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The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role 
in peripheral neuropathic pain (NeuP) by acting as a “pain switch” through its 
sensitization and desensitization. Hyperalgesia, commonly resulting from tissue 
injury or inflammation, involves the sensitization of TRPV1 channels, which 
modulates sensory transmission from primary afferent nociceptors to spinal 
dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), 
TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with 
ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of 
TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and 
inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical 
hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved 
in pain modulation through pathways including reactive oxygen species and 
cytokine production. TRPV1’s interaction with TRPA1 channels further influences 
chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, 
can induce analgesia through receptor desensitization, while TRPV1 antagonists 
and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid 
modulation of TRPV1 provides another potential pathway for alleviating 
neuropathic pain. This review summarizes recent preclinical research on 
TRPV1 in association with peripheral NeuP.
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1 Introduction

Neuropathic pain (NeuP) is caused by a lesion or disease affecting the peripheral or central 
somatosensory nervous system (Baron et al., 2010), as the International Association for the 
Study of Pain (IASP) defines (IASP, 1979). Depending on the lesion location, NeuP is classified 
into peripheral and central NeuP according the ICD-11 (Scholz et al., 2019). The prevalence 
of NeuP is as high as 7–10% of the general population, which is higher in certain specific 
populations (Torrance et al., 2006; Bouhassira et al., 2008; van Hecke et al., 2014). About 26% 
of patients with diabetes mellitus and 21% of patients with herpes zoster develop NeuP (van 
Hecke et  al., 2014). The classic symptoms of NeuP involve positive symptoms such as 
spontaneous pain, hyperalgesia and allodynia, as well as negative symptoms such as decreased 
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or loss of sensation (Scholz et al., 2019; Gilron et al., 2015). Meanwhile, 
NeuP is often accompanied by different temporal characteristics and 
pain properties (Gilron et al., 2015). NeuP is typically chronic and 
severe, impacting patients’ psychosocial and healthcare economic 
costs as well as their quality of life (Langley et al., 2013; Bates et al., 
2019). The management of NeuP is extremely challenging for 
clinicians due to the refractory treatment (Deng et  al., 2016). An 
epidemiologic survey showed that about 10–20% of patients are not 
correctly identified (Freynhagen and Bennett, 2009) and about 
30–60% are not treated appropriately (Martinez et al., 2014), which 
may be related to insufficient information about the pathophysiologic 
mechanisms of the diseases (Moisset et  al., 2020). Over the past 
decades, researchers have begun to investigate the cellular and 
molecular mechanisms involved in the pathogenesis of NeuP. Studies 
have revealed that significant mechanisms observed under the NeuP 
condition, include ectopic activity (Amir et  al., 2005), peripheral 
sensitization (Kiguchi et al., 2014), central sensitization (Koltzenburg 
et  al., 1994), impaired inhibitory regulation (Torsney and 
MacDermott, 2006), and microglia activation (Thacker et al., 2009).

Transient Receptor Potential (TRP) channels is a non-selective 
cation channels, consisting of a broad range of channels (Samanta 
et al., 2018), which could be categorized into TRPC, TRPV, TRPA, 
TRPM, TRPP, and TRPML (Venkatachalam et al., 2014). The TRP 
channels are implicated in the transduction of sensory information, 
including thermosensation (Damann et al., 2008), taste (Dhaka et al., 
2006), hearing (Clapham, 2003), pain sensation (Clapham, 2003), etc. 
The abnormal function of TRP channels may lead to skin (Moran, 
2018), airway (Marwaha et al., 2016), endocrine (Brandt et al., 2012) 
and gut (Cao et al., 2013). Furthermore, TRP channels are essential 
molecular components in acute inflammation and chronic pain 
conditions (Liao et al., 2013). Transient receptor potential channel 
vanilloid subtype 1 (TRPV1) channel is of the most studied targeting 
mechanisms in NeuP researches due to its widespread expression in 
neuronal cells and its critical role in pain perception and modulation 
(Moiseenkova-Bell et  al., 2008; Dangi and Sharma, 2024). In this 
review, we provide a systematic overview of TRPV1, with a particular 
focus on their role and research progress in NeuP.

2 Structure and expression of TRPV1 
channel

2.1 Molecular structure

TRPV1 was the first mammalian TRP channel whose structure 
was determined and cloned (Xu et al., 2007). The TRPV1 protein 
consists of four subunits, each containing six transmembrane 
structural domains (S1–S6) and two long intracellular N-terminal and 
C-terminal (Binder et al., 2011). Four independently folded S1–S4 
structural domains surround to form the intervening pore loop 
region, which constitutes an ion-permeable channel with S5 and S6 
(Valdes et  al., 2011). Single-particle electron cryomicroscopy 
identified a fourfold symmetric structure of TRPV1, consisting of two 
regions, a large basket-like domain and a small compact domain, 
corresponding to the N-terminal, C-terminal region and 
transmembrane region, respectively (Caterina et  al., 1997). Dual 
gating mechanism regulates the opening of TRPV1, where the upper 
gate is a selectivity filter formed by a funnel-shaped extracellular pore 

and the lower gate is located in the middle of the S6 helix and is 
involved in the dilation of a hydrophobic constriction (Xu et al., 2007). 
Some studies identified allelic variants of TRPV1  in specific 
populations (Sondermann, 2019), which may be associated with cold 
sensitivity (Caterina et  al., 2000) and risk of developing knee 
osteoarthritis (Benítez-Angeles et al., 2020).

