient with a frameshift mutation 
lead to defects in the alternative splicing of 60 genes associated with 
intellectual disability (Niggl et  al., 2023). Moreover, in utero 
electroporation (IUE) experiments in mice of two distinct siRNAs 
against hnRNP C gene to deplete hnRNP C in cells destined to form 
the somatosensory cortex at embryonic day E14.5, demonstrated that 
hnRNP C-deficient neurons failed to properly reach the cortical plate 
compared to the control condition. Further in vitro and in vivo 
experiments showed that overexpression of WT hnRNP C phenocopies 
the loss of hnRNP C function, suggesting that the dose of hnRNP C is 
critical for proper cortical development (Niggl et al., 2023).

6.1.5 hnRNP U
HNRNPU-related neurodevelopmental disorder (HNRNPU-

RNDD) has been extensively studied and documented in numerous 
publications. Patients were associated to Developmental and epileptic 
encephalopathy 54 (Phenotype MIM number: 617391) and develop a 
range of symptoms, typically including moderate to severe intellectual 
disability, seizures, behavioral abnormalities, speech and language 
delay as well as craniofacial dysmorphism and agenesis of the corpus 
callosum (Caliebe et al., 2010; Ballif et al., 2012; Bramswig et al., 2017; 
Depienne et al., 2017; Leduc et al., 2017; Yates et al., 2017; Durkin 
et al., 2020; Taylor et al., 2022). A wide range of de novo variants have 
been identified in NDD patients. This includes splice site variants (9), 
nonsense (14), missense (5), in frame deletion (2), frameshift 
duplications (3), Frameshift deletion (26) and larger deletion (1), for 
a total of 57 variants identified to date (Taylor et al., 2022). Those 
genetics studies strongly suggest that haplinsufficiency is the main 
mechansism of pathogenecity in HNRNPU variants.

6.1.6 hnRNP R
One study reported four unrelated patients who present with 

developmental delay, microcephaly, facial dysmorphism and skeletal 
and brain abnormalities (Phenotype MIM number: 620073) (Duijkers 
et  al., 2019). Authors have identified one missense variant and 2 
frameshift variants in the last exon, shown to lead to the production of 
truncated proteins lacking most of the hnRNP R RGG domain. 
RNAseq analysis preformed in cells from patients carrying the 
frameshift variants revealed a strong enrichment of homeobox genes, 
known for their role in development, among the most deregulated 
genes. Further candidates-based analysis attributed this HOX 
deregulation to impaired splicing (Duijkers et al., 2019). To note, a 
nonsense variant in the last exon has also been identified in a patient 
presenting with epileptic encephalopathy but also some clinical features 
overlapping with the 4 other variants (Helbig et al., 2016; Duijkers et al., 
2019). The fact that truncated variants leading to very similar proteins 
lead to different syndrome is puzzling and hamper a clear classification 
as HNRNPR-related neurodevelopmental disorder (HNRNPR-RNDD).
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6.1.7 hnRNP Q
SYNCRIP, also known as hnRNP Q, is also associated with a 

neurodevelopmental disorder (HNRNPQ-RNDD), characterized by 
developmental delay, intellectual disability, and autism spectrum 
disorder accompanied in some cases by malformations of cortical 
development and myoclonic-atonic epilepsy (Phenotype MIM 
number: 616686). Eight patients have been identified so far. They all 
carry de novo variants, including frameshift variant (5 patients), 
missense variant (2), in frame deletion (1) and whole gene deletion 
(1), suggesting loss of function mechanism (Firth et al., 2009; Rauch 
et al., 2012; Lelieveld et al., 2016; Guo et al., 2019; Semino et al., 2021). 
Yet, this has not been tested. To note, SYNCRIP (HNRNP Q) is also 
part of the proximal 6q loci that have been shown to be deleted in 20 
individuals with moderate to severe NDDs (Engwerda et al., 2018).

