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The functionality of photoreceptors, rods, and cones is highly dependent 
on their outer segments (POS), a cellular compartment containing highly 
organized membranous structures that generate biochemical signals from 
incident light. While POS formation and degeneration are qualitatively assessed 
on microscopy images, reliable methodology for quantitative analyses is still 
limited. Here, we  developed methods to quantify POS (QuaPOS) maturation 
and quality on retinal sections using automated image analyses. POS formation 
was examined during the development and in adulthood of wild-type mice via 
light microscopy (LM) and transmission electron microscopy (TEM). To quantify 
the number, size, shape, and fluorescence intensity of POS, retinal cryosections 
were immunostained for the cone POS marker S-opsin. Fluorescence images 
were used to train the robust classifier QuaPOS-LM based on supervised 
machine learning for automated image segmentation. Characteristic features 
of segmentation results were extracted to quantify the maturation of cone 
POS. Subsequently, this quantification method was applied to characterize 
POS degeneration in “cone photoreceptor function loss 1” mice. TEM images 
were used to establish the ultrastructural quantification method QuaPOS-TEM 
for the alignment of POS membranes. Images were analyzed using a custom-
written MATLAB code to extract the orientation of membranes from the image 
gradient and their alignment (coherency). This analysis was used to quantify the 
POS morphology of wild-type and two inherited retinal degeneration (“retinal 
degeneration 19” and “rhodopsin knock-out”) mouse lines. Both automated 
analysis technologies provided robust characterization and quantification 
of POS based on LM or TEM images. Automated image segmentation by the 
classifier QuaPOS-LM and analysis of the orientation of membrane stacks by 
QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation 
of POS formation and quality. The assessments showed an increase in POS 
number, volume, and membrane coherency during wild-type postnatal 
development, while a decrease in all three observables was detected in different 
retinal degeneration mouse models. All the code used for the presented analysis 
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is open source, including example datasets to reproduce the findings. Hence, 
the QuaPOS quantification methods are useful for in-depth characterization of 
POS on retinal sections in developmental studies, for disease modeling, or after 
therapeutic interventions affecting photoreceptors.
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photoreceptor outer segment, cone, retinal development, retinal degeneration, 
supervised machine learning, segmentation, fluorescence microscopy, electron 
microscopy

1 Introduction

Photoreceptor cells are highly specialized, light-sensitive neurons 
located in the retina. Cones and rods are two different types of 
photoreceptors that initiate vision in mammalian eyes in dependence 
on high intensity or dim light, respectively. Human vision particularly 
relies on cones within the macula facilitating high-acuity day-light and 
color vision, which is important for tasks such as reading, facial 
recognition, or driving (Molday and Moritz, 2015; Roska and Sahel, 
2018). The mouse retina is specialized for night vision and is therefore 
more dependent on rod function (Carter-Dawson and Lavail, 1979; 
Jeon et al., 1998). The functionality of all photoreceptors is highly 
dependent on their outer segments (POS). These typically cylindrical 
or conical cell compartments are crucial for light detection in the 
mammalian eye (Mustafi et al., 2009; Molday and Moritz, 2015). POS 
represent modified primary cilia that contain a massive amount of 
light-sensitive pigments that reside in hundreds of stacked 
membranous discs in rods or aligned plasma membrane evaginations 
in cones (Mayhew and Astle, 1997; Roepman and Wolfrum, 2007; 
Gilliam et  al., 2012; Hsu et  al., 2015; Molday and Moritz, 2015; 
Goldberg et al., 2016; Rakshit et al., 2017; Chen et al., 2021). In the 
so-called phototransduction cascade incident, light is efficiently 
detected and amplified by specialized photopigments and transferred 
into a biochemical signal by a variety of signaling proteins and ion 
channels (Roepman and Wolfrum, 2007; Molday and Moritz, 2015; 
Goldberg et al., 2016). To maintain functionality, POS membranes are 
constantly phagocytosed by the retinal pigment epithelium (RPE; 
Hollyfield and Rayborn, 1979; Mazzoni et al., 2014; Almedawar et al., 
2020; Kwon and Freeman, 2020; Lakkaraju et al., 2020), while new 
membranes are generated at the base of the POS (Steinberg et al., 
1980; Guerin et  al., 1993; Burgoyne et  al., 2015; Hsu et  al., 2015; 
Volland et al., 2015; Goldberg et al., 2016). The POS is linked to the 
inner segment via the connecting cilium (Gilliam et  al., 2012; 
Goldberg et al., 2016; Chen et al., 2021). The light-induced change of 
the membrane potential (hyperpolarization) is passed on via the cell 
body to the synapse, affecting neurotransmitter release and thus 
signaling to secondary neurons, i.e., bipolar and horizontal cells (Tom 
Dieck and Brandstätter, 2006; Baden et al., 2020).

According to their important function to initiate light perception, 
damage or loss of POS leads to visual impairment and ultimately 
blindness. Retinitis pigmentosa, Leber's congenital amaurosis, or 
age-related macular degeneration belong to a group of currently 
incurable retinal degenerative diseases characterized by photoreceptor 
dysfunction and loss (Hartong et al., 2006; Fleckenstein et al., 2021). 
In order to understand degenerative processes and develop treatments 
for retinal diseases, a detailed investigation into the structural and 

morphological changes of POS in development and degeneration is of 
utmost importance.

POS formation can be analyzed ex vivo using extracted retinas as 
flat mounts and sections (Hollyfield and Rayborn, 1979; Steinberg 
et al., 1980; Obata and Usukura, 1992; Guerin et al., 1993; Mayhew 
and Astle, 1997; Burgoyne et al., 2015; Ding et al., 2015; Hsu et al., 
2015; Daum et al., 2017; Rakshit et al., 2017; Tu et al., 2019; Corral-
Serrano et al., 2020). More recently, the generation of retinal organoids 
from mouse and human pluripotent stem cells containing high 
numbers of photoreceptors adds another source to assess early POS 
formation, though full photoreceptor and thus POS maturation have 
not been observed yet (Zhong et al., 2014; Gonzalez-Cordero et al., 
2017; West et  al., 2022; Carido et  al., 2023; Völkner et  al., 2023). 
Additionally, POS degeneration was studied in various disease models, 
particularly using inherited retinal degeneration mouse models 
(Busskamp et al., 2014; Datta et al., 2015; Veleri et al., 2015; Conley 
et al., 2018; Baehr et al., 2019; Collin et al., 2020; Corral-Serrano et al., 
2020). For the development of gene- or cell-replacement strategies as 
therapeutic interventions for photoreceptor-related diseases, the (re)
formation or neuroprotection of POS is of particular interest as a 
prerequisite for proper light detection (Assawachananont et al., 2014; 
Trouillet et  al., 2018; Gasparini et  al., 2019, 2022; Tu et  al., 2019; 
Aguirre et al., 2021; Ribeiro et al., 2021; Van Gelder et al., 2022; West 
et al., 2022; Yamasaki et al., 2022). Recent improvements also allow in 
vivo visualization of retinal structures and automated quantification, 
including POS via high-resolution optical coherence tomography 
(Rathke et al., 2014; Sonka and Abràmoff, 2016; Wang et al., 2023). 
However, the current resolution does not allow quantification at the 
single-cell (or single POS) level or the distinction of photoreceptor 
subtypes. Hence, the analysis of retinal sections might still 
be preferable for preclinical analysis in certain cases.

Important insights in outer segment structure and formation have 
been achieved using qualitative microscopic observations and manual 
quantification of POS (Carter-Dawson and Lavail, 1979; Hollyfield 
and Rayborn, 1979; Guerin et al., 1993; Mayhew and Astle, 1997; 
Rakshit et  al., 2017). This includes representative images of 
immunohistochemical staining of photopigments (e.g., rhodopsin and 
S- or M/L-opsin), proteins involved in the signal transduction cascade 
(e.g., recoverin, transducin, arrestin, phosphodiesterase), or structural 
markers of POS (e.g., peripherin, ROM1; Assawachananont et al., 
2014; Daum et al., 2017; Shindou et al., 2017; Tu et al., 2019; Gasparini 
et al., 2022; West et al., 2022; Yamasaki et al., 2022; Völkner et al., 
2023). Electron microscopy or tomography images were used to assess 
POS structure, volume, disc assembly, and size (Carter-Dawson and 
Lavail, 1979; Obata and Usukura, 1992; Eberle et al., 2012; Gilliam 
et al., 2012; Burgoyne et al., 2015; Ding et al., 2015; Goldberg et al., 

https://doi.org/10.3389/fnmol.2024.1398447
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Seidemann et al. 10.3389/fnmol.2024.1398447

Frontiers in Molecular Neuroscience 03 frontiersin.org

2016; Daum et al., 2017; Ribeiro et al., 2021; Gasparini et al., 2022). 
Furthermore, qualitative evidence for outer segment formation after 
cell transplantation into the retina has been shown in some studies 
(Eberle et al., 2012; Assawachananont et al., 2014; Ribeiro et al., 2021; 
Gasparini et al., 2022).

While manual analyses of POS are time-consuming and limit 
scalability to larger datasets, automated bio-image analysis might 
be preferable for reproducible and less time-consuming quantitative 
assessment of POS formation and structure. Additionally, automated 
systems have the advantage of circumventing possible limitations that 
are sometimes associated with manual quantifications (e.g., inter- and 
intra-observer variations). Nowadays, sophisticated models relying on 
supervised or unsupervised machine learning can be applied to filter 
images and enhance the contrast or to segment regions of interest 
from the background (Krull et  al., 2019; Haase et al., 2020, 2022; 
Stringer et  al., 2021). Robust models obtained by training and 
evaluation scale more easily to larger image datasets.