2.2 Expression patterns in tissues

TRPV1 is abundantly expressed in peripheral sensory neurons of 
the dorsal root ganglia (DRG), vagus and trigeminal ganglia (Arora 
et al., 2021). In addition, TRPV1 is also expressed in the intestinal 
mucosal epithelium, skin epidermis and immune cells, and others 
(Tominaga et al., 1998). As a pain and heat sensor for humans (Sanz-
Salvador et al., 2012), it can be activated by a broad range of physical 
and chemical stimuli such as toxic heat (>43°C), divalent cations, low 
pH, inflammatory mediators, and animal toxins (Arora et al., 2021). 
Activation of the channel leads to a large Ca2+ and Na+ influx, 
generating neuronal depolarization and action potential discharges, 
which may also lead to calcium overload (Sanz-Salvador et al., 2012; 
Bujak et  al., 2019). The activation of TRPV1 is enhanced when 
multiple stimuli are present simultaneously (Colloca et  al., 2017). 
However, persistent stimulation reduces neuronal excitability, leading 
to a basic or complete insensitivity to subsequent stimuli, and thus 
specific desensitization (tachyphylaxis) occurs (Figure 1) (Bujak et al., 
2019; Wang et  al., 2022). To date, TRPV1 agonists (capsaicin, 
Resiniferatoxin), as well as antagonists (capsazepine, SB-705498, or 
NEO6860), have been used for the treatment of migraine, 
osteoarthritis, atopic dermatitis, and NeuP (Petitjean et al., 2015).

3 Mechanisms of NeuP

The pathogenesis of the NeuP is of complexity and has not yet 
been fully elucidated (Finnerup et  al., 2021). Most of the current 
potential pathogenic mechanisms center on neuronal cells, 
encompassing the excitability of primary sensory neurons and the 
imbalance between excitatory and inhibitory synaptic transmission 
within the central nervous system (CNS) (Nichols et al., 1999). NeuP 
is typically characterized by ongoing or intermittent spontaneous pain 
or mechanical allodynia (Willis and Congeshall, 1991). Spontaneous 
pain may be caused by ectopic activity of damaged nerve fibers, and 
evoked pain primarily involves peripheral and central sensitization 
(Inoue and Tsuda, 2018). The reasons for sensitization of nociceptors 
generally include alteration of ion channels, activation of immune 
cells, glial-derived mediators, and epigenetic regulation (Inoue and 
Tsuda, 2018). At the spinal cord level, the underlying synaptic 
plasticity is not fully clarified. It has been shown that projection 
neurons in layer I of the spinal dorsal horn form synaptic connections 
with nociceptor C as well as Aδ fibers. The nociceptive projection 
neurons in layer I  are activated through a complex neural circuit 
consisting of excitatory and inhibitory interneurons, which then send 
out projection fibers to carry that stimulus information to the superior 
centers (Mika et al., 2013; Ji et al., 2019). Peripheral nerve impairment 
via plastic modification of neuronal synapses and networks leads to 
changes in the balance between synaptic excitation and inhibition in 
layer I projection neurons, which may be driven in part by changes in 
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excitatory and inhibitory interneurons in layer II or layer III, that may 
be related to the development and maintenance of pain hypersensitivity 
responses (Hains and Waxman, 2006).

The mechanisms of central NeuP involve intricate interactions 
and maladaptive plasticity within spinal and brain circuits related to 
nociception and antinociception, along with neuronal hyperexcitability 
and neuro-immune interactions, contributing to the complexity of 
this condition (Rosner et al., 2023). Recently, microglia activation was 
suggested to be involved in central NeuP pathophysiology, leading to 
the dysregulation of the MED1/BDNF/TrkB signaling pathway within 
the CNS following thalamic hemorrhage, which in turn induces pain 
and depression (Infantino et  al., 2022). There is also research 
suggesting that the activation of microglia leads to the reorganization 
of neural networks within sensory pathways, particularly in the 
thalamus and primary somatosensory cortex. Microglial depletion can 
effectively prevent and alleviate mechanical hyperalgesia and 
abnormal axonal regeneration caused by thalamic hemorrhage 
(Hiraga et al., 2020).

Glial cells make up about 70% of the total number of cells in the 
CNS and comprise a variety of cell types including oligodendrocytes, 
astrocytes, microglia and satellite cells (Wahlman et al., 2018). It has 

been suggested that microglia and astrocytes are the critical cells that 
contribute to the development of acute and chronic pain following 
peripheral and central nerve injury (Old et al., 2015; Ji and Xu, 2021). 
Microglia and astrocytes respond to peripheral input signals and 
release proinflammatory mediators (Ji et al., 2018), such as cytokines 
and chemokines, which can sensitize neurons through activation of 
their cognate receptors, thereby promoting central sensitization and 
producing allodynia, hyperalgesia and spontaneous pain (Gim et al., 
2011). Microglia are the resident immune cells of CNS and can switch 
between different activation states in response to various stimuli, 
primarily classified into M1 (pro-inflammatory) and M2 (anti-
inflammatory/repair) (Colton and Wilcock, 2010). Under pathological 
conditions, microglia often adopt the M1 phenotype, producing 
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, and 
releasing reactive oxygen species (ROS) and nitric oxide (NO), thereby 
exacerbating neuroinflammation and neuronal damage (Correale, 
2014). For example, following spinal cord injury, microglia rapidly 
switch to the M1 state, aggravating tissue damage through the 
secretion of these inflammatory mediators (Kigerl et al., 2009). In 
contrast, in the presence of anti-inflammatory signals such as IL-4 and 
IL-10, microglia can polarize to the M2 phenotype (Tang and Le, 