6.1.8 hnRNP K
Au-Kline syndrome (AKS) or also known as Okamoto syndrome 

(Phenotype MIM number: 616580), named after the clinicians who 
first described the pathology (Au et al., 2018; Okamoto, 2019) and 
characterized by intellectual disability, facial dysmorphisms, and 
skeletal malformations is caused by mutation in hnRNP K and has 
therefore been added to the HNRNP-RNDD list (Gillentine et al., 
2021). The identified de novo variants include deletion of a region 
encompassing hnRNP K (3 individuals), 3 frameshift variants from 
which two have been experimentally proven to lead to mRNA 
degradation of the mutant mRNA by NMD and 1 missense mutation, 
indicating that hnRNP K haploinsufficiency is driving 
neurodevelopmental phenotypes (Lange et al., 2016; Miyake et al., 
2017; Au et al., 2018; Okamoto, 2019; Maystadt et al., 2020).

6.2 Neurodegenerative disorders

6.2.1 FTLD-ALS spectrum
To date, genetic studies have linked 4 hnRNPs [A1, A2/B1, FUS 

(hnRNP P2) and TDP-43] to neurodegenerative diseases, including 
Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD) 
and Frontotemporal lobar degeneration (FTLD) that form a clinical 
disease continuum from motor neuron degenerative disease to 
dementia (Van Langenhove et al., 2012; Purice and Taylor, 2018). 
Given that TDP-43 and FUS (hnRNP P2) are key pathological proteins 
in FTLD-ALS spectrum, they represent the most extensively studied 
hnRNP proteins associated with neurodegenerative disorders 
(Bampton et al., 2020).

Although TDP-43 cytoplasmic and nuclear inclusions have been 
recognized as hallmarks of both FTD and ALS for a long time, it is 
now shown that genetic variants in TDP-43 account for 1% of all ALS 
cases and a small number of FTD cases (Sreedharan et  al., 2008; 
Keating et al., 2022). Most of the identified ALS-FTD mutations are 
missense variants in the TDP-43 C-terminal low complexity domain 
(LCD) that is involved in protein–protein interaction and phase 
separation (Keating et  al., 2022). The pathogenic effect of those 
TDP-43 variants has been associated to loss of the nuclear function of 
TDP-43 as well as gain-of-function in the cytoplasm where it 
sequesters mRNAs in inclusions (Halliday et al., 2012; Wood et al., 
2021). Notably, TDP-43 does not operate independently to facilitate 
neurodegeneration. Indeed, multiple mass spectrometry analyses have 
uncovered a close interaction between TDP-43 and numerous hnRNP 

members [A0, A1, A2/B1, A3, DL, C, E1 (PCBP1), E2 (PCBP2), G 
(RBMX), H1, I (PTBP1), K, M, P2 (FUS), Q, R, U, UL1, and UL2] 
(Freibaum et al., 2010; Romano and Buratti, 2013; García Morato 
et al., 2023). Among these 19 hnRNPs, 11 have been identified as 
TDP-43 interactors in at least two independent studies. As this 
intricate interplay between TDP-43 and other hnRNPs plays a critical 
role in co-regulating RNA splicing targets (see section 4), and as 
expression levels of certain hnRNPs vary significantly among 
individuals with FTLD-TDP and control patients (Mohagheghi et al., 
2016), TDP-43-hnRNPs cooperation could be central in ALS-FTD 
disorder. To note, although not associated to any TDP-43 variants, 
FTLD-TDP, or frontotemporal lobar degeneration with TDP-43 
pathology, that is a subtype of FTD, is characterized by the presence 
of abnormal accumulations of aggregated cytoplasmic TDP-43  in 
neurons and glia (Chen-Plotkin et al., 2010).