Here, we report two methods to quantify POS formation and 
quality. First, a supervised machine learning model was established 
and validated for automated segmentation of POS on images from 
immunostained cryosections. Subsequently, the number of labels and 
different size-, shape-, and intensity parameters were extracted from 
three-dimensional image stacks and quantified. Second, we developed 
a method to quantify the morphology of POS membrane stacks on 
transmission electron microscopy (TEM) images. This method uses 
the image intensity gradient to obtain the orientation of membrane 
slices and their mutual alignment within stacks and POS, which allows 
for the automatic quantification of selected ultrastructural details of 
POS formation and degeneration. We  provide evidence that both 
automated methods can be used to quantitatively assess developmental 
and degenerative processes in POS. The underlying code and 
bio-image datasets are published together with further details in an 
associated GitHub repository (Salomon et al., 2024b) and BioImage 
Archive repository (Salomon et al., 2024a) to ensure usability in the 
research fields of retinal development, degeneration, and regeneration, 
including related therapeutic approaches.

2 Methods

2.1 Animals

Mouse colonies were bred and maintained at the Center for 
Regenerative Therapies (CRTD), TU Dresden, mouse facility at a 12 h 
light/12 h dark cycle with ad libitum access to food and water. The wild-
type (WT) colony was founded by animals from the C57BL/6JRj strain 
that were purchased from Janvier.1 The “cone photoreceptor function 
loss 1” (Cpfl1; B6.CXB1-Pde6ccpfl1/J, Chang et al., 2002, 2009) mouse 
colony that shows cone photoreceptor dysfunction/loss was found in 
mice provided by Bernd Wissinger (Institute of Ophthalmic Research, 
Tübingen, Germany). “Rhodopsin knock-out” mice (RhoKO; 129.
Rhotm1Ph; Humphries, 1997) serve as a model for autosomal recessive 
retinitis pigmentosa. The “retinal degeneration 19” mouse (rd19; 
B6.BXD83-Prom1rd19/BocJ; Jackson laboratories, stock #026803; Chang 

1 https://janvier-labs.com/en/fiche_produit/3_aged_c57bl-6jrj_mouse/

et al., 2012; provided by Denis Corbeil) provides a model for autosomal 
recessive retinitis pigmentosa 41 (arRP41) caused by a spontaneous 
mutation in prominin1, with early-onset photoreceptor degeneration 
progressing to severe loss in adult animals.

All animal experiments were approved by the ethics committee of 
the Technische Universität Dresden and the Landesdirektion Sachsen 
(approval numbers: TVT 5/2018 and TVV 22/2018). All relevant 
European Union regulations, German laws (Tierschutzgesetz), the 
Association for Research in Vision and Ophthalmology (ARVO) 
statement on the Use of Animals in Ophthalmic and Vision Research, 
and the NIH Guide for the Care and Use of Laboratory Animals were 
strictly followed for all animal work.

2.2 Quantification of photoreceptor outer 
segment number, size, shape, and intensity 
parameters on light microscopy images

2.2.1 Collection and preparation of retinal 
sections

Mice were sacrificed at different postnatal ages (postnatal day (P) 
8–P245, Figures 1A,D), and eyes were enucleated (as previously 
described in Gasparini et al., 2022). Subsequently, eyes were fixed in 
4% paraformaldehyde (PFA, Sigma-Aldrich, P6148) for light 
microscopy (LM) analysis at 4°C overnight. Eyes were washed in PBS 
before the cornea was punctured with a 30 G × 0.5 needle. Cornea, 
iris, lens, and vitreous were removed with a pair of micro-scissors and 
curved forceps. The remaining muscle tissue around the sclera was 
gently removed, and the optic nerve was cut as short as possible.

After dissection, the eyecup containing sclera, choroid, RPE, and 
retina was cryopreserved overnight at 4°C in a 30% (weight/volume) 
sucrose (Sigma-Aldrich, S7903) solution and embedded in optimal 
cutting medium (OCT, NEG50, Thermo Scientific) inside of 
Tissue-Tek. Samples were sectioned at 20  μm thickness using a 
CryoStar™ NX70 cryostat. Serial transverse sections were collected 
on Superfrost™ Plus Adhesion Microscopy Slides, air-dried for 
30 min at 37°C, and stored at −70°C.

2.2.2 Immunohistochemistry
Slides with sections for antibody staining were air-dried for 

30 min and rehydrated in PBS for 30 min at room temperature (as 
previously described in Gasparini et al., 2022). During rehydration, 
slides were covered with Shandon™ cover plates and placed into 
Shandon™ Sequenza™ racks. Next, slides were incubated in blocking 
buffer (0.3% Triton X-100, 5% Donkey or Goat Serum, and 1% BSA 
[Serva GmBH, 11926.04] dissolved in PBS) for 1 h at room 
temperature. Afterwards, the sections were incubated with primary 
antibodies (Rabbit-Anti-Peripherin2, Thermo Scientific, 1:200; Goat-
Anti-S-opsin, Santa Cruz, sc-14363, 1:200) dissolved in blocking 
buffer at 4°C for 12 h. The slides were kept at room temperature for 
30 min and washed with PBS. Afterwards, the tissue was incubated 
with secondary antibodies (Donkey-Anti-Rabbit-Cy2, Jackson IR, 
711-225-152; Donkey-Anti-Goat-Cy3, Jackson IR, 705-165-147) and 
DAPI nuclear staining solution (1:5,000) dissolved in PBS. Then, slides 
were washed extensively in PBS and water before mounting with 
Aqua-Poly/Mount (Polysciences, 18,606) and a 24 × 50 mm #1.5 
coverslip. Finally, slides were stored at 4°C after air drying at room 
temperature in a dark place.
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2.2.3 Light microscopy image acquisition
Images of the central retina (maximum 400 μm distance to the 

optic nerve) were acquired with an upright Zeiss Apotome Imager Z2 
(Apotome) and ZEN 3.5 blue edition software. To avoid overexposure 
of POS, the exposure times were normalized accordingly to their 
lowest value in one round of staining and kept constant within the 
experiment. Three-dimensional images were acquired with the 
Z-stack function of the program using a 20× air objective. The 
different channels were split into individual images using the Fiji/
ImageJ Macro. Subsequently, image and statistical analyses were 
carried out with python 3.9 and devbio-napari 0.8.1.

2.2.4 Software training of the pixel classifier 
QuaPOS-LM for cone outer segments on light 
microscopy images

2.2.4.1 Image pre-processing
Normalization was carried out to standardize the background and 

intensity across all images. The background was subtracted by a 
top-hat filter with the radius set to 3 in all three dimensions and an 
according function from the pyclesperanto-prototype package 0.23.2 
(Haase et  al., 2023). Subsequently, the intensity of all images was 

normalized based on the maximum intensity of each image with the 
following formula:

 
normalized image image

maximum intensity of image
 

   
� � 4096

2.2.4.2 Training of a pixel classifier
To train a pixel classifier that segments cone POS, images from 

retinal sections stained for S-opsin at seven timepoints (P8, P10, P12, 
P14, P16, P20, and P24) were divided into a training and test dataset. 
The training dataset contained 21 images (three biological replicates 
per timepoint). The test dataset contained seven images (one biological 
replicate per timepoint). The training dataset was used to train 
different machine learning models. The test dataset was used to 
calculate the performance of the models.

The Z-stack images in the training dataset were normalized, and 
the region containing S-opsin signal was cropped and randomly 
renamed to secure blinded analysis. Afterwards, 100 pixels in each 
class (signal or background) per image of the training dataset were 
annotated as ground truth in the software napari according to 
intensity as well as the structure of the POS (Figure 2A).

FIGURE 1

Assessment of photoreceptor outer segments during postnatal mouse development using light (LM) and transmission electron microscopy (TEM) 
images. (A) Experimental outline to develop quantification methods for the analysis of POS on LM and TEM images. Eyes were collected from WT mice 
(C57BL/6JRj) and processed for analysis of retinal sections via LM or TEM. (B) Schematic overview of photoreceptors and retinal pigment epithelial cells 
(RPE) in the outer retina. Photoreceptor inner segments (PIS) and outer segments (POS) extend apically toward the RPE. Cone POS were 
immunohistochemically labeled with S-opsin (magenta). (C) Ultrastructural scheme of POS as seen in TEM. POS consist of several membrane discs in 
rods and aligned plasma membrane evaginations in cones. (D) Immunohistochemical staining of S-opsin (magenta) and DAPI (gray) on cryosections at 
different postnatal development stages. Staining indicates a change in size, shape, and number of cone POS throughout postnatal development. Scale 
bar  =  50  μm. (E) TEM images of POS at different postnatal development stages. Throughout postnatal development, POS increased in number and size. 
Later postnatal development stages indicated highly organized POS membrane stacks (scale bar  =  5  μm).
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Subsequently, the images were used to train different random 
forest binary pixel classifiers that distinguish signal from 
background using the accelerated pixel and object classification 
(APOC) 0.12.0 package (Haase et  al., 2022). The number of 
decisions per decision tree was set to 2, and the number of 
decision trees in the classifier was 100. Different filters were 
applied to the images in the training dataset while the classifiers 
were trained: original image, Gaussian blur, difference of Gaussian 
blur, Laplace box of Gaussian blur, Sobel of Gaussian blur, median 
box, mean box, and top-hat box, all with a respective sigma of 1 
or 2. As a result, a code was produced that is able to predict a set 
of labels corresponding to S-opsin positive regions (cone POS) for 
provided images. We named this code QuaPOS-LM. The code and 
the bio-image datasets are provided in the respective GitHub 
repository (Salomon et  al., 2024a, https://github.com/
FloskelSalomon/quapos/tree/main) and BioImage Archive 
repository (Salomon et al., 2024a).