FIGURE 1

Structural and functional overview of TRPV1 activation and desensitization. TRPV1 is composed of three parts: intracellular N and C termini, six 
transmembrane domains (S1–S6), and a pore loop region formed between S5 and S6. It can be activated by various physical and chemical stimuli, such 
as noxious heat (>43°C), divalent cations, low pH, inflammatory mediators, and animal toxins. Activation of this channel leads to significant influxes of 
Ca2+ and Na+, causing neuronal depolarization and action potential discharge. Prolonged stimulation enhances TRPV1 activation, reducing neuronal 
excitability and resulting in near or complete insensitivity to subsequent stimuli, a phenomenon known as specific desensitization. Additionally, 
elevated intracellular calcium levels can activate the calcium-dependent protease calpain, which degrades cytoskeletal components within axons, 
leading to axonal structural damage and functional loss.
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2016). M2 microglia are involved in tissue repair and the resolution of 
inflammation, producing anti-inflammatory cytokines, promoting the 
phagocytosis of debris, and supporting neuronal survival and 
regeneration. The M2 state is crucial during the recovery process 
following CNS injury (Jin and Yamashita, 2016). Microglia can switch 
between M1 and M2 states in response to changes in the local 
microenvironment. Activation of Toll-like receptor 4 (TLR4) drives 
microglia toward the M1 state, while engagement of anti-inflammatory 
receptors can induce the M2 phenotype (Zhang et al., 2022). In Neup, 
the persistent activation of M1 microglia is associated with chronic 
pain conditions. Pro-inflammatory cytokines released by M1 
microglia sensitize pain pathways and maintain the pain state (DeLeo 
and Yezierski, 2001). Conversely, promoting the conversion to the M2 
phenotype has been proposed as a therapeutic strategy to alleviate 
chronic pain (Song and Suk, 2017; Jin et al., 2020).

In addition, an increasing number of studies have explored the 
mechanisms of NeuP in terms of altered lipid metabolism of 
neurolemma, inflammatory cellular glucose metabolism, and glial 
cellular glucose metabolism in recent years. Studies have shown that 
nerve injury produces sphingosine-1-phosphate (S1P), and spinal 
dorsal horn pairs drive NeuP through selective activation of S1P 
receptor subtype 1 in astrocytes (Hori et al., 2021). Reprogramming 
of glucose metabolism in microglia promotes the shift of microglia to 
a pro-inflammatory phenotype as well as increased ROS production. 
Reprogramming of glucose metabolism in glial cells also contributes 
to hyperalgesia and allodynia in NeuP (Ramal-Sanchez et al., 2021).

4 Functions of TRPV1 in pain 
regulation

In recent years, TRPV1 ion channels have been increasingly 
reported to be  involved in the regulation of a variety of 
physiopathological processes in living organisms (Katz et al., 2023; 
Petroianu et al., 2023; Schumacher, 2010), especially for its role as a 
crucial mechanism in the development of pain (Ji et al., 2003). TRPV1 
receptors are highly expressed mainly on C and some Aδ nociception 
nerves (nociceptor), is a pivotal molecule in mediating both 
thermosensory and thermal pain sensitization formation (Arora et al., 
2021). Injury leads to activation of TRP nociceptors in the periphery 
and action potentials are conducted along afferent sensory fibers to 
dorsal horn synapses. Subsequently, the signal crosses the spinal-
thalamic lateral fasciculus, the thalamus, and the sensory cortex of the 
parietal lobe of the thalamocortex to localize the pain (Wang et al., 
2004). Activation of TRPV1 in the periaqueductal gray promotes the 
release of glutamate, which activates antinociceptive neurons in the 
rostral ventromedial medulla, thereby modulating pain signal 
transmission and antinociceptive responses in the CNS (Starowicz 
et al., 2007).

TRPV1 plays a crucial role in neuroinflammatory responses by 
sensing stimuli such as high temperatures, acidic environments, and 
endogenous lipid molecules, leading to calcium influx (Tominaga 
et al., 1998; Kwon et al., 2021). This activation of sensory neurons 
results in the release of inflammatory mediators such as calcitonin 
gene-related peptide (CGRP) and substance P (Herbert and Holzer, 
2002). These mediators further activate microglial and astrocytic cells 
within the CNS, leading to the release of additional pro-inflammatory 
cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1β, and 

IL-6, which amplify the inflammatory response and increase pain 
sensitivity (Vergne-Salle and Bertin, 2021). Additionally, TRPV1 
activation exacerbates the inflammatory response through neuro-
immune interactions. The inflammatory mediators released by 
neurons act not only on glial cells but also affect immune cells such as 
T cells and macrophages (Li and Gupta, 2019). This leads to the 
aggregation and activation of these cells at the site of inflammation, 
releasing more inflammatory mediators and further intensifying the 
inflammation. Persistent TRPV1 activation may also impact the 
function of the endogenous opioid system, further influencing pain 
(Zygmunt et al., 1999).

Many endogenous inflammatory mediators (such as prostaglandin 
E2 and bradykinin, as well as nerve injury factors like nerve growth 
factor and TNF-α, etc.) have been shown to act directly or sensitize 
TRPV1 through secondary messengers and/or protein modifications 
(Premkumar and Ahern, 2000; Ji et al., 2023), leading to allodynia and 
hyperalgesia (Zhang et al., 2007). TRPV1 sensitization is facilitated by 
kinases such as protein kinase A (PKA), protein kinase C (PKC), and 
calcium/calmodulin-dependent protein kinase II (CaMKII) (Wang 
et al., 2004; Sinharoy et al., 2015). PKC is a prominent participant in 
pain signaling that can phosphorylate many substrate proteins to 
regulate the sensitivity of nociceptors (Rathee et  al., 2002). PKC 
regulates the activity of TRPV1 channels mainly through two sites, 
S502 and S800, and phosphorylation of these two sites sensitizes and 
facilitates the opening of TRPV1 channels to enable calcium ions to 
flow into the cell (Numazaki et al., 2002). It was found that PKCε 
inhibitors completely blocked the enhancement of TRPV1 expression 
and provided a more significant functional relationship between PKCε 
and TRPV1 sensitization (Studer and McNaughton, 2010). c-AMP-
dependent PKA phosphorylates the n-terminus of TRPV1 (Jung et al., 
2004) and regulates channel sensitization directly through the S116, 
T144, T370, S502, and S800 sites (Sun et al., 2018; Ferreira et al., 2020). 
Elevated calcium levels in the cell can activate CaMKII, and active 
CaMKII can directly phosphorylate TRPV1 channels at specific sites 
Ser 502 and Thr 704 (Anand and Bley, 2011). Dysregulated lipid 
metabolism may also impact TRPV1 activation or sensitivity, leading 
to heightened pain signaling and increased pain perception in 
neuropathic conditions (Szolcsányi, 1993).