Mutations in hnRNP P2 (FUS) have been identified in 
approximately 1% of all ALS cases. In the case of FTD, the genetic and 
pathological involvement of hnRNP P2 (FUS) is still debated (Josephs 
et al., 2011; Gami-Patel et al., 2016; Nolan et al., 2016; Ishigaki and 
Sobue, 2018; Kwok et al., 2020). Mutations associated with ALS are 
distributed all along the hnRNP P2 (FUS) gene. However, there is a 
cluster of variants in the C-terminal region encompassing the PY-NLS 
(495–526 aa), whose pathogenicity has been linked to an abnormal 
accumulation of hnRNP P2 (FUS) in the cytosol (Khalil et al., 2024). 
As such, FUS-mediated toxicity and associated neurodegeneration is 
predominantly associated with gain-of-function mechanisms (Sun 
et al., 2015; Suzuki and Matsuoka, 2015; Scekic-Zahirovic et al., 2016; 
Sharma et  al., 2016; Devoy et  al., 2017; Sama et  al., 2017; López-
Erauskin et al., 2018; An et al., 2019; Tsai et al., 2020). Like TDP-43, 
hnRNP P2 (FUS) interacts with many hnRNPs [A1, A2/B1, A3, C, D, 
G (RBMX), H1, H2, K, M, R, U, UL1, hnRNP P2 (FUS) itself] 
(Kamelgarn et  al., 2016; Reber et  al., 2016). hnRNPs represent a 
quarter of the high-confidence hnRNP P2 (FUS) interactors, 
suggesting a potential collaboration between hnRNPs and hnRNP P2 
(FUS) to bind mRNA (Reber et  al., 2016). Accordingly, several 
hnRNPs, like hnRNP A1, C, D, and G (RBMX) were identified in 
some but not all hnRNP P2 (FUS) pathological deposits in specific 
brain regions like entorhinal cortex region or hippocampus in 
postmortem FTD brain (Gami-Patel et al., 2016).

Mutations occurring within the LCD of hnRNP A1 and hnRNP 
A2/B1 have been linked to both familial and sporadic cases of 
ALS. However, they represent a very small subset (less than 1%) of 
both familial and sporadic ALS cases (Bampton et al., 2020; Khalil 
et al., 2024). Wild-type hnRNP A2/B1 and hnRNP A1 proteins tend 
to form self-seeding fibrils, a tendency worsened by disease mutations. 
The identified missense mutations speed up fibril formation and 
leading to excessive incorporation of hnRNP A2 and hnRNP A1 into 
stress granules. They also induce the formation of cytoplasmic 
inclusions in animal models, mimicking human pathology (Kim et al., 
2013). However, it is worth noting that mutations in this region are 
more frequently associated with the pleiotropic degenerative disorder 
known as multisystem proteinopathy (Kim et al., 2013; Le Ber et al., 
2014; Suzuki et  al., 2023). Patients with multiple sclerosis (MS) 
commonly exhibit genomic single nucleotide variants (SNVs) within 
the nucleocytoplasmic transport M9 domain of the hnRNP A1 gene, 
indicating that disrupted hnRNP A1-mediated nucleocytoplasmic 
transport may contribute to MS pathology (Lee and Levin, 2014). In 
samples from MS patients, immunofluorescence analysis demonstrates 
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a significant colocalization of hnRNP A1 and TDP-43 within the 
cytoplasm of neurons in the brain, contrasting with controls (Salapa 
et al., 2020). Moreover, RNA sequencing in MS brains (Salapa et al., 
2024) revealed differential expression of around 550 genes between 
control and MS samples. 80% of these differentially expressed 
transcripts had previously shown binding to hnRNP A1. Overall, the 
findings endorse the notion that issues with RNA regulation stemming 
from dysfunctional hnRNP A1 play a pivotal role in driving 
neurodegeneration in MS (Salapa et al., 2024). In addition, hnRNP A1 
and hnRNP B1 levels have been shown to be  increased in the 
cerebrospinal fluid of MS patients compared to patients with other 
neurological disorders (Sueoka et al., 2004). Although hnRNP A3 
belongs to the same sub-family as hnRNP A1 and hnRNP A2/B1, it 
has not yet been linked to multiple sclerosis (Low et al., 2021).

