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Ubiquitination is one of the most conserved post-translational modifications

and together with mRNA translation contributes to cellular protein homeostasis

(proteostasis). Temporal and spatial regulation of proteostasis is particularly

important during synaptic plasticity, when translation of specific mRNAs requires

tight regulation. Mutations in genes encoding regulators of mRNA translation

and in ubiquitin ligases have been associated with several neurodevelopmental

disorders. RNA metabolism and translation are regulated by RNA-binding

proteins, critical for the spatial and temporal control of translation in

neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms

in neurons, with numerous ubiquitination events described in splicing factors

and ribosomal proteins. Here we will explore how ubiquitination regulates

translation in neurons, from RNA biogenesis to alternative splicing and how

dysregulation of ubiquitin signaling can be the underlying cause of pathology in

neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose

that targeting ubiquitin signaling is an attractive novel therapeutic strategy for

neurodevelopmental disorders where mRNA translation and ubiquitin signaling

are disrupted.

KEYWORDS

ubiquitin, translation, splicing, ribosome, neurodevelopmental disorders, FMRP, UBE3A

Introduction

Protein abundance is regulated by the coordination of synthesis and degradation, and

these two processes sculpt the molecular architecture of a neuron during development and

plasticity. The fate of proteins within cells is directly regulated by ubiquitination. This post-

translational modification involves the covalent attachment of a small protein, ubiquitin,

to target proteins. Ubiquitination is a cascade of events that start with the activation of

ubiquitin by the E1 activating enzyme. Active ubiquitin is then transferred to the E2

conjugating enzyme, which is in charge of interacting with the E3 ligase to ultimately

transfer ubiquitin into E3 ligase substrates. Mono-ubiquitination of proteins can regulate

cellular processes such as gene transcription, signal transduction and DNA damage

response by altering protein localization, protein-protein interactions or endocytosis

(Greer et al., 2003; Pelzer et al., 2013; Fukushima et al., 2015; Zhou et al., 2017; Wang

et al., 2019). In addition, ubiquitin can generate different types of chains via its seven lysine

residues, and each type of poly-ubiquitination (N1, K6, K11, K27, K29, K33, K48, and K63)

will have a distinct intracellular role. For instance, the K48 chain-type has been widely

described to target proteins into degradation by the Ubiquitin Proteasome System (UPS;

Thrower et al., 2000), while K63 ubiquitin chains can drive changes in protein localization
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or regulate endocytosis and innate immune response (Richard et al.,

2020; Madiraju et al., 2022; Saeed et al., 2023).

Ubiquitin signaling has been widely described to be involved

in receptor trafficking, synapse formation (Haas and Broadie, 2008;

Iwai, 2021; Lei et al., 2021; Pérez-Villegas et al., 2022; Dikic and

Schulman, 2023) and remodeling (Mei et al., 2020) by regulating

the turnover of synaptic proteins at synapses (Tai and Schuman,

2008; Bingol and Sheng, 2011). Disruption of any ubiquitin-

mediated pathways leads to aberrant neuronal morphology,

connectivity or synapse formation, which are hallmark features

of neurodevelopmental disorders (NDDs; Louros and Osterweil,

2016; Batool et al., 2019).

Neurodevelopmental disorders affect more than 15%

of children worldwide (Romero-Ayuso, 2021), and include

intellectual disability (ID) and autism spectrum disorder (ASD;

Ismail and Shapiro, 2019). Large-scale sequencing studies

contributed to the understanding of NDDs pathophysiology

by unveiling their genetic etiology. More precisely, these

studies report mutations in genes involved in synaptic function

and structure, transcriptional and translational regulators

(De Rubeis et al., 2014; Krumm et al., 2014; de la Torre-

Ubieta et al., 2016), as well as mutations in genes involved

in ubiquitin-dependent protein degradation (Louros and

Osterweil, 2016; Trost et al., 2022). Several components of

the UPS implicated in NDDs, also play crucial roles in RNA

synthesis and splicing (Cho et al., 2014; Jewell et al., 2015;

Saez et al., 2020; Pitts et al., 2022). Therefore, there is a

growing interest in exploring the crosstalk between protein

synthesis and protein degradation in the context of NDDs. This

mini-review aims to compile all pertinent information on the

regulatory role of ubiquitination in RNA biogenesis in the context

of NDDs.

Ubiquitin ligases as new players in
translation control

Neurons maintain efficient crosstalk between protein

translation and degradation to adjust to their physiological

needs. Among the intermediaries between protein synthesis

and degradation pathways, ubiquitin ligases emerge as central

regulators. Ubiquitination of ribosomal proteins has been described

over three decades in a seminal paper showing that ubiquitination

regulates ribosomal proteins abundance and that the assembly

into the ribosome is facilitated by ubiquitin (Finley et al., 1989).