It is becoming evident that Botulinum neurotoxins (BoNTs) also 
regulate the expression and function of TRP channels, which may 
explain their analgesic effects (Go et al., 2021).

When BoNT-A enters the cell, synaptosomal-associated protein 
25 kDa (SNAP25) is cleaved by the protease activity of BoNT-A(1′) 
(Dong et al., 2006), thereby inhibiting exocytosis. The failure of TRPV1 
to translocate to the plasma membrane makes TRPV1 susceptible to 
ubiquitination and subsequent proteasomal degradation, leading to a 
decrease in TRPV1 levels, which mediates its antinociceptive effects 
(Shimizu et  al., 2012). Additionally, estrogen and progesterone can 
influence pain perception by regulating the expression and function of 
the TRPV1 receptor (Chen et al., 2021; Ortíz-Rentería et al., 2018). 
Activation of Sig-1R can enhance the sensitization of TRPV1, leading to 
increased neuronal response to pain stimuli (Zheng and Trudeau, 2023). 
In females, mechanical pain from paclitaxel-induced CIPN is linked to 
the IL-23/IL-17A/TRPV1 axis (Luo et al., 2021), while male sensory 
neurons show greater paclitaxel-induced TRPM8 activity compared to 
females (Villalba-Riquelme et al., 2022). An increasing number of studies 
have highlighted the gender dimorphism in chronic pain (Cabañero 
et al., 2022).
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5 Role of TRPV1 in mechanisms of 
NeuP

Hyperalgesia caused by tissue injury or inflammation is typically 
accompanied with sensitization to TRPV1 channel activity, which is 
important in the modulation of sensory transmission from primary 
afferent nociceptors to neurons in the spinal dorsal horn (Xu et al., 
2022; Shim et  al., 2019). Preclinical models used for peripheral 
neuropathic pain research commonly include chronic constriction 
injury (CCI) of the sciatic nerve, diabetic peripheral neuralgia (DPN), 
chemotherapy-induced neuropathic pain (CIPN), and etc. (Xu and 
Wang, 2024; Jaggi et al., 2011). The following section primarily focuses 
on studies based on these various rodent models of peripheral 
neuropathic pain.

5.1 Chemotherapy-induced NeuP

The pathological mechanisms of CIPN may be related to affecting 
the function of ion channels, signaling by neurotransmitters and 
neuromodulators, inflammatory mediators, transcription factors 
(Zajaczkowską et al., 2019), oxidative stress (Zhao et al., 2023), and 
mitochondrial dysfunction (Chiba et al., 2017). Moreover, structural 
brain abnormalities, such as axonopathy, small-fiber degeneration, 
demyelination, and atrophy, are often detected in the peripheral 
nerves of individuals with CIPN and rodent models of CIPN 
(Akhilesh et  al., 2022). Platinum- and taxane-derived anticancer 
drugs, induced neurological damage models are widely applied. Spinal 
cord expression of TRPV1 receptors has been associated with NeuP 
induced by the aforementioned chemotherapeutic agents (Luo et al., 
2018; Son et  al., 2021). For instance, Paclitaxel (PTX) induced 
behavioral hypersensitivity by sensitizing TRPV1 in DRG neurons 
through TLR4 signaling (Li et al., 2024; Li et al., 2015). TRPV1 has a 
role in the development of CIPN, and spinal astrocytes and microglia 
are also engaged in the beginning and maintenance of CIPN (Lee 
et al., 2021). After the intrathecal injection of the oxaliplatin-treated 
satellite glial cells-secreted exosomes, mice developed mechanical 
hypersensitivity, with an increase in the percentage of reactive oxygen 
species-positive neurons and upregulation of acid-sensing ion channel 
3 and TRPV1 expressions in DRG (Luo et  al., 2018). TRPV1 is 
involved in the progression of mechanically allodynia/nociception 
and thermal hyperalgesia induced by chemotherapeutic agents such 
as paclitaxel and vincristine (Son et al., 2021). Inhibition of TRPV1 
channels suppresses chemotherapeutic agent-induced mechanical 
hypersensitivity (Li et al., 2015; Chen and Chang, 2019; Oh et al., 
2023). Zinc significantly decreased paclitaxel-induced NeuP in mice 
in a TRPV1-dependent manner (Li et  al., 2015), and Decursin 
promotes the restoration of damaged neuronal networks and inhibits 
the pain transformation induced by a sudden increase in Ca2+ through 
the inhibition of TRPV1 (Chen and Chang, 2019). The overexpression 
of TRPV1 in DRG neurons and the pain reaction in paclitaxel-treated 
rats were significantly reduced by pharmacological blockade of TLR4, 
which indicates that TRPV1 expression and channel activity in CIPN 
are regulated by TLR4 (Guo et al., 2019). JI017 alleviates neuralgia by 
inhibiting TRPV1 expression and the activation of astrocytes in the 
superficial area of the spinal dorsal horn. However, JI017 only 
attenuated cold nociception while mechanical nociception remained 
unchanged, which may be related to its low CNS penetration rate (Oh 

et al., 2023). Resistance to chemotherapeutic agents and subsequent 
NeuP are the main factors affecting the course of chemotherapy in 
patients (Elafros et al., 2022). Chen et al. (2019) discovered that the 
development of cisplatin resistance is closely linked to the 
hyperactivation of the epidermal growth factor receptor (EGFR), 
driven by a transcriptional upregulation of TRPV1 through 
NANOG. Additionally, TRPV1 facilitates autophagy-mediated EGF 
secretion via Ca2+ influx, which in turn activates the EGFR-AKT 
signaling pathway, contributing to the acquisition of cisplatin 
resistance (Yagihashi et al., 2011). In addition, small interfering RNA 
(siRNA)-based therapeutics targeting TRPV1 has been verified in a 
number of experiments for the treatment of NeuP, including CIPN 
(Wang et al., 2012). Experimental studies related to the TRPV1 in the 
CIPN are presented in Table 1.