2.2.4.3 Validating the performance of the QuaPOS-LM 
classifier

To validate the performance of the trained classifier QuaPOS-LM, 
S-opsin positive regions (cone OS) of one image per timepoint (test 
dataset) were fully annotated in three Z-sections by two persons 
(Figure  2A). Afterwards, the same images were analyzed by 
QuaPOS-LM, and a set of segmentation results was predicted 
(Figure  2A). Manual annotations were then compared with the 
QuaPOS-LM predictions, and a confusion matrix was computed with 
a function from the segmentation game package 0.2.0 (Figure 2A, 
Haase, 2022). The confusion matrix contained the number of true 
positive (TP), true negative (TN), false positive (FP), and false negative 
(FN) pixel counts (Figures 2A,B). Subsequently, precision, accuracy, 
recall, Jaccard-index, and F1-score were determined with the 
following equations:

 
accuracy TP TN

TP TN FP FN
�

�
� � �

 
precision TP

TP FP
�

�

 
recall TP

TP FN
�

�

 
F score precision recall

precision recall
1 2_ � �

�
�

 
Jaccard index TP

TP FP FN
_ �

� �

2.2.5 Feature extraction of POS segmentations 
predicted by QuaPOS-LM

To quantify cone POS retinal images, three biological replicates 
with 1–3 technical replicates were normalized and provided to 

QuaPOS-LM to predict POS labels. Afterwards, images were rescaled 
so that pixels in all dimensions corresponded to the same size (1 
pixel = 0.323 μm). Following segmentation, features of the predicted 
labels were extracted as quantitative measurements using the packages 
napari simpleitk 0.4.5 (Haase, 2023) and porespy 2.3.0 (Gostick et al., 
2019). The number of predicted POS and their corresponding size, 
shape, and intensity were measured.

2.2.6 Statistical analyses of POS labels predicted 
by QuaPOS-LM

Labels in the 5–95% confidence interval (according to label 
volume) were considered specific signals and included in the statistical 
analysis. Statistical analysis was carried out with scipy 1.10.1 (Virtanen 
et al., 2020) and statsmodels 0.13.5 (Seabold and Perktold, 2010). 
Features were averaged in their respective biological replicates and 
conditions. Pearson’s R correlation coefficient of extracted features was 
computed as correlation matrix with pandas (The Pandas 
Development Team, 2024). Subsequently, a one-way analysis of 
variance (one-way ANOVA) and post-hoc Tukey test were conducted 
for selected features. Statistical comparison between WT and Cpfl1 
mutant mice was carried out with a Welsh’s t-test. The null hypothesis 
was rejected when the p-value was below 0.05. Plots were computed 
with seaborn 0.12.2 (Waskom, 2021) and matplotlib 3.7.0 (Caswell 
et al., 2024).

2.3 Quantification of photoreceptor outer 
segment membrane stack alignment and 
morphology on transmission electron 
microscopy images

2.3.1 Collection, sample preparation, resin 
embedding, ultramicrotomy, and transmission 
electron microscopy

Mice were sacrificed at different postnatal ages (P8–P30,  
Figures 1A,E), and eyes were enucleated and dissected as described in 
2.2.1. For TEM analyses, eyes were prefixed in 4% formaldehyde 
(prepared from paraformaldehyde prills, Electron Microscopy 
Sciences [EMS] # 19208) in 100 mM phosphate buffer (PB), washed 
in PBS, further dissected to small (0.5–1 mm) blocks, and postfixed 
with modified Karnovsky’s fixative (2% PFA/2% glutaraldehyde (EMS 
#16220) in 50 mM HEPES (pH 7.4, EMS #16782) or in 100 mM PB) at 
4°C overnight (Kurth et al., 2010; Gasparini et al., 2022; Völkner et al., 
2023). After aldehyde fixation, the tissue pieces were washed and 
further postfixed in 2% aqueous OsO4 solution containing 1.5% 
potassium ferrocyanide and 2 mM CaCl2, followed by several washes 
in water, incubation in 1% thiocarbohydrazide, washes in water, and 
a second contrasting step in 2% osmium/water (OTO procedure, 
Hanker et al., 1966; Deerinck et al., 2010). After several washes in 
water, the samples were en-bloc contrasted with 1% uranyl acetate/
water, washed again in water, dehydrated in a graded ethanol series up 
to 100% ethanol over molecular sieve, and infiltrated with the Epon 
substitute EMBed 812. After embedding, samples were cured at 65°C 
overnight. 70 nm thin sections were cut with a Leica UC6 
ultramicrotome and collected on formvar-coated slot grids. Sections 
were stained with lead citrate (Venable and Coggeshall, 1965) and 
uranyl acetate and imaged on a Jeol JEM1400 Plus (camera: Ruby, 
JEOL), both running at 80 kV acceleration voltage. Montages (3 × 3 
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FIGURE 2

Development of the random forest classifier QuaPOS-LM for quantification of S-cone POS. (A) A random forest pixel classifier to automatically 
distinguish POS from background was trained and validated. The background (orange) and the POS signal (green) of cones were sparsely annotated on 
LM images stained for S-opsin in a training dataset by a human. The dataset was used to train a machine learning (ML) model that automatically 
separated the signal of cone POS from its background. On a test dataset, manual annotations of two persons A and B were compared to the prediction 
of the ML model to compute a confusion matrix containing true positive (tp), true negative (tn), false positive (fp), and false negative (fn) pixel counts 
(scale bar  =  10  μm). (B) The confusion matrix was computed with test annotations from two different people. The performance of the random forest 

(Continued)
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images) were prepared using the automated montaging function of the 
ruby camera software.

2.3.2 Selection of ROIs for QuaPOS-TEM analysis
TEM images acquired at 5000× magnification (287.5 pixels = 1 μm) 

were used to analyze the POS ultrastructure through membrane stack 
alignment and morphology. Single POS were selected as separate 
regions of interest (ROIs) using the Selection Brush Tool in ImageJ 
(version 1.54b). Cone and rod POS were not distinguished. POS were 
identified as subcellular structures with electron-dense membranes at 
the tip of a connecting cilium or between the mitochondria-rich inner 
segments and the highly pigmented RPE. POS were selected randomly 
per experimental condition (19–79 POS from at least six different 
images of 1–3 biological replicates). Regions showing obvious 
disruptions caused by tissue processing or image montage were not 
considered. All ROIs of one image were analyzed individually but 
saved together for analysis per specimen.

2.3.3 Description of custom code for 
QuaPOS-TEM analysis

A custom MATLAB code was developed to analyze the 
orientations of membrane stacks in TEM images and their coherency, 
that is, the degree of alignment between membranes both locally and 
globally across individual POS. The code, respective explanations for 
usage, and the bio-image datasets can be  found in the respective 
GitHub repository (Salomon et al., 2024b) and BioImage Archive 
repository (Salomon et al., 2024a). Briefly, all ROIs (POS) within each 
image are processed concurrently by the following steps:

 1 Orientation analysis based on the image intensity gradient, 
using the convolutional Scharr operator optimized for minimal 
orientation bias (Scharr, 2000, Tabelle B.11, operator “5 × 5-opt” 
with angular error below 0.00007 degrees) within a sliding 
window of 5 × 5 pixels centered around the query point 
(Figures 3A,A′, blue sticks in blue boxes). The local orientation 
of individual membrane layers is given by the orientation of 
small-scale high-intensity image structures and is therefore 
perpendicular to the image intensity gradient. Note that 
orientations are nematic directors, that is, they are invariant 
under 180-degree rotation (whereas usual polar vectors are 
invariant only after 360-degree rotation). Therefore, plots show 
orientations as short blue sticks (without the arrowhead that 
polar vectors would have), and internal representation of 
nematic orientations uses either of two antipodal polarities 

(Figures  3A,B′–D′). A gradient vector v vx y,� � defines the 
orientation represented by v vy x, �� �, or by �� �v vy x, . 
Alternatively, orientations are represented by a magnitude 

m v vx y� �2 2  and an orientation angle θ  determined up to 

additive multiples of 180-degree (or π  radians) by 
v m v mx y� �sin , cos� � . This way, the gradient’s magnitude 
becomes a weighting factor m . All subsequent analysis is 
independent of the specific choice of representation.

 2 Coherency analysis measures the degree of alignment between 
nematic vectors. The coherency for orientations within some 
neighborhood N  from the Q-tensor

 

Q x
x x x

x x xx
� � � � � � � � � �

� � � � �
�
in N

m
cos . cos sin

cos sin sin

2

2

0 5� � �

� � � �� �

�

�
�
�

�

�
�
�

�
�

�

�
�

�

�
�

0 5.

Q Q
Q Q
xx xy

xy xx

  is computed as twice its larger eigenvalue 2 2 2Q Qxx xy+  which 
is also known as the scalar nematic order parameter (Soans 
et al., 2022).

 3 Choosing the neighborhood N  as a box of 25 × 25 pixels (box 
radius = 12) centered around a query point yields the local 
coherency at that point (Figure 3A″, red stick in red box and 
Figures 3B″–D″, thin red sticks with length corresponding to 
coherency value). It measures the alignment of membrane 
stacks in the vicinity. Averaging over all those query points 
where the neighborhood and underlying gradient estimation 
kernels were fully contained within a given ROI defines the 
mean local coherency of that ROI (Figures 3B″–D″, mean of 
thin red sticks inside of inner dashed yellow contour).

 4 Choosing the neighborhood N  as all pixels for which the 5 × 5 
kernel of gradient estimation was fully contained within a 
given ROI (Figures  3B′–D′, outer dashed yellow contour) 
defines the global coherency of that ROI. For comparison to 
local coherencies, it is shown in Figures 3B″–D″ as thick red 
stick. The global coherency measures the alignment of 
membrane stacks across the complete ROI. The angle of the 
global coherency was retrieved as the fourth quadrant inverse 
tangent of the global coherency vector (Figures 3E′–G′).