More recent studies showed that K63-linked ubiquitination of

ribosomal proteins and translation elongation factors promote

translation in yeast (Silva et al., 2015). Similarly, in human cells

ribosomal proteins were found to be ubiquitinated after the

inhibition of translation (Higgins et al., 2015). Moreover, Culin-3,

an E3 ubiquitin ligase previously implicated in NDDs (De Rubeis

et al., 2014), has been involved in the formation of a ribosome

modification platform that alters the translation of specific mRNAs

(Werner et al., 2015). Ubiquitination can also regulate translation

is by modulating translational surveillance pathways. When

aberrant nascent polypeptides are stalled in ribosomes during

translation and ribosomes collide, the ribosome quality control

(RQC) surveillance pathway is activated, in which ubiquitinated

ribosomal subunits are recognized to assist into the ribosome-

splitting event (Matsuo et al., 2023). Although dysfunction of

RQC is suggested to elicit neurological disorders, the molecular

mechanisms involved remain poorly understood. Makorin ring

finger protein (MRKN1), a ubiquitin ligase previously shown to

control local translation in neurons during synaptic plasticity

(Miroci et al., 2012), was recently implicated in the RQC pathway,

promoting ribosome stalling at poly(A) sequences and starting

RQC by ubiquitinating RPS10 and other RQC factors (Hildebrandt

et al., 2019). Interestingly, MRKN1 is member of a family of

ubiquitin ligases that also binds RNA, known as the RNA-binding

ubiquitin ligases (RBULs). So far, over 30 RBULs have been

identified (Thapa et al., 2020) but their function in the brain

remains elusive.

Although previous studies demonstrate a direct link between

ribosomal protein ubiquitination and changes in translation, the

role of ribosomal protein ubiquitination in neurons hasn’t been

explored. The majority of ribosomal proteins is produced in the

nucleus where ribosomes are assembled, but the enrichment of

mRNAs of ribosomal proteins in dendrites and axons is a long-

standing observation (Moccia et al., 2003). Proteomic studies

show that over 80% of ribosomal proteins are ubiquitinated in

neurons (Schreiber et al., 2015; Sun et al., 2023), 20 of those

putatively ubiquitinated in synaptic fractions (Na et al., 2012;

Table 1). Recent studies confirmed that ribosomal proteins are

locally synthesized and incorporated into existing ribosomes in

axons (Shigeoka et al., 2019) as well as in dendrites (Fusco et al.,

2021). Both studies show that a subset of ribosomal proteins is

more frequently incorporated or exchanged intomature ribosomes.

Interestingly, a fraction of the exchanging ribosomal proteins is also

ubiquitinated in neurons (Table 1; Na et al., 2012; Schreiber et al.,

2015), suggesting an additional layer of regulation of ribosomal

protein exchange in neurons that may be essential to regulate local

protein synthesis in response to synaptic plasticity. Whether these

processes are affected in NDDs is an open question, but since

changes in ribosome abundance have been reported in several

NDDs (Griesi-Oliveira et al., 2020; Seo et al., 2022), it would

be interesting to investigate if their ubiquitination is aberrant in

NDDs, and if that can be targeted to normalize ribosome levels and

translation rates.

Alternative splicing regulation by
ubiquitin and its dysfunction in NDDs

Most protein-coding genes in humans are transcribed as pre-

mRNAs that contain a series of exons and introns. Following

transcription, the removal of introns during the process of

pre-mRNA splicing is required before the nascent transcript is

translated into a protein. Alternative splicing generates multiple

proteins from a single pre-mRNA by including and/or excluding

alternative exons, thereby diversifying cellular proteomes (Han

et al., 2011; Wang et al., 2015). This process is particularly

important in neurons that rely on the function of heavily

spliced genes such as Neurexins, n-Cadherins, and calcium-

activated potassium channels that can produce hundreds of

mRNA isoforms through alternative splicing. Indeed, some NDDs

occur when alternative splicing goes awry. For example, extensive
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TABLE 1 Several components of the splicing machinery as well as ribosomal proteins are ubiquitinated in the brain.

Cellular compartment Protein names References

Ribosome RPL11, RPL12∗ , RPL13, RPL13A, RPL14∗ , RPL15, RPL17, RPL18, RPL18A, RPL24, RPL26, RPL27,
RPL27A, RPL3, RPL32, RPL34, RPL35, RPL39, RPL4, RPL5, RPL6, RPL7, RPL7L1, RPL8∗ , RPL9, RPS10,
RPS11, RPS14, RPS15, RPS15A, RPS16, RPS19∗ , RPS2, RPS23, RPS25∗ , RPS27, RPS27A, RPS29, RPS3∗ ,
RPS3A, RPS5, RPS6, RPS7, RPS8, RPS9