5.2 Diabetic peripheral neuralgia

Peripheral neuropathy is a common and characteristic 
complication of diabetes mellitus, causing numbness, tingling, burning 
pain in the skin, occasionally accompanied by hyperalgesia or allodynia 
(Mohammadi-Farani et  al., 2014). Possible mechanisms of DPN 
include a vicious cycle involving the production of advanced glycation 
end products (AGEs), activation of PKC, amplification of the polyol 
pathway, and excessive release of ROS and cytokines (Carr and Frings, 
2019). TRPV1 is linked to diabetes mellitus on multiple fronts, 
encompassing pancreatic function and insulin secretion, appetite 
regulation, and energy expenditure or thermogenesis (Zhang et al., 
2019). Experimental studies related to the TRPV1 in the DPN are 
presented in Table  2. Hyperglycemia reduces the expression of 
cannabinoid receptor-1 (CB1) receptors and increases the expression 
of TRPV1 receptors in the PC12 cell line, leading to greater toxic effects 
from TRPV1 activation (Vincent et al., 2007). Enhanced expression of 
CGRP may promote injured peripheral nerve regeneration, and 
activated TRPV1 promotes calcium-dependent release of substance P 
and CGRP in peripheral nerve endings (Chen et al., 2019). Ropivacaine 
may exacerbate DPN nerve block by inhibiting TRPV1 expression in 
the dorsal horn, which in turn decreases CGRP release in the spinal 
cord (Lam et  al., 2018). In vitro, receptor for advanced glycation 
end-products (RAGE) expression, signaling, and RAGE-induced ROS 
production contributed to apoptosis of DRG neurons exposed to high 
glucose conditions (Roa-Coria et  al., 2019). In contrast, RAGE 
signaling-mediated TRPV1-associated aberrant responses (in terms of 
cytoplasmic signaling changes including Ca2+, PCK, and Src kinases) 
as well as ROS accumulation directly or indirectly results in TRPV1 
function impairment, which are one of the contributing factors to DPN 
in the diabetic pathologic setting (Abdelkader et al., 2022; Zhang et al., 
2020). Sensitization of peripheral TRPV1, TRPA1, and TRPC channels 
in non-peptidergic fibers by hydrogen sulfide synthesized by the 
cystathionine β-synthase enzyme, leading to hyperalgesia and loss of 
peripheral nerve fibers in a rat model of diabetes mellitus, was further 
validated by local peripheral injections of capsazepine, HC-030031, 
and SKF-96365 blockers (Agarwal et  al., 2020). In addition, using 
9-month-old Ins2+/Akita mice, Lam et al. (2018) found that capsaicin 
activation of TRPV1 in DRG neurons exhibited accelerated current 
decay, which may provide an explanation for the phenomenon of 
reduced pain in people with end-stage diabetic peripheral neuropathy 
in one way. Abdelkader et al. (2022) found that inosine alleviated pain 
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through downregulation of PKC, TRPV1 expression, decreasing 
Substance P and Transforming growth factor beta in DPN rat model. 
α-lipoic acid (ALA) may alleviate NeuP in diabetes by regulating 
TRPV1 expression via affecting NF-κB (Wang Z. et  al., 2020). 
SUMOylation is an important mechanism for protection against 
endogenous metabolic damage in DPN sensory neurons, and 
modulation of TRPV1 function through extra-sensory neuronal 
SUMOylation may yield novel strategies for treating and reversing 
DPN (Truini et al., 2015).

5.3 Other NeuP

The most common way for creating neuropathy in animals is to 
cause entire or partial traumatic nerve injury via ligation, transection, 
or compression (Chen and Pan, 2005). The key protein phospho-
regulating effectors that promote nociceptive sensitization are 
mitogen-activated protein kinases (MAPK), and additional findings 
showed that baicalin inhibits TRPV1 up-regulation and extracellular 
signal-regulated kinase phosphorylation in CCI of the sciatic nerve 
rats’ DRG (Pan et al., 2003). PHN is common in the elderly and 
immunocompromised patients (Wu et al., 2016). The resiniferatoxin 
(RTX)-induced PHN model is a commonly used method of PHN 
modeling, which depletes TRPV1-expressing primary sensory 
neurons, causing severe degeneration of C-fiber afferent terminals as 

well as aberrant sprouting of myelinated afferent fibers in the II layer 
of the spinal dorsal horn (Zhang et al., 2021), which in turn exhibits 
the distinctive clinical features of PHN, i.e., thermosensory 
impairments and mechanical allodynia (Story et al., 2003). Wu et al. 
(2016) proposed that RTX may stimulate the TRPV1 receptor and its 
downstream signaling molecules to enhance the expression of 
netrin-1, and the increased expression of netrin-1 further activates 
repulsive receptor of netrin-1 (UNC5H2) and deleted in colorectal 
(DCC) at the central terminus of the remaining myelinated neurons 
in the DRG to promote myelinated fibers to sprout to the noxious 
neurons located in the superficial dorsal horn. Zhang et al. (2021) 
found that RTX treatment increased excitatory glutamatergic input 
from myelinated afferent nerves to the spinal dorsal horn through 
α2δ-1-dependent enhancement of N-methyl-d-aspartate receptor 
(NMDAR) activity, thereby causing mechanical allodynia, which 
further enriched the study of synaptic plasticity in PHN. Experimental 
studies related to the TRPV1  in the other NeuP are presented in 
Table 3.

6 Association between TRPA1 and 
TRPV1

There are evidences that TRPA1 and TRPV1 mutually regulate 
pain signal transduction (Weng et  al., 2015; Spahn et  al., 2014). 

TABLE 1 Preclinical evidence relating to TRPV1 and chemotherapy-induced neuropathic pain.