 5 Local coherencies for each query point within an ROI and 
global coherency as a single nematic vector per ROI are 

classifier was estimated by calculating different scores. The accuracy (acc.), precision (prec.), recall, F1-score (F1), and Jaccard Index (Jaccard) were 
calculated with the obtained values from the confusion matrix. (C) QuaPOS-LM can be applied to predict the labels from S-opsin-stained croysections 
at different postnatal development stages (P8–P24; scale bar  =  25  μm). (D) Inspecting the orthogonal view of an intensity image and its corresponding 
prediction showed that QuaPOS-LM can predict S-opsin-stained cone POS in 3D image stacks (scale bar  =  25  μm). (E) POS number increased 
throughout postnatal development. The number of POS was estimated by the number of predicted labels in each image. The average number of POS 
per timepoint was computed from the average values of respective biological replicates (mean  ±  SEM, n  =  3–5, N  =  3, one-way ANOVA followed by 
post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001). (F) The summed POS volume increased throughout postnatal development. The summed 
POS volume was determined in each image and averaged by the biological replicate. The average summed POS volume was computed from the 
biological replicates (mean  ±  SEM, n  =  3–5, N  =  3, one-way ANOVA followed by post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001). (G,G′) The 
bounding box height increased throughout postnatal development. (G) The average POS bounding box height was determined in each image. 
Afterwards, the average per biological replicate was determined (mean  ±  SEM, n  =  3–5, N  =  3, one-way ANOVA followed by post-hoc Tukey test, * 
p  <  0.05, ** p  <  0.01, *** p  <  0.001). (G′) A boxplot representation of the POS bounding box height. Here, all measured POS were pooled according to 
age, independent of the biological replicate. Whiskers represent the 1.5 interquartile range. An increase in the bounding box height was observed.

FIGURE 2 (Continued)
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FIGURE 3

QuaPOS-TEM can efficiently quantify the coherency of POS disc membranes. (A,A′) Using electron microscopic micrographs, QuaPOS-TEM calculates 
the orientations (blue sticks) as nematic directors based on the image intensity gradient within a sliding window of 5  ×  5 pixels (blue box) centered 
around the query point. This orientation field tracks the underlying membranous structures (A′). (A″) Subsequently, the coherency (degree of 
alignment) of the orientations is computed in a box of 25  ×  25 pixels (red box, local alignment) or across complete ROIs (global alignment). The 
coherency is represented as a red stick with a certain length and direction. (B–D) POS of WT mice of different developmental ages (P8, P10, and P16) 
showed various membrane morphologies on TEM images. Scale bar = 1  μm. (B′–D′,B″–D″) Within selected ROIs (yellow contour), the orientation of 
the membranes was tracked and their coherency was computed. Local coherencies were visualized as thin red sticks of a certain length and angle and 
emphasized by background color (B″–D″). The higher the local coherency was, the longer the stick and the brighter the background. Global 
coherencies were shown as thick red sticks (B″–D″). (E–G) Density functions revealed the distribution of local coherencies (red areas) and the resulting 
mean local coherency (thick red line) and global coherency (thick orange line). The “chaotic” POS (E) showed low, the “partly stacked” POS (F) medium, 
and the “stacked” POS (G) high values. (E′,F′,G′) The directions of local coherencies within each ROI were plotted as polar histograms (red outlines) 
respecting the 180-degree symmetry and showed the computed angle of the global coherency (thick orange line). The polar histogram of the 
“chaotic” POS (E′) showed a variety of different coherency directions, while the “partly stacked” POS (F′) and “stacked” POS (G′) corresponded to 
narrow distributions of coherency angles.
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visualized as sticks representing orientations, with coherency 
as magnitude and direction given by the larger eigenvector of 
the Q -tensor to its larger eigenvector (Figures 3A″–D″, thin 
and thick red sticks). Local coherencies within each ROI are 
also plotted as polar histograms respecting the 180-degree 
symmetry and as density functions (Figures 3E–G,E′–G′).

For processing different image resolutions, images can 
be optionally down-sampled, either at the level of the input grayscale 
image or at the level of orientations, using the Q-tensor to calculate 
the orientation for each super-pixel from the input pixel orientations.

Following coherency analysis per ROI, the overall alignment per 
biological replicate was computed. This alignment and the dominant 
direction of the membranes were calculated from the angles of global 
coherency (of all ROIs in one biological replicate of one round of 
imaging) by the Q-tensor, respecting their periodicity of 180 degrees 
(or π  radians).

2.3.4 Statistical analyses of outer segment 
membrane stack alignment and morphology 
measured by QuaPOS-TEM

Statistical analyses were performed with GraphPad Prism 9.5.1. 
One-way analysis of variance (one-way ANOVA) between groups and 
a subsequent post-hoc Tukey multiple comparison test was conducted. 
The null hypothesis was rejected when the p-value was below 0.05. 
Plots were generated with GraphPad Prism 9.5.1.

3 Results

3.1 Development of photoreceptor outer 
segments was assessed on light and 
transmission electron microscopy images

OS formation was examined during the development of WT mice 
using retinas analyzed at different postnatal ages (postnatal day P4–
P24) on transverse sections via LM and TEM (Figures  1A–E; 
Supplementary Figure S1).

A comparison of different markers for POS structure and proteins 
involved in the phototransduction cascade revealed that the marker 
S-opsin was best suited for establishing the quantification method 
QuaPOS-LM. The respective staining had a high signal-to-noise ratio, 
and the structure of separate POS was clearly visible (Figures 1B,D; 
Supplementary Figure S1A). Major changes during the development 
of the POS appeared between P6 and P16 (Figure  1D; 
Supplementary Figure S1A) when POS (qualitatively) increased in 
number and size.

For ultrastructural characterization of POS formation and 
structure, TEM images were obtained (Figures  1C,E; 
Supplementary Figure S1B). At P4 and P6, no structures resembling 
POS could be observed (Supplementary Figure S1B). Scattered and 
small POS that show unorganized membrane stacks appeared at P8. 
At P10 and P12, an increased number and elongation of POS and 
improved alignment of their membrane stacks were observed. Further 
thickening of the POS layer took place until P16 and P20 (Figure 1E; 
Supplementary Figure S1B). In accordance with the 
immunohistochemical analyses, major changes in the number and 
structure of the POS appeared between P6 and P16. The obtained 

images were used to establish the ultrastructural quantification 
method QuaPOS-TEM through POS membrane alignment, 
morphology, and orientation.

3.2 The automated pixel classifier 
QuaPOS-LM was developed to detect and 
quantify cone outer segments

3.2.1 Development of the pixel classifier 
QuaPOS-LM

To quantify S-opsin positive cone POS on LM images in an 
automated way, a supervised machine learning approach was used. 
Before training the model, three-dimensional image stacks of a 
developmental time series (P8–P24) of C57BL/6JRj mouse retinas 
were normalized and annotated manually into positive (S-opsin-
positive) and negative (background) classes (Figure  2A). These 
annotated images were used to train different random forest pixel 
classifiers that distinguish signal from background using the 
accelerated pixel and object classification (APOC) 0.12.0 package 
(Haase et  al., 2022). During the training of the machine learning 
model, different combinations of image filter operations were applied 
to images in the training dataset. Applying the filter combination of 
Gaussian blur, difference of Gaussian blur, and Laplace box of 
Gaussian blur (all with a respective sigma of 1) was most efficient as it 
used a small number of filters, corresponding to low computational 
effort (Supplementary Figures S2A,B).

The different classifiers were applied to a set of test images, and the 
corresponding prediction was compared to human annotation 
(Figure  2A). The computation of different scores revealed a 
performance of at least 70% within human agreement (Figure 2B). 
Small and large POS were detected. All classifiers predicted similar 
results (data not shown).

The chosen classifier predicted ROIs for S-opsin-positive staining 
on provided images throughout postnatal development as well as in 
three dimensions (Figures  2C,D). The classifier QuaPOS-LM is 
available in the corresponding GitHub repository (Salomon 
et al., 2024b).

3.2.2 Analysis of cone POS predicted by 
QuaPOS-LM revealed an increase in number and 
size throughout postnatal development

The classifier QuaPOS-LM was applied to images to quantify 
changes in POS throughout postnatal development (P8–P24) in WT 
mice. Corresponding to the LM images, the classifier predicted small, 
circular POS in early development, which increased in size and 
became more elongated over time (Figure  2C). However, in later 
developmental stages, the segmentation predicted structures that 
corresponded to several POS (here referred to as “clusters”) as well as 
small objects that may have arisen from high pixel intensities in the 
background (Supplementary Figure S2C). To exclude clusters and 
small objects in the analysis, a threshold based on the 5th and 95th 
percentiles for the volume was computed and applied to the dataset, 
except when the summed POS volume was analyzed.

The qualitative LM analysis suggested a change in POS number, 
size, and shape. To investigate these changes, the number of POS as 
well as size, shape, and intensity parameters were extracted using 
napari-simpleitk-image-processing 0.4.5 (Haase, 2023) and porespy 
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2.3.0 (Gostick et al., 2019). The number of POS per analyzed image 
(located at 200–400 μm of ONL around the optic nerve) depended 
significantly on the developmental age. A 2-fold increase in POS 
number was observed between P8 and P24 (Figure 2E). Additionally, 
POS showed a significant change in size during postnatal development. 
An 8-fold increase in the summed POS volume as well as an increase 
of 1 μm in the POS bounding box height (maximum elongation in the 
y-direction) was observed between P8 and P24 (Figures  2F,G). 
Additionally, analyzing the distribution of the bounding box height of 
POS over time with a boxplot showed a maximum of around 14 μm 
as well as an increase in the 75th percentile along with an increase in 
the 1.5 interquartile range (Figure 2G′).

To visualize the relationships between all measured features, a 
correlation matrix containing all Pearson’s R correlation coefficients 
was computed from measurements averaged within their biological 
replicate (Supplementary Figure S3A). When assessing dependencies 
over time, it was observed that different features correlated positively 
or negatively over time, reaching correlation coefficients from −0.7 to 
0.9 (Supplementary Figure S3A′). In particular, different size features 
correlated positively with the postnatal development age. Based on the 
correlation analysis, the Feret diameter (Supplementary Figures S3B,B′), 
the minimum intensity (Supplementary Figures S3C,C′), and the 
sphericity (Supplementary Figures S3D,D′) were further investigated 
exemplarily and showed changes throughout postnatal development.