Sun et al., 2023

RACK1∗ , RPL19, RPL23A, RPL30∗ , RPS20, RPS21, RPSA Na et al., 2012

RPL10A, RPL28∗ , RPL29, RPL31, RPL35A, RPL38∗ , RPL7A, RPS13∗ , RPS17, RPS18∗ , RPS24, RPS26,
RPS4X

Schreiber et al., 2015

Spliceosome CDC5L, DDX46, EIF4A3, LUC7L3, PRPF19, PRPF3, PRPF8, RPL11, RPL18A, RPL39, RPS23, RPS29,
SF3A3, SF3B6, SMU1, SNRNP200, SNRNP70, SNRPA1, SNRPB2, SNRPF

Sun et al., 2023

CWC22, CWC27, DDX23, IK, RBMXL2, SF3B1, SNRNP35, SNRPD3, SNRPE, SNRPN, SRRM2, USP39,
YBX1

Schreiber et al., 2015

∗Ubiquitination events found in synaptic fractions.

transcriptomics studies using post-mortem brain tissue from

ASD patients have shown pervasive mis-regulation of microexon

splicing (Irimia et al., 2014; Chanarat and Mishra, 2018; Su et al.,

2018).

The molecular machinery responsible for pre-mRNA splicing

is called the spliceosome complex. It is composed of five

small nuclear RNAs (U1, U2, U4, U5, and U6) pre-assembled

with proteins into small ribonucleoproteins (snRNPs), together

with hundreds of auxiliary proteins that help the spliceosome

recognize splice sites (Wassarman and Steitz, 1992; Zhou et al.,

2002; Matlin and Moore, 2007). High-throughput genetic studies

showed a possible link between ubiquitin ligases and the process

of pre-mRNA splicing. For instance, ubiquitin binds to the

highly conserved spliceosomal core protein PRPF8 via its C-

terminal domain (Grainger and Beggs, 2005; Bellare et al.,

2006, 2008). Additionally, the literature also suggests that

ubiquitination of other splicing factors may modulate spliceosomal

activity through reversible protein-protein interactions (Bellare

et al., 2008). For example, PRPF3 and PRPF31 undergo K63-

linked ubiquitination by an RBUL, PRPF19 (Chanarat and

Mishra, 2018), an essential step for spliceosomal activation

(Hogg et al., 2010). Ubiquitinated PRPF3 and PRPF31 then

bind PRPF8 and stabilize the tri-snRNP complex (Park et al.,

2016). As the splicing cycle progresses, PRPF3 and PRPF31

are deubiquitinated by USP4 and USP15, respectively (Song

et al., 2010; Das et al., 2017). Altogether, this shows that the

ubiquitination state of several components of the spliceosome

tightly regulate its assembly and activation, therefore affecting

splicing.

The regulation of the spliceosome by ubiquitination in

neurons is less elucidated, but proteomic studies identify several

ubiquitinated splicing factors such as PRPF3, PRP9, as well as the

RBUL, PRPF19 (Table 1). Considering that neurons express highly

spliced genes, dysregulated ubiquitination of the spliceosome could

have major consequences in neuronal development and function

and contribute to NDDs. Importantly, a recent study identified

mutations in three spliceosome factors in NDDs, including six

individuals who harbored mostly de novo heterozygous variants in

PRPF19. This study demonstrated that these pathogenic variants

lead to converging neurodevelopmental phenotypes, including, but

not limited to developmental delay, ID and autism (Li et al., 2024).

Ubiquitination of RNA-binding
proteins: contribution to NDDs

RNA metabolism is regulated at different stages by specific

RNA-binding proteins (RBPs). RBPs are responsible for mRNA

transport and translation regulation within dendrites and are

required for long-lasting forms of synaptic plasticity (Glock et al.,

2017). The loss of RBP function leads to numerous disorders,

including ASD, Fragile X Syndrome (FXS; Bhakar et al., 2012;

Zoghbi and Bear, 2012; Darnell and Klann, 2013; Lee et al., 2016;

Popovitchenko et al., 2016) and epilepsy (Lee et al., 2016).

Due to its significant role in translation regulation and

its impact on neuronal homeostasis, Fragile X messenger

ribonucleoprotein (FMRP) stands out as one of the most

extensively studied RBPs. Evidence suggests that FMRP is

transported into dendrites and synapses where it acts as a

central regulator of local translation (Darnell and Klann, 2013;

Schieweck et al., 2021). Additionally, FMRP has a dual role in

both RNA localization and translation; localizes to polyribosome

complexes and is well-documented for its role as a translational

repressor (Laggerbauer et al., 2001; Mazroui et al., 2002). Studies

of Fmr1 mutant models have revealed alterations in plasticity

and excitability in several brain circuits, as a consequence of

the excessive protein synthesis (Osterweil et al., 2013; Louros

et al., 2023). Deficiency of FMRP, the underlying cause of

Fragile X Syndrome, causes dysregulation of the translation of

mRNAs that bind to FMRP. Interestingly, the majority of FMRP

target mRNAs are less translated in the hippocampus (Ceolin

et al., 2017; Thomson et al., 2017; Sawicka et al., 2019; Sharma

et al., 2019; Seo et al., 2022) and this is reflected in the

synapse-enriched proteome of Fmr1 KO mouse (Louros et al.,

2023).