In vivo experiment Cell type Testing 
technology

Intervention References

Animal type Modeling reagents Tissue

C57BL/6 mice Oxaliplatin (6 mg/kg) ② – a, c, d JI017 Lee et al. (2021)

Male SD rats Paclictaxel (2 mg/kg) ①, ② – a, b, d Puerarin Wu et al. (2019)

Male SD rats Cisplatin (2 mg/kg) ①, ④ – a, b, c, g Corydalis saxicola 

alkaloids

Kuai et al. (2020)

Male SD rats Paclitaxel (2 mg/kg) ①, ② – a, b, c, g Cinobufacini Ba et al. (2018)

Male Wistar rats Paclitaxel (2 or 4 mg/kg) ① – a, b, c, d Ruthenium red+ 

capsazepine

Hara et al. (2013)

C57BL/6J mice Paclictaxel (4 mg/kg) ① HEK293 Cells a, d, e, i Zinc acetate Luo et al. (2018)

C57BL/6J mice Paclitaxel (2 mg/kg) – F11 Cells, HEK293 Cells b Decursin Son et al. (2021)

Male SD rats, ICR 

mice

Paclictaxel (2 mg/kg) ①, ②, ⑤ RBL-2H3 Cells a, b, c, g Quercetin Gao et al. (2016)

Male Balb/c mice Vincristine sulfate (75 μg/kg) – PC12 Cells a, c, d, e, g, h Withametelin Khan et al. (2021)

Male SD rats Paclictaxel (2 mg/kg) ①, ② RBL-2H3 Cells a, b, f, i Electroacupuncture Li et al. (2019)

C57BL/6NJ mice Oxaliplatin (3 mg/kg) ①, ② HEK293 Cells a, c, d, i – Rimola et al. (2020)

C57BL/6N mice Oxaliplatin (3 mg/kg) ①, ②, ③, ④ HEK-293, COS-1 Cells a, d, e, i GPR132 Hohmann et al. (2017)

Male BALB/C 

mice

Oxaliplatin (3.5 mg/kg) ① HEK293t, K562, LS180, LoVo 

Cells

a, b, c, d, i Carbonic anhydrase 

inhibitors

Potenzieri et al. (2020)

C57BL/6j black 

mice

Docetaxel (30 mg/kg) ① SH-SY5Y Cells a, b, e, g, i Melatonin, selenium Ertilav et al. (2021)

NOD-SCID mice – – CaSki, HEK293, Hela, H1299, 

SiHa, SNU719, AGSGS, 

SNU668, MKN28, YCC2 

Cells

b, c, d, e, f, i – Oh et al. (2023)

(1) ①, DRG; ②, spinal cord; ③, sciatic nerve; ④, hind paw skin; ⑤, plasma; ⑥, skin. (2) a, behavioral tests; b, Western blotting; c, immunohistochemistry; d, qRT-PCR; e, electrophysiology; f, 
immunofluorescence; g, biochemical measurements; h, histopathology; i, calcium imaging. (3) SD, Sprague Dawley; ICR, Institute of Cancer Research; JI017, an herb mixture composed of 
Aconitum carmichaelii, Angelica gigas, and Zingiber officinale.
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TRPA1 is localized to a subset of TRPV1-positive sensory neurons, 
being present in 30–50% of these neurons. It is rarely detected in 
neurons that lack TRPV1 expression (Fischer et al., 2014; Shields 
et al., 2010). In cells co-expressing TRPA1 and TRPV1, these two 
TRP channels appear to form a complex or a heterogeneous channel 
at the cell membrane, thereby influencing the function of each other 
(Marwaha et  al., 2016; Billeter et  al., 2014). Shields et  al. (2010) 
utilized selective elimination of the central terminus of TRPV1-
expressing nociceptor in wild-type C57Bl/6 mice by intrathecal 
injection of capsaicin and found that the nociceptive reaction 
induced by the TRPA1-selective agonist mustard oil was also 
eliminated. The co-expression of TRPA1 and TRPV1 in nociceptive 
fibers is crucial for the initiation and progression of chronic pain 
(Akopian et al., 2007). Structurally, TRPA1 and TRPV1 share similar 
transmembrane domains. However, TRPA1 differs by having an 
additional pore helix lining the extracellular side of the ion 
permeation pathway, resulting in two pore helices per subunit 
(Mihara and Shibamoto, 2015). Studies of IMustard Oil (MO) rapid 
sensitization in Chinese hamster ovary cells expressing TRPA1 or 
TRPA1/TRPV1 showed that IMO experienced greater rapid 
sensitization in the absence of TRPV1. One possible explanation is 
that TRPV1 stabilizes the membrane surface expression of TRPA1 
(Fernandes et  al., 2012). Activation of TRPA1 did not sensitize 
TRPV1 without the involvement of calcium ions, suggesting that 
co-expression occurs in a calcium-dependent way. TRPA1 activation 
leads to enhanced accumulation of cAMP and subsequent 
stimulation of PKA subunit release, which in turn leads to 
phosphorylation and sensitization of TRPV1 (Wu et  al., 2019). 
Functional crossover desensitization has also been reported between 
typical agonists of TRPA1 (allyl isothiocyanate, mustard) and 
TRPV1 (capsaicin) (Kuai et al., 2020). In addition, it was shown that 
TRPA1 and TRPV1 can form complexes in cell membranes that 
affect the properties of each other (Marwaha et  al., 2016). The 
TRPA1 and TRPV1 channels are therefore described as “partners in 
crime” (Ba et al., 2018).