6.2.2 hnRNPs and Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disorder 

characterized by progressive cognitive decline, memory loss, and 
neuropathological features including the accumulation of amyloid-
beta plaques and tangled proteins called Tau fibrils. Multiple lines of 
evidence have linked hnRNPs to AD: (1) Although there are no 
reported cases of hnRNP A1-related mutations that lead to AD 
(Clarke et al., 2021), expression of hnRNP A1 is markedly diminished 
in the brains of individuals with Alzheimer’s disease (Berson et al., 
2012). This could lead to direct impairment of APP and Tau proteins 
as hnRNP A1 binding sites have been found in introns 6 and 8 of the 
APP pre-mRNA (Donev et al., 2007) and that hnRNP A1 regulates the 
splicing of Tau (Liu et al., 2020). (2) A proteomic study of 16 human 
brain tissues from AD patients and age-matched controls revealed a 
significantly increased expression of hnRNPs C, K, L, M, R, U and 
UL2, in AD, while the expression level of TDP-43, and hnRNPs AB, 
A3, DL, and E1 (PCBP1) were decreased (Zhang et al., 2018). (3) 
Cytoplasmic mis-localization of hnRNP K in neurons of the dentate 
nucleus was shown in AD postmortem brain samples (Sidhu et al., 
2022). Of note, similar hnRNP K mislocalization has been observed 
in FTLD brain tissue (Sidhu et al., 2022). (4) hnRNP A/B loss in AD 
is not due to Aβ or tau but rather to deficits in cholinergic signaling 
and likely triggers the large changes in alternative splicing observed in 
AD (Berson et al., 2012). (5) hnRNP C competes with FMRP for 
mRNA binding sites, leading to the upregulation of APP synthesis 
(Lee et  al., 2010). (6) Computational analysis shows hnRNP Q 
lncRNAs crucial in protein folding and AD association (Ashraf 
et al., 2019).

7 Discussion

Despite significant progress in identifying and classifying hnRNP 
members, defining their functions in the context of the brain remains 
challenging due to their multifunctional nature. While splicing 
regulation is the most well-described function, others remain poorly 
understood, particularly their roles in the cytoplasm under 
physiological or pathological conditions such as in ALS and 
FTD. Recent evidence has highlighted their significance in 
neurodevelopmental disorders, although they have been less 
extensively investigated compared to their role in cancer (Figure 1), 
where hnRNPs serve as promising biomarkers (Zhou et al., 2021; Li 
et al., 2022; Lu et al., 2022; Mo et al., 2022; Tuersun et al., 2023). 

Indeed, there is a 41-year gap between the initial discovery of hnRNP 
proteins (Beyer et al., 1977) and the initiation of the first clinical trial 
in 2018 (Natural History Study of hnRNP-related Disorders; 
ClinicalTrials.gov ID: NCT03492060), involving individuals with 
hnRNP genetic variants and associated neurological comorbidities 
(Figure  1). Concomitantly to those first clinical trials, the 
establishment of two HNRNP family foundations, one in the USA (see 
text footnote 1) and one in Japan (see text footnote 2), gave a 
significant boost to the hnRNPs research and promises major 
breakthroughs, as it is in the field of cancer.

hnRNP members not only regulate their own expression but also 
that of other hnRNP proteins, whether closely related or not, revealing 
the complexity of interactions within this RNA-binding protein 
family. Increasing evidence suggests that hnRNPs can compensate for 
certain functions of closely related members. This observation extends 
to another organ with high cellular and molecular similarities to the 
brain: the testis (Matos et  al., 2021). For instance, RBMXL2 
compensates for the absence of hnRNP G (RBMX) in somatic cells 
(Siachisumo et al., 2023). This finding aligns with a recent model 
proposing that RBMXL2 takes over hnRNP G (RBMX) function 
during meiosis due to the transcriptional inactivation of the X 
chromosome (Ehrmann et al., 2019). The intricate interplay network 
among hnRNP proteins not only complicates our understanding of 
the mechanisms underlying neurological disorders, but also meets a 
challenge for the development of targeted therapy. On the other hand, 
the functional redundancy among hnRNP proteins also instills hope 
for potential treatments using ASO therapeutic strategy, as recently 
commented by Kelvington and Abel (2023). Finally, it is noteworthy 
mentioning that the use of hnRNP as new tool for therapeutic 
strategies is starting to emerge. Indeed, novel CRISPR-Cas9 
applications aim to induce specific RNA splicing by fusing a 
RNA-targeted CAS9 (dCasRx) to hnRNPs, such as hnRNP A1 
(Konermann et al., 2018). This was used in patient-derived iPSCs to 
modify alternative splicing in the MAPT gene, aiming to counteract 
pathogenic mutations associated with Frontotemporal dementia and 
parkinsonism linked to chromosome 17 (FTDP-17). First results in 
human cortical neurons show that this strategy successfully restored 
the balance between the two major Tau isoforms, Tau-4R and Tau-3R 
(Konermann et  al., 2018). This highlights the need for a sound 
understanding of the physiological function of hnRNPs and the 
mechanisms related to the alteration of their normal function in 
pathological conditions.
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