Finally, different measurements were exemplarily annotated with their 
corresponding QuaPOS-LM prediction as a heatmap. Analyzing the POS 
volume and bounding box height revealed that long POS with a large 
volume were regularly detected in adults. However, smaller POS with a 
little volume were frequently observed in adults as well 
(Supplementary Figures S3E,F). Furthermore, the minimum intensity of 
properly formed POS did not show any notable difference from immature 
POS at earlier developmental stages (Supplementary Figure S3G). Finally, 
the sphericity of POS decreased when comparing early and late 
development stages (Supplementary Figure S3H).

3.2.3 Quapos-LM revealed a decrease in cone 
POS number and volume in the Cpfl1 mouse 
model over time

Confirming the application of QuaPOS-LM to characterize POS 
throughout postnatal development, it was of interest to investigate 
whether the same model could be  applied to quantify cone 
photoreceptor degeneration. The mouse model Cpfl1 is characterized 
by dysfunction and loss of cone photoreceptors in adults but has not 
been systematically quantified (Chang et al., 2002, 2009). Qualitative 
analysis showed a decline of POS in Cpfl1 mice at P70 and P245 as 
well as aberrant morphology in comparison to age-matched healthy 
WT control animals (Supplementary Figures S4A,B). Applying 
QuaPOS-LM to images of Cpfl1 mouse retinal sections stained with 
S-opsin revealed that the classifier was able to predict POS throughout 
degeneration in the present phenotype (Figure 4A). Analogous to the 
analysis of POS during postnatal development, the number of POS as 
well as their size, shape, and intensity parameters were extracted from 
the Cpfl1 dataset. Analyzing the number as well as the summed 
volume per image showed two phases throughout time. First, the 
number and summed volume of POS increased from P8 to P14. 
Afterwards, both measurements showed a decrease until P245 
(Figures 4B,C). Moreover, in comparison to age-matched WT control 
animals, a significant decline in POS number in adult Cpfl1 animals 

was observed (Figure 4B′). Additionally, a significant difference in the 
summed POS volume was observed at P8 as well as at older stages P30, 
P70, and P245 (Figure 4C′).

However, the POS bounding box height showed a different trend; 
it increased similarly between P8 and P14 but stagnated afterwards 
until P245 (Figure 4C). However, in comparison to age-matched WT 
control animals, the bounding box height of Cpfl1 mice showed a 
significant difference at P8, P30, P70, and P245 (Figure 4C′).

Finally, the Pearson’s R correlation coefficients between all features 
were computed for the Cpfl1 dataset from P14 onwards to investigate 
the state of degeneration alone (Figure 4E). Analyzing the relationships 
with age showed that POS number as well as their summed volume 
decreased over time (Figure  4E′). However, whereas intensity 
parameters showed a positive correlation with age, indicating that 
POS in the degeneration model expressed more S-opsin, some 
measurements regarding size showed a slightly negative correlation.

3.3 The automated method QuaPOS-TEM 
was developed to quantify the coherency 
of photoreceptor outer segment 
membranes

3.3.1 Development of QuaPOS-TEM
In addition to the number and size of POS, their ultrastructural 

morphology is important for functionality. Healthy POS contain a 
massive amount of light-sensitive pigments that reside in hundreds of 
stacked membranous discs in rods or aligned plasma membrane 
evaginations in cones (Roepman and Wolfrum, 2007; Gilliam et al., 
2012; Molday and Moritz, 2015; Goldberg et al., 2016; Chen et al., 
2021). To quantify POS ultrastructure through membrane stack 
alignment on TEM images, the custom MATLAB code QuaPOS-TEM 
was developed. POS were selected manually as ROIs on TEM images 
of a developmental time series (P8–P20) of WT mouse retinal cross 
sections (Figures 3, 5; Supplementary Figure S5). Subsequently, whole 
images, including all annotated ROIs, were processed automatically.

First, orientation analysis was performed based on the image 
intensity gradient. Here, the convolutional Scharr operator (Scharr, 
2000) optimized for minimal orientation bias was applied within a 
sliding window of 5 × 5 pixels centered around the query point 
(Figures 3A,A′, blue box and blue sticks). Membrane leaflets are heavily 
stained with osmium and therefore appeared dark on TEM images. For 
this reason, the local orientation of individual membrane layers was 
perpendicular to the image intensity gradient. Orientations were 
retrieved as nematic vectors and were shown as short blue sticks on 
each query point of the intensity image (Figures 3A–D). The resulting 
orientation field tracked the underlying membranous structures of 
POS with various membrane morphologies (Figures 3A–D).

Next, a coherency analysis was performed to evaluate whether the 
POS were stacked properly. The coherency measured the degree of 
alignment between orientations (nematic vectors) in a certain area of 
pixels and was computed from the scalar nematic order parameter 
(Soans et al., 2022, Figure 3A″, red box and red stick). A coherency 
value could range between 0 and 1 and was represented as a red stick 
with a certain length and direction (Figure 3A″). Whole images were 
analyzed, and two coherency values were retrieved per ROI (POS). On 
the one hand, the local coherency was analyzed in the vicinity of query 
points by computing the coherency in a box of 25 × 25 pixels 
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FIGURE 4

QuaPOS-LM revealed a decrease in cone POS number and volume in a cone degeneration mouse model over time. (A) QuaPOS-LM predicted POS on 
a dataset of S-opsin-stained retinal images from cone photoreceptor function loss 1 mice (Cpfl1) over time (P8–P245) (Scale bar = 25 µm). (B,B′) Cpfl1 
mice showed a decline in POS number with increasing age. (B) Analyzing the Cpfl1 dataset alone revealed an increase in POS number from P08–P14 
and a decline until P245 (mean  ±  SEM, n  =  3–4, N  =  1, one-way ANOVA followed by a post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001. (B′) In 
comparison to age-matched WT control animals, Cpfl1 mice showed a reduction of POS at P70 and P245 (mean  ±  SEM, n  =  3–4, N  =  1, independent 
t-test, * p  <  0.05). (C,C′) Cpfl1 mice showed a reduction of the summed POS volume with increasing age. The summed POS volume was determined as 
the summed volume of each image. (C) Analyzing the Cpfl1 dataset alone revealed an increase in the summed POS volume from P8 to P14, followed 
by a decline until P245 (mean  ±  SEM, n  =  3–4, N  =  1, one-way ANOVA followed by a post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001). (C′) Cpfl1 
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(Figures 3A″–D″). The box size was chosen in order to span two to 
three membrane layers having a thickness of 0.02–0.03 μm each 
(Carter-Dawson and Lavail, 1979; Molday and Moritz, 2015; manually 
tested in a selection of images, data not shown). The mean of all local 
coherencies was calculated per ROI as mean local coherency 
(Figures  3E–G). On the other hand, the alignment of membrane 
stacks across complete ROIs was measured as global coherency by 
taking all pixels into account for which the 5 × 5 kernel of orientation 
analysis was fully contained within the given ROI 
(Figures 3B″–D″,E–G). The angle of global coherency was retrieved 
and provided the dominant direction of the membranes in the given 
POS (Figures 3E′–G′). Images and plots were created within the code 
to visualize ROIs (yellow contour), orientations (blue sticks), local 
coherencies (thin red sticks), and global coherencies (thick red sticks) 
(Figures 3B–D). Additionally, local coherencies and global coherency 
within each ROI were plotted as density functions and polar 
histograms respecting the 180-degree symmetry (Figures 3E–G).

The automated method QuaPOS-TEM was successfully applied 
to analyze the ultrastructure of POS on TEM images of a 
developmental time series (P8–P20) of WT mouse retinas 
(Figures 5B,D; Supplementary Figure S5). Different morphological 
types of POS membranes were identified. “Chaotic” POS, as present, 
for example, at P8, resulted in low global coherency (here 0.033, 
Figures  3B,B′,B″,E,E′). The local coherencies of the ROI 
accumulated in the left half of the density functions and pointed 
into various directions in the polar histogram (Figures  3E,E′). 
However, the mean local coherency yielded a value of 0.256, which 
indicated partly alignment of the membranes inside the ROI 
(Figure 3E). At P10, “partly stacked” POS could be observed and 
showed medium values for both global and local coherency 
(Figures 3C″,F). The mean local coherency was higher than the 
global coherency, clarifying that several regions of membranes are 
each well aligned within itself but less aligned to each other 
(Figures 3C,C′,C″,F,F′). The local coherencies are distributed over 
the whole density function plot, while the directions are 
accumulated in two quarters in the polar histogram (Figure 3F′). 
Stacked OS, here from P16, yielded high values for both mean local 
and global coherency (Figures  3D,D′,D″,G,G′), elucidating 
alignment of the membranes in the vicinity and across the whole 
ROI. The values of the density function shifted to the right, and the 
directions of the local coherencies overlapped quite well in the polar 
histogram (Figures 3G,G′). The angle of global coherency provided 
information about the dominant direction of the membranes within 
the POS (Figures  3E″,F″,G″). However, the angles of coherency 
depend on the position of the sample during the image acquisition. 
Therefore, they can only be  compared between the POS of one 
sample and the imaging run.

During the development of QuaPOS-TEM, different parameters 
were considered. The method is dependent on the image resolution, 
which is determined by the magnification used during imaging and 
subsequent down-sampling at the level of the input grayscale image. 
The imaging magnification of 5,000× (287.5 pixels = 1 μm) was the 
compromise of providing high resolution while maintaining 
reasonable expenditure of imaging time. Down-sampling at the level 
of grayscale image or at the level of the orientation field was not used 
as it decreased accuracy of the membrane tracking (data not shown). 
However, a down-sampling by factor 2 could be  used to process 
images obtained at a magnification of 10,000× providing a higher 
resolution (575 pixels = 1 μm). Furthermore, different box radii (6 and 
24 pixels) for the local alignment were tested. The values for local 
coherency were slightly changed, but the tendency remained similar 
for POS of different morphologies (data not shown).