7 Basic drug targets

7.1 TRPV1 agonists

Capsaicin, a potent agonist of the TRPV1 channel, was extracted 
from the capsicum genus of spices (Abrams et al., 2021). Capsaicin 
has emerged as a useful tool in the research on pain pathways 
(Turnbull, 1850) and is currently approved for the treatment of PHN, 
HIV-associated neuropathy and DPN (Jancso and Jancso, 1949; 
Szolcsányi, 2005). High concentrations of capsaicin reversibly 
deactivate TRPV1 receptors, which leads to an analgesic effect (Blair, 
2018). It has long been recognized that the initial application of 
capsaicin is painful and, paradoxically, repeated applications produce 
local analgesic effects (Touska et al., 2011; Tian et al., 2019). This is a 
desensitization response induced by prolonged gating of TRPV1 
cation channels (Arora et al., 2021) that is closely associated with the 
duration of capsaicin exposure and the external calcium 
concentration, and which can be  considered as a protective 
mechanism for neurons against calcium overload during repeated 
TRPV1 stimulation (Iftinca et al., 2021). Calcium influx following 
TRPV1 activation leads to channel desensitization. Acute 
desensitization refers to a rapid decline in the evoked inward current, 
while tachyphylaxis describes the reduction in current during 
repeated stimulation (Koplas et al., 1997). Compared to the short-
term dysfunction induced by low doses of capsaicin, high doses of 
capsaicin often elicit dysfunction that lasts for months, which may 
be  related to the structural ablation of TRPV1+ nerve endings 
(Campbell et al., 2021). Capsaicin induces calcium influx through 
TRPV1 channels, leading to the activation of the calcium-dependent 
protease calpain. Calpain then begins to degrade cytoskeletal 
components within the axon, resulting in structural damage and loss 
of function in the axon. Studies have shown that capsaicin-induced 
TRPV1+ sensory axon ablation is also associated with mitochondrial 
dysfunction. Inhibiting calcium influx or calpain activity can 
significantly reduce capsaicin-induced TRPV1+ axon ablation (Wang 

TABLE 2 Preclinical evidence relating to TRPV1 and diabetic peripheral neuropathy.

In vivo experiment Cell 
type

Testing 
technology

Intervention References

Animal type Modeling reagents Tissue

Male Wistar rats NA (50 mg/kg), STZ (52.5 mg/kg) ③ – a, c, d, e, g, h Inosine Abdelkader et al. (2022)

Female SD rats STZ (65 mg/kg) ① – a, b, e, f ALA Zhang et al. (2020)

Male SD rats, male ICR mice STZ (55 mg/kg, rats; 150 mg/kg, mice) ①, ②, ⑤ – a, b, c, g Berberine Zan et al. (2017)

Male SD rats STZ (60 mg/kg) ②, ③ – a, b, c, e, h Ropivacaine Zhang et al. (2019)

Wild type Wistar rats, mini 

pigs

STZ (55 mg/kg, rats; 150 mg/kg, mini 

pigs)

⑥ – a, b, c, g, h Resiniferatoxin cream Baskaran et al. (2023)

SNS-Cre mice, Ubc9fl/fl mice STZ (60 mg/kg) ①, ②, ④ – a, c, g, i – Agarwal et al. (2020)

C57BL/6 mice 25 mM glucose ① – b, c, e Capsaicin Lam et al. (2018)

Female Wistar rats STZ (60 mg/kg) ①, ④ – a, b, c, f NaHS Roa-Coria et al. (2019)

C57BL/6J wild-type and 

Ins2+/Akita mice

5.5 mM glucose ① – c, e, i Capsaicin Chen et al. (2019)

Male SD rats High-sugar and high-fat diet, STZ 

(35 mg/kg)

① – a, b, d, f A438079 Wang et al. (2021)

(1) ①, DRG; ②, spinal cord; ③, sciatic nerve; ④, hind paw skin; ⑤, plasma; ⑥, skin. (2) a, behavioral tests; b, Western blotting; c, immunohistochemistry; d, qRT-PCR; e, electrophysiology; f, 
immunofluorescence; g, biochemical measurements; h, histopathology; i, calcium imaging. (3) ALA, α-lipoic acid; SD, Sprague Dawley; ICR, Institute of Cancer Research; NA, nicotinamide; 
STZ, streptozotocin.
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et al., 2017). Calcineurin, also known as protein phosphatase 2B, is a 
Ca2+-Calmodulin (CaM) phosphatase that has been shown to 
dephosphorylate the channel, thereby promoting its desensitization 
(Mohapatra and Nau, 2005). Ca2+ influx activates phospholipase C 
(PLC), leading to the depletion of the agonists Phosphatidylinositol 
4,5-bisphosphate (PIP2) and Phosphatidylinositol 4-phosphate (PIP). 
This reduction in PIP2 and PIP levels limits the channel’ s activity, 
resulting in its desensitization (Lukacs et  al., 2007; Lukacs et  al., 
2013). These findings not only enhance our understanding of the 
mechanisms behind capsaicin-induced analgesia but also provide a 
theoretical foundation for improving the use of capsaicin in 
pain treatment.

7.2 TRPV1 antagonists and TRPV1-targeted 
siRNA

TRPV1 antagonists work by blocking the TRPV1 receptor, 
preventing calcium influx, and thereby inhibiting the transmission of 
pain signals. However, the preclinical development of TRPV1 
antagonists faces challenges, including potential side effects such as 
thermoregulation abnormalities (Szelenyi et al., 2004). Thereby, the 
aim of developing TRPV1 antagonists for pain treatment is to create 
medications that specifically inhibit the activation of TRPV1 channels 
by pain-inducing agents, without affecting their activation by thermal 
stimuli (Chahl, 2024). Subsequently, alternative strategies emerged to 
target the expression of the TRPV1 channel using genome-editing 
tools. In a preclinical study, mice treated with TRPV1-targeted siRNA 
showed a phenotype similar to that of TRPV1 knockout mice 
(Christoph et  al., 2008). Research has shown that paratracheal 
delivery of TRPV1 siRNA suppresses TRPV1 upregulation in the 
DRG and spinal cord, effectively eliminating CFA-induced 
inflammation and chemotherapy-induced thermal hyperalgesia and 

mechanical allodynia (Kasama et  al., 2007). TRPV1 antagonists, 
including TRPV1 siRNA, have potential roles in the treatment of 
neuropathic pain (Akhilesh et al., 2022).