FMRP undergoes degradation primarily through the ubiquitin-

proteasome system (UPS), which is a major pathway for targeted

protein degradation in cells (Chanarat and Mishra, 2018; Ebstein

et al., 2021; Winden et al., 2023). Consistent with this, FMRP

undergoes regulation by ubiquitination, a tightly controlled process

that can be triggered by specific events such as dephosphorylation

at key sites such as S499 (Wilkerson et al., 2023). Various

factors contribute to this dephosphorylation, including activation

of PP2A by the activation of metabotropic glutamate receptors
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(Nalavadi et al., 2012). Additionally, developmental cues play a

crucial role during specific stages of development by regulating

dephosphorylation and subsequent ubiquitination of FMRP

(Schieweck et al., 2021). Once dephosphorylated, FMRP becomes

a target for specific E3 ubiquitin ligases such as APC/Cdh1,

and once ubiquitinated, it is targeted for degradation (Nalavadi

et al., 2012; Valdez-Sinon et al., 2020). FMRP is also known for

its role in mRNA-protein interactions within ribonucleoprotein

(RNP) granules, which are crucial for mRNA transport and

localization (Valdez-Sinon et al., 2020). Ubiquitination-induced

degradation of FMRP may disrupt these interactions, impairing

the transport and proper localization of mRNAs, thereby

affecting gene expression programs that are essential for normal

cellular function (Valdez-Sinon et al., 2020; Wilkerson et al.,

2023).

In addition to FMRP other RBPs related to NDDs are regulated

by ubiquitination. One example is the ELAVL family, which

undertakes essential functions across spatiotemporal windows in

brain development to help regulate and specify transcriptomic

programs for cell specialization (Mulligan and Bicknell, 2023).

Different components of this family have been related to ASDs,

behavioral abnormalities or seizures (Mulligan and Bicknell, 2023),

with ELAV2 showing a clear role in neurodevelopment and listed

by SFARI as a candidate gene for ASD. ELAV2 targets are also

involved in synaptic function and neurodevelopmental disorders

(Berto et al., 2016). Even though in the context of cancer, ELAV1

has been described to be ubiquitinated, facilitating its proteasome

mediated degradation and leading to an increase in the survival

rate of cells under heat-shock response (Daks et al., 2021), the

ubiquitination of this RBP has not been demonstrated in neurons.

RBFOX1 is another RBP strongly implicated in ASD. This protein

regulates both splicing and transcriptional networks in human

neuronal development (Fogel et al., 2012) and it has been found

to be ubiquitinated in Alzheimer’s disease post mortem human

brain tissue, particularly in axons, tangles and neuropil threads,

suggesting a role in axonal proteostasis (Fernandez et al., 2021).

Altogether, these evidences show that RNA binding proteins

are regulated by ubiquitination in the brain and despite lacking

detailed mechanisms it is possible that aberrant ubiquitination of

RNAbinding proteins contributes to the pathophysiology of NDDs.

Dysregulated proteostasis in NDDs:
new therapeutic opportunities

Dysregulation of translational represents a common endpoint

of familial and sporadic ASD-associated signaling pathways (De

Rubeis et al., 2014; Krumm et al., 2014). The identification of this

dysregulated pathway has been used to develop several therapeutic

strategies for FXS and other NDDs, however, due to the limited

success in clinical trials there is an urgent need for identification

of new pathways amenable for therapeutic development.

A recent development was the discovery of upregulated

protein degradation machinery in FXS, downstream of the

increased protein translation rates that characterize this disorder

(Louros et al., 2023). This study shows that the increase in

protein degradation is primarily a consequence of excessive

translation of proteasomal subunits and ubiquitin ligases in

excitatory neurons from Fmr1 mutant mice. Importantly,

pharmacological reduction of proteasome activity and ubiquitin

ligases was sufficient to normalize protein synthesis rates,

demonstrating the intricate relationship between translation and

degradation in FXS. This could be a consequence of modulating

ribosomal subunits turnover since the authors found ribosomal

subunits excessively targeted for degradation in synaptic enriched

fractions, possibly through increased ubiquitination rates.

Finally, this study found that increased proteasome activity

contributes to hyperexcitability and audiogenic seizures in

Fmr1 KO mice, and that this phenotype was corrected by

pharmacological and genetic manipulation of the proteasome

(Louros et al., 2023