In summary, the code QuaPOS-TEM calculated three values for 
each ROI (POS) of a TEM image. The code enabled quantification of 
the alignment and morphology of membrane stacks both locally and 
globally within POS. POS with unaligned membrane stacks achieved 
low values for both coherency measurements (Figure 3E). POS with 
partly stacked membranes achieved a higher measurement for mean 
local coherency, while global coherency stayed medium (Figure 3F). 
POS with well-aligned membrane stacks got a higher value for both 
mean local and global coherency (Figure 3G). The angle of global 
coherency provided information about the dominant direction of the 
membranes within the POS (Figures 3E′,F′,G′).

3.3.2 QuaPOS-TEM showed increasing coherency 
of POS membranes during postnatal 
development

After validating the performance of the method QuaPOS-TEM 
on individual POS of various morphology, the code was used to 
quantify the membrane alignment of POS during postnatal 
development (P8–P20) of WT animals on a set of whole images 
(Figures  5A,A′,A″; Supplementary Figure S5). 2–3 biological 
replicates with 12–30 ROIs (technical replicates) each were analyzed 
per time point. Mean local coherency, global coherency, and angle of 
global coherency were analyzed per ROI, mean and SEM were 
calculated for each developmental age (Figures  5B–E). One-way 
analyses of variance revealed significant dependency on postnatal age 
for both mean local coherency and global coherency (F(4, 299), 
p-value <0.0001, one-way ANOVA, Figures 5C,D). The mean local 
coherency increased from 0.39 at P8 to 0.52 at P20, while the global 
coherency raised from 0.29 at P8 to 0.49 at P20 (Figures  5C,D). 
Despite high variation within individual groups, post-hoc analysis by 
Tukey’s multiple comparison test showed significant differences 
between all groups except for P8 vs. P10, P12 vs. P16, and P16 vs. P20 

mice showed significant differences in the summed POS volume at P30, P70, and P245 in comparison to age-matched WT control animals 
(mean  ±  SEM, n  =  3–4, N  =  1, independent t-test, * p  <  0.05, ** p  <  0.01). (D) Cpfl1 animals showed an increase in the POS bounding box height from P8 
to P24. Afterwards, the POS bounding box height remained at 3  μm (mean  ±  SEM, n  =  3–4, N  =  1, one-way ANOVA followed by a post-hoc Tukey test, * 
p  <  0.05, ** p  <  0.01, *** p  <  0.001). (D′) In comparison to age-matched WT controls, Cpfl1 animals showed a significant decrease in the POS bounding 
box height at the ages P8, P30, P70, and P245 (mean  ±  SEM, n  =  3–4, N  =  1, independent t-test, * p  <  0.05, ** p  <  0.01). (E) A heatmap representation of 
the correlation matrix showed the relationships between all measured features. Pearson’s R correlation coefficients were calculated from averaged 
values, excluding P8. (E′) Correlation vector of the age alone, computed from the correlation matrix. The correlation vector showed the Pearson’s R 
correlation coefficient of all measured features with age.

FIGURE 4 (Continued)
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for mean local coherency (Figure  5C). The same test resulted in 
significant differences between all groups except for P8 vs. P10 and 
P16 vs. P20 for global coherency (Figure  5D). Quantification by 
QuaPOS-TEM showed that POS membranes are already partly 
stacked during early postnatal development and increase to align in 
vicinity during maturation (Figure  5C). However, the overall 
alignment of membranes that was measured by global coherency 
changed stronger during postnatal development with an increase, 
especially between P10 and P16 (Figure  5D). While mean local 
coherency and global coherency appear different at P8 (a ratio of 0.69 
between global and mean local coherency), they become more 
similar during maturation, with a ratio of 0.95 at P20 (Figure 5E). 
This convergence of both coherency values was significantly 
dependent on age (F(4, 299), p-value <0.0001, one-way ANOVA, 
Figures 5B,E). Therefore, the ratio of global coherency to mean local 
coherency evolved to be  an indicator for POS maturation with 
significant differences between younger and older groups (post-hoc 
Tukey test, Figure 5E). The described comparisons were also analyzed 
after averaging all values per biological replicate and showed similar 
trends (Supplementary Figure S5).

To continue the analysis of coherency, the orientation of ROIs 
toward each other within the same biological replicate (images from 
one imaging run without movement of the specimen) was analyzed 
by comparing their angles of global coherency (Figure  5F). A 

significant change over time was revealed (F(4, 9), p = 0.0107, one-way 
ANOVA, Figure 5F). While the orientation of the angle of global 
coherency varied at P8 (0.41) and P12 (0.40), the POS membranes 
were oriented in similar directions at P16 (0.86) and P20 (0.87) across 
the images of individual samples (Figure 5F).

To sum up, quantification of POS with QuaPOS-TEM revealed an 
increased alignment of membranes in the vicinity, throughout 
individual POS, and across whole samples during postnatal 
development of WT animals. The mean local coherency, global 
coherency, ratio between global and mean local coherency, and 
alignment of the angle of global coherency efficiently characterized 
the maturation of POS.

3.3.3 Quapos-TEM revealed defects in the 
coherency of POS membranes in the 
degeneration mouse models RhoKO and rd19

With this automated method in hand, the effects of retinal 
degeneration on POS membrane morphology were analyzed in two 
inherited retinal degeneration mouse lines (RhoKO, Humphries, 
1997; and rd19, Chang et al., 2012) at 30 days of age. Both degeneration 
models show aberrant POS morphology on TEM images of retinal 
sections (Figures 6A–C; Supplementary Figure S6). POS of RhoKO 
animals displayed heterogeneous morphologies, with a mixture of 
small POS containing loose formations of mainly membrane vesicles 

FIGURE 5

QuaPOS-TEM showed increasing coherency of POS disc membranes during the postnatal development of wild-type mice. (A,A′,A″) On selected 
grayscale TEM images of C57BL/6JRj (WT) retinas from postnatal age P8 to P20 (exemplary images shown for P10), ROIs were selected manually 
before the orientation and coherency fields were calculated. Scale bar  =  5  μm. (B–E) Whole images were analyzed automatically, and mean local 
coherency, global coherency, and the angle of global coherency were retrieved for all selected ROIs. The ratio of global and local coherency was 
calculated per ROI. Plots show the values of individual ROIs (mean  ±  SEM, n  =  2–3 with 12–30 ROIs each). An increase in local and global coherency of 
POS membranes over time was observed. (F) The alignment of the angle of global coherency was computed per biological replicate (mean  ±  SEM 
n  =  2–3). (C–F) One-way analyses of the variance revealed significant dependency on postnatal age for all analyzed measures (n  =  2–3, one-way 
ANOVA followed by a post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001, ****  <  0.0001).
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(“chaotic”) or partly stacked membranes (Figures  6A,B; 
Supplementary Figure S6). POS of rd19 animals showed POS with 
curved, stacked packages of membranes of varying orientation 
(Figure 6C; Supplementary Figure S6).

Using the quantification method QuaPOS-TEM, the membrane 
alignment was quantified by analyzing mean local coherency, global 
coherency, and angle of global coherency (Figure 6). “Chaotic” POS 
present in the RhoKO mouse model resulted in a low global coherency 
(here 0.07) that elucidated a low overall alignment of membranes 
inside the ROI (Figures 6A,A′,A″,E). Similar to the “chaotic” POS 
from P8  in the WT animals, the local coherencies of the ROI 
accumulated in the left half of the density functions and pointed into 
various directions in the polar histogram (Figures 6E,E′). The mean 
local coherency yielded a value of 0.14, which indicated a low 
alignment of the membranes in the vicinity (Figures 6A,A′,A″,E). 
Similar values were achieved for POS-containing membrane vesicles 
(Supplementary Figure S6). The “partly stacked” POS that were 
observed in RhoKO animals showed medium values for both mean 
local coherency (0.35) and global coherency (0.30, Figures 6B,B′,B″,F). 
In retinal sections from rd19 animals, POS with “stacked packages” 
was observed, which yielded a low value for global coherency (0.07) 
and a higher but still low mean local coherency (0.18, 
Figures 6C,C′,C″,G). The density function of the local coherencies and 
the polar histogram resembled the ones from chaotic POS, indicating 
only partial alignment of membranes in the vicinity and overall low 
alignment of the membranes in the ROI. Other ROIs of the rd19 
mouse line resulted in medium values for both mean local and global 
coherency as present for “partly stacked” POS during WT development 
(Supplementary Figure S6), elucidating partly alignment of the 
membranes in the vicinity and across the whole ROI. “Stacked” POS 
from control WT animals resulted in coherency values, density plots, 
and polar histograms similar to the ones from P16 and P20 in the 
developmental analysis (Figures 6D,D′,D″,H,H′).

In total, 17–43 ROIs (technical replicates) were analyzed on TEM 
images from 1 to 2 biological replicates per mouse line, and means plus 
SEM were calculated. Compared to WT controls, both degeneration 
mouse lines showed significantly decreased values for both mean local 
and global coherency [Figures  6I,J, F(2, 80), p < 0.0001, one-way 
ANOVA with post-hoc Tukey test]. The global coherency was affected 
more strongly, with a decrease from 0.52 for WT control animals to 
0.13 for RhoKO and 0.16 for rd19 animals (Figures 6I,J). The mean 
local coherency shifted from 0.53 for the WT to 0.23 for the RhoKO 
and 0.27 for the rd19 mouse line (Figure 6I). This indicated that the 
POS membranes remained partly aligned in the vicinity during the 
degeneration of both mouse models. Interestingly, the POS of rd19 
animals were significantly less affected than that of RhoKO animals, 
showing a slightly higher mean local coherency at 30 days of age 
(Figure 6I, p = 0.0278, post-hoc Tukey multiple comparison test). The 
ratio between global coherency and mean local coherency decreased 
significantly for RhoKO (0.53) and rd19 (0.58) compared to WT (0.98, 
Figures 6K,L). These values were even lower than the ratio observed at 
P8 during WT development, caused by the low values for global 
coherency observed (Figures 6J–L). All analyses were also conducted 
after averaging all values per biological replicate and showing similar 
trends (Supplementary Figure S6).