7.3 Cannabinoid modulation

As an integral part of the extended endocannabinoid system (De 
Petrocellis et  al., 2017), TRPV1 interacts with endocannabinoids 
through complex molecular mechanisms, thereby regulating the 
pathophysiological processes of neuropathic pain (Starowicz and 
Przewlocka, 2012). Firstly, TRPV1 can directly interact with 
endocannabinoids. For example, Anandamide (AEA) is not only a 
partial agonist of CB1 receptors but also an agonist of TRPV1. When 
AEA binds to TRPV1, it leads to the opening of TRPV1 channel, 
causing Ca2+ influx, which subsequently induces depolarization and 
the generation of action potentials in sensory neurons (Fenwick et al., 
2017). Secondly, the endocannabinoid system can influence the 
occurrence and development of neuropathic pain by regulating 
TRPV1 expression and function. Studies have found that activation of 
CB1 receptors can inhibit TRPV1 expression and function. For 
example, treatment with CB1 receptor agonists can reduce TRPV1 
expression in sensory neurons, thereby alleviating pain (McDowell 
et  al., 2013). This mechanism may be  achieved by lowering 
intracellular cAMP levels and inhibiting PKA activity, which in turn 
reduces the transcription and translation of the TRPV1 gene (Vetter 
et al., 2006). Additionally, TRPV1 may be involved in the degradation 
process of endocannabinoids. The degradation of endocannabinoids 
primarily relies on the enzyme fatty acid amide hydrolase (FAAH) 
(Vandevoorde and Lambert, 2005). For instance, research indicates 
that increasing doses of a locally injected FAAH inhibitor elevate 
spinal AEA levels, which in turn produce anti-hyperalgesic and anti-
allodynic effects. These effects are achieved through mechanisms that 

TABLE 3 Preclinical evidence relating to TRPV1 and other neuropathic pain.

In vivo experiment Cell 
type

Testing 
technology

Intervention References

Animal type Modeling reagents Tissue

Male SD rats CCI of the sciatic nerve ① – a, b, d Baicalin Wang Z. et al. (2020)

Male SD rats Laminectomy at T10 + Infinite Horizon 

Impactor

① – a, b, e, i Capsaicin, AMG9810 Wu et al. (2013)

Male Wistar rats L5 spinal nerve ligation ①, ②, ④ – a, b, c, d, h RTX Javed et al. (2022)

C57bl/6J, TRPV1Cre, R26LSL-

tdTomato, R26mT/mG, R26LSL-hM4Di 

mice

CCI of the infraorbital nerve – – a Capsaicin, MDL28170 Wang S. et al. (2020)

Male SD rats Tibial and common peroneal nerves 

ligation+2–3 mm of the nerve were cut 

distal to the ligation

① – a, b, f, g CRAP Li et al. (2017)

Male SD rats Sciatic nerve ligation ① – a, b, c, d MZF1 Xing et al. (2019)

Male SD rats RTX (250 μg/kg) ①, ② SH-SY5Y 

Cells

a, b, d, f Capsazepine Wu et al. (2016)

Mice RTX (50 μg/kg) ① – a, f, h Adenosine Kan et al. (2018)

(1) ①, DRG; ②, spinal cord; ③, sciatic nerve; ④, hind paw skin; ⑤, plasma; ⑥, skin. (2) a, behavioral tests; b, Western blotting; c, immunohistochemistry; d, qRT-PCR; e, electrophysiology; f, 
immunofluorescence; g, biochemical measurements; h, histopathology; i, calcium imaging. (3) SD, Sprague Dawley; CCI, chronic constriction injury; MZF1, myeloid zinc finger 1; CRAP, 
Coumarins from Radix angelicae pubescentis; RTX, resiniferatoxin.
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progressively involve the desensitization of TRPV1 channels 
(Starowicz et al., 2013).

8 Conclusion and perspectives

TRPV1 plays a dual role in peripheral NeuP, acting as a “switch” 
for pain through its sensitization and desensitization processes. In 
CIPN and DPN, the sensitization of TRPV1 channels is a key 
mechanism. Inhibiting TRPV1 channels can significantly reduce 
mechanical hypersensitivity and pain. Clinically, capsaicin, a TRPV1 
agonist, alleviates pain by inducing receptor desensitization, while 
TRPV1 antagonists and siRNA targeting TRPV1 show promise in 
preclinical studies. Cannabinoid modulation of TRPV1 offers another 
potential pathway for alleviating neuropathic pain. Future research 
should focus on the immunomodulation and metabolic functions of 
the TRPV1 receptor, as well as the application of novel gene editing 
and RNA interference technologies, with the aim of developing more 
effective pain treatment strategies.
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Glossary

AGEs advanced glycation end products

AEA anandamide

ALA α-lipoic acid

BoNTs Botulinum neurotoxins

CaMKII calcium/calmodulin-dependent protein kinase II

CB1 cannabinoid receptor-1

CCI chronic constriction injury

CGRP calcitonin gene-related peptide

CHO Chinese hamster ovary

CIPN chemotherapy-induced neuropathic pain

CRAP Coumarins from Radix angelicae pubescentis

CNS central nervous system

CaM N-methyl-d-aspartate receptor

DCC deleted in colorectal

DPN diabetic peripheral neuralgia

DRG dorsal root ganglion

DCC deleted in colorectal

EGFR epidermal growth factor receptor

FAAH fatty acid amide hydrolase

IASP International Association for the Study of Pain

ICR Institute of Cancer Research

MAPK mitogen-activated protein kinases

MZF1 Myeloid zinc finger 1

NA nicotinamide

NO nitric oxide

NMDAR N-methyl-d-aspartate receptor

NeuP Neuropathic pain

PHN postherpetic neuralgia

PTX Paclitaxel

PLC phospholipase C

PIP2 Phosphatidylinositol 4,5-bisphosphate

PIP Phosphatidylinositol 4-phosphate

PKA protein kinase A

PKC protein kinase C

RAGE receptor for advanced glycation end-products

ROS reactive oxygen species

RTX Resiniferatoxin

S1P sphingosine-1-phosphate

SD Sprague Dawley

siRNA small interfering RNA

STZ streptozotocin

TRP transient receptor potential

TRPV1 transient receptor potential vanilloid 1

TLR4 Toll-like receptor 4

TNF-α tumor necrosis factor-alpha
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