To gain further information about the alignment of membranes 
between individual ROIs, the angle of global coherency was analyzed 
and provided information about the dominant direction of the 

membranes within the separate ROIs (Figures  6E′,F′,G′,H′; 
Supplementary Figure S6). The dominant membrane direction was 
compared between all ROIs within one biological replicate by 
performing a coherency analysis between their angles of global 
coherency (Supplementary Figure S6). The alignment of POS of 
RhoKO animals was decreased to 0.52 for RhoKO animals and even 
further for the rd19 animal to 0.28 compared to the WT control (0.94, 
Supplementary Figure S6). However, statistical analyses could not 
be performed due to the small number of biological replicates.

In summary, QuaPOS-TEM was able to analyze POS of the two 
retinal degeneration mouse lines, RhoKO and rd19. The POS 
morphology was quantified and showed significant decreases in 
membrane alignment locally and globally inside the individual POS 
for both models.

4 Discussion

While important insights about POS formation and morphology 
were generated through manual analyses, such approaches are time-
consuming, and therefore sample size is limited. Here, two automated 
bio-image analysis methods to quantify POS formation are presented. 
First, a supervised machine learning model was established and 
validated for automated segmentation of cone POS on cryosections 
stained for S-opsin and imaged by LM. Subsequently, the number of 
POS and different size, shape, and intensity parameters were quantified 
from three-dimensional image stacks (QuaPOS-LM). Second, a 
method to quantify the morphology of POS membranes based on the 
image gradient of TEM pictures was established. This method allowed 
to quantify the quality of POS at the ultrastructural level 
(QuaPOS-TEM). Evidence is provided that both methods can be used 
to analyze the developmental and degenerative processes of POS.

The chosen development timeframe (P4–P24) spanned prior to the 
onset of POS formation until their maturation and covered the eye 
opening between P12 and P14 (Zieske, 2004; Koehler et al., 2011). The 
samples represented different developmental stages and were suitable 
to establish quantification methods for POS with diverse morphologies. 
Here, POS were detected from P8 onwards during the postnatal 
development of C57BL/6JRj mice. Previously, it was shown that POS 
of cones rapidly increased between P5 and P6 and continued to rise 
until P11 in the central retina (Daum et al., 2017). The discrepancy 
between the onset of POS formation might be due to different mouse 
strains used (Gong et al., 2003; Siegert et al., 2009; Daum et al., 2017).

At various postnatal development stages, single cone POS were 
identified by QuaPOS-LM. However, later developmental stages 
frequently included segmentation results of clusters (predictions that 
correspond to several POS) or results of objects that were too small to 
be considered POS. Here, these objects were removed by setting a 
threshold based on the 5th and 95th percentiles of the measured 
volume. A watershed algorithm was tried to separate clusters of 
segmentation into single POS. However, the approach was judged 
unsuccessful since elongated objects were separated in both directions, 
vertically and horizontally (data not shown). Furthermore, small POS 
with a volume above the 5th percentile were observed in adult postnatal 
development timepoints. These POS showed a similar morphology as 
seen in early development stages and were included in the analysis. 
Unexpectedly, this led to smaller average values of the POS length in 
comparison to published results (Carter-Dawson and Lavail, 1979; Fu 
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FIGURE 6

QuaPOS-TEM reveals defects in the coherency of POS membranes in the retinal degeneration mouse models RhoKO and rd19. (A–D) POS 
morphology is disturbed in RhoKO and rd19 retinas compared to WT mice on TEM images at 1  month of age. Scale bar = 0.5  μm. POS of RhoKO mice 
showed “chaotic” or “partly stacked” membrane morphology (A,B). POS of rd19 mice contained “stacked packages” of membranes (C). Control WT 
mice displayed POS with “stacked” membranes (D). (A′–D′,A″–D″) Within selected ROIs (yellow contour), the orientation of the membranes was 
tracked as orientation field (blue sticks), and their coherency was computed. Local coherencies were visualized as thin red sticks of a certain length and 
angle and emphasized by background color (A″–D″). Global coherencies were shown as thick red sticks (A″–D″). (E–H) Density functions revealed the 
distribution of local coherencies (red areas) and the resulting mean local coherency (thick red line) and global coherency (thick orange line). The POS 
with “chaotic” membranes (E) or “stacked packages” of membranes (G) showed low coherency, the one with “partly stacked” membranes (F) resulted 
in medium, and the POS with “stacked” membranes yielded (G) high coherency values. (E′–H′) The directions of local coherencies within each ROI 

(Continued)
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and Yau, 2007). These signals might result from phagocytosed POS 
fragments from the RPE or partial sectioning and other artifacts from 
tissue preparation. Such limitations might be circumvented by more 
sophisticated protocols such as optical tissue clearing (Henning et al., 
2019; Cai et al., 2023) or improved segmentation models. Machine 
learning models could be based on a deep learning architecture such 
as stardist (Weigert et al., 2020) or cellpose (Stringer et al., 2021), which 
are designed to separate objects in close proximity. Generally, such 
models perform better than classic machine learning models and show 
increased values regarding true positive and true negative pixel 
readings. However, calculating the performance of the classifier 
established here with an initially defined test dataset resulted in a 
Jaccard index of over 70% within human agreement. Importantly, 
unlike manual assessment, the prediction of the classifier is 
reproducible and scalable for analyzing large amount of image data.

Given the correct representation of POS predicted by 
QuaPOS-LM, the method was applied to analyze POS formation 
throughout postnatal development in WT (P8–P24) and degeneration 
in Cpfl1 mice (between 8 days and 35 weeks of age). Throughout 
postnatal development, a positive correlation between age and POS 
number, summed volume, and length was observed, confirming the 
robustness of QuaPOS-LM with recent manually quantified results 
(Sharma et al., 2003; Daum et al., 2017). Furthermore, the method 
could be  applied to analyze various size, shape, and intensity 
parameters of POS as well. Hence, the data revealed an overall 
increase in POS size throughout postnatal development. An opposite 
effect was observed when analyzing POS from Cpfl1 mice in 
comparison to age-matched WT control animals. Whereas some 
cone POS remained in adult Cpfl1 mice, a decline in number was 
observed until 35 weeks of age. Additionally, the Pearson’s R 
correlation coefficient indicated that the remaining cone POS of 
Cpfl1 mice are similar in regard to their size and morphology in 
comparison to WT control animals and hence properly formed, 
confirming previous results (Chang et al., 2002, 2009; Santos-Ferreira 
et  al., 2015). Whether these cones are further degenerating after 
35 weeks of age might be assessed in future studies.

Unlike cones, rod photoreceptors are much more abundant in the 
mouse retina (Carter-Dawson and Lavail, 1979). Hence, single-cell 
resolution for rods is challenging in LM, and thus QuaPOS-LM 
analysis on cryosections is not possible. However, the provided 
analysis method could be  used to further characterize retinal 
development and degeneration of cone photoreceptors. Plus, the 
model could also be  adapted to similar markers such as 
mid-wavelength (M) opsin to further analyze different photoreceptor 
types in development and disease or the distribution of S- and 
M-cones along the dorsoventral axis (Nadal-Nicolás et al., 2020).

While the number and volume of POS are important indicators 
for photoreceptor maturation and hence function, the proper 
alignment of membranous discs is also essential (Mustafi et al., 2009; 

Burgoyne et al., 2015; Molday and Moritz, 2015; Lewandowski et al., 
2022). Membrane stacks become visible at high magnification by 
TEM. In this study, TEM images of WT mice mainly containing rod 
POS were used to establish an ultrastructural quantification 
measurement for alignment of POS membranes. Single POS were 
analyzed using the custom-written MATLAB code QuaPOS-TEM to 
extract the orientation of membranes, their coherency (alignment), 
and dominant direction. Manual selection of POS as separate ROIs 
was performed before automated analysis by QuaPOS-TEM using 
ImageJ. Ideally, the automated selection of ROIs should be used for 
the generation of unbiased datasets. However, currently, there are no 
appropriate techniques established to perform instance segmentation 
on EM images, especially in the case of highly crowded structures 
(Aswath et al., 2023). Deep learning approaches such as convolutional 
neural networks have emerged as the preferred option for automated 
feature extraction and segmentation in EM data, as reviewed by 
Aswath et al. (2023). However, they state that “instance segmentation 
of apposing organelles, especially when the organelles contain 
structures that are similar to their membranes,” is still challenging 
(Aswath et al., 2023). POS consist of layers of electron-dense and 
electron-thin regions created by the typical stacking of membranes. 
This hampers POS segmentation in an automated way and should 
be addressed in future studies.

In this context, it might be helpful to combine the methods of 
QuaPOS-LM and QuaPOS-TEM to select regions of interest by 
correlative light and electron microscopy (CLEM). However, for the 
two techniques shown here, different sample preparation methods 
were used (cryostat sections vs. epoxy resin sections), which rules out 
a correlative workflow. Alternatively, an on-section immunolabeling 
approach using methacrylate or Tokuyasu cryosections could provide 
a correlative workflow (Eberle et al., 2012; Fabig et al., 2012; Santos-
Ferreira et al., 2015; Völkner et al., 2021, 2022), but the membrane 
contrast would be either weak (methacrylate, lipids not fixed with 
osmium and therefore partially extracted) or inverted (Tokuyasu 
cryosectioning), rendering the adaptation of the analysis methods 
shown here difficult. Another option to combine QuaPOS-LM and 
-TEM in a correlative workflow would be to process the cryostat 
sections after LM imaging for TEM (Sousa et al., 2021). Although 
technically demanding, this method provides sufficient ultrastructure 
and similar contrast to the images presented here (Sousa et al., 2021, 
unpublished data).

During the development of the QuaPOS-TEM code, different 
parameters were tested to optimize analysis. The code 
QuaPOS-TEM was optimized for our application. It is important to 
note that it can be adapted for other applications to analyze, for 
example, images of different resolutions. However, a calculation of 
parameters and adjustment at the appropriate position in the 
MATLAB code would be required to be comparable to the presented 
analyses (e.g., for images with a resolution of 575 pixels = 1 μm, dsG 

were plotted as polar histograms (red outlines) respecting the 180-degree symmetry and showed the computed angle of the global coherency (thick 
orange line). The polar histogram of the “chaotic” (E′) and “stacked packages” (G′) POS showed a variety of different coherency directions, while the 
“partly stacked” POS (F′) and “stacked” POS (H′) corresponded to (more) narrow distributions of coherency angles. (I–L) Several ROIs of RhoKO, rd19, 
and WT were analyzed automatically on selected TEM images. Mean local coherency, global coherency, and the angle of global coherency were 
retrieved, and the ratio of global to local coherency was calculated per ROI. (J–L) Plots show values of individual ROIs (mean  ±  SEM, n  =  1–2 with 19–
22 ROIs each). One-way analyses of variance revealed significant dependency on mouse line for all analyzed measures (one-way ANOVA followed by 
a post-hoc Tukey test, * p  <  0.05, ** p  <  0.01, *** p  <  0.001, ****  <  0.0001).

FIGURE 6 (Continued)
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or dsO with factor 2, or a local box radius of 24 pixels would need 
to be used).

During the preparation of ultrathin sections of the retinal tissue 
for TEM, the introduction of cutting artifacts could especially cause 
problems regarding proper POS morphology. Whereas partial 
sectioning could influence measurements about POS size, the 
established QuaPOS-TEM method is independent from that. Hence, 
it might be preferred to measure POS volume, length, diameter, and 
size on serial block-face EM images rather than conventional 
TEM. Here, regions were selected where the RPE was closely attached 
to the POS for imaging. POS with obvious interruptions were 
excluded during the manual selection of ROIs. Additionally, it needs 
to be considered that the membrane structure was influenced by the 
fixative used during tissue preparation (Ding et al., 2015). Given such 
typical variations due to tissue preparation and sectioning, it is of 
utmost importance to increase sample size and thus make use of 
automated analysis.

After orientation analysis of grayscale images, global coherency 
and mean local coherency measures resulted in values between 0 and 
0.7. The local coherency was used to quantify the alignment of 
membrane stacks in the vicinity, which resulted to be higher than the 
global coherency for most ROIs, especially when an ROI contained 
several regions that are each well aligned within itself but less aligned 
to each other. The box size for local alignment was chosen in order to 
span two to three membrane layers having a thickness of 0.02–
0.03 μm each (Carter-Dawson and Lavail, 1979; Molday and Moritz, 
2015; manually testified in a selection of images, data not shown). 
Similar trends were found for box sizes of half or double the size (data 
not shown). However, different box sizes can be  used in other 
applications by manually changing the MATLAB code. Notably, 
we did not observe the maximum value of 1 for neither global nor 
mean local coherency in any sample. This was expected as it would 
indicate perfect alignment within a POS and within the complete 
patch of 25 × 25 pixels in size.

Finally, QuaPOS-TEM was applied as a tool for quantifying 
defects in POS membrane formation and disc orientation in two 
inherited retinal degeneration mouse lines at 1 month of age. Indeed, 
significantly decreased local and global coherency for both the rd19 
and RhoKO mouse models were detected. In the RhoKO model, the 
POS morphology was affected stronger by lower mean local 
coherency. This analysis example proved applicability of 
QuaPOS-TEM and paves the way for investigating degenerative 
processes of POS quantitatively on an ultrastructural level in various 
disease models and over time.

5 Conclusion

In conclusion, automated image segmentation on cryosections 
stained for S-opsin by a classifier based on machine learning 
(QuaPOS-LM) and analysis of the orientation of membrane stacks 
(QuaPOS-TEM) allow robust quantitative evaluation of POS formation 
and quality. Applying both methods, developmental and degenerative 
processes were successfully evaluated in the retina of WT mice and 
three retinal degeneration mouse models, respectively, using both LM 
and TEM images. The presented unbiased approaches are useful for 
in-depth analysis of POS in developmental studies, for disease 
modeling, or after therapeutic interventions affecting photoreceptors.
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SUPPLEMENTARY FIGURE S1

Analysis of POS with LM and TEM. (A) Representative images of light 
microscopy images stained with the cone POS marker S-opsin (magenta), 
the pan-POS marker Peripherin (green), and DAPI (gray) from P4–P24. 
Peripherin+ labels were present from P6, while S-opsin+ POS were present 
from P8 onwards. Both markers indicated a change of POS number, size, and 
morphology throughout postnatal development (scale bar = 50 μm). (B, B′) 
Ultrastructural investigation of POS using TEM indicated changes in 
membrane stack organization throughout postnatal development. 
Unorganized POS membrane stacks become present around P8. POS 
became more frequently with rising age and indicated a change in their 
membrane stack organization over time.

SUPPLEMENTARY FIGURE S2

Different image operations were used by QuaPOS-LM. (A) Prior to the 
application of QuaPOS-LM the image dataset was normalized. The 
operations included a background subtraction using a top-hat-filter and 
normalization of the intensity based on the maximum pixel value found in 

the image (scale bar = 10 μm). (A′) The normalized images were filtered by 
the random forest classifier. The classifier can choose from three different 
filter operations including a Gaussian blur filter (Gaussian), a difference of 
Gaussian blur filter (DoG), or a Laplace box of Gaussian blur filter (LoG), all 
with a respective sigma of 1. (B) Statistics of the random forest classifier 
showed the usage of each filter by the model. (C) Problems of the random 
forest classifier: Sometimes POS, predominantly in older postnatal ages, are 
predicted as 1 label (magenta arrowheads; scale bar = 25 μm).

SUPPLEMENTARY FIGURE S3

Quantification of POS using QuaPOS-LM showed a change in morphology 
and number over time. (A) Heatmap representation of Pearson’s R correlation 
coefficients showed the relationships of all features with each other. (A′) 
Correlation vector of the age showed which features correlate with the 
postnatal age. Different size features revealed the highest Pearson’s R 
correlation coefficients. Among them were the summed POS volume and 
bounding box height. Average and boxplot representation of the (B, B′) POS 
Feret diameter, (C, C′) minimum intensity, and (D, D′) sphericity showed 
changes throughout postnatal development (n  =  3–4, N = 1, One-way 
ANOVA followed by a post-hoc Tukey test, * < 0.05, ** < 0.01, *** < 0.001). 
Whiskers of the boxplots indicate the 1.5 interquartile range. (E, F, G, and H) 
Heatmap annotation of selected features at two different timepoints 
throughout postnatal development showed a visual representation of the 
POS change observed (scale bar = 25 μm).

SUPPLEMENTARY FIGURE S4

Cone POS are impaired in Cpfl1 mice. Direct comparison of age-matched 
(A) C57BL/6JRj (WT) and (B) Cpfl1 mice indicated a reduction in cone POS 
number as well as impaired morphology in adult Cpfl1 mice (scale bar = 
50 μm).

SUPPLEMENTARY FIGURE S5

Coherency analysis of POS membranes during postnatal development of 
wild-type mice by QuaPOS-TEM. (A to A″, B to B″, C to C″, D to D″, E to E″) 
On selected grayscale TEM images of C57BL/6JRj (WT) retinas from P8 to 
P20 ROIs were selected manually before the orientation and coherency 
fields were calculated. Scale bar = 5 μm. (F, G, H) Whole images were 
analyzed automated and mean local coherency, global coherency and the 
ratio of global to local coherency were retrieved for all selected ROIs. Values 
were averaged per biological replicate (mean ± SEM, n  =  2–3 with 12 to 30 
ROIs each). One-way analyses of the variance revealed significant 
dependency on postnatal age for the ratio of global to local coherency 
(n  =  2–3, One-way ANOVA followed by a post-hoc Tukey test, * p  < 0.05, ** 
p  < 0.01, *** p  < 0.001, **** < 0.0001).

SUPPLEMENTARY FIGURE S6

Coherency analysis by QuaPOS-TEM of POS membranes in the degeneration 
mouse models RhoKO and rd19. (A, B, E, F, G) Disturbed POS morphology 
was observed in RhoKO and rd19 retinas when compared to WT mice using 
TEM images at 1 month of age. Scale bar = 0.5 μm (A, B) and 5 μm (E, F, G). 
POS of RhoKO mice contained membrane “vesicles” (A). POS of rd19 mice 
contained “partly stacked” of membranes (B). (A′, A″, B′, B″) Within selected 
ROIs (yellow contour) the orientation of the membranes was tracked as 
orientation field (blue sticks) and their coherency was computed. Local 
coherencies were visualized as thin red sticks of a certain length and angle 
and emphasized by background color (A″, B″). Global coherencies were 
shown as thick red sticks (A″, B″). (C, D) Density functions revealed the 
distribution of local coherencies (red areas) and the resulting mean local 
coherency (thick red line) and global coherency (thick orange line). (C′, D′) 
The directions of local coherencies within each ROI were plotted as polar 
histograms (red outlines) respecting the 180-degree-symmetry and showed 
the computed angle of the global coherency (thick orange line). (H, I, J, K) 
Several ROIs of RhoKO, rd19 and WT were analyzed automated on selected 
TEM images. Mean local coherency, global coherency and the angle of 
global coherency were retrieved and the ratio of global to local coherency 
was calculated per ROI. Values were averaged per biological replicate (mean 
± SEM, n  =  1–2 with 19 to 22 ROIs each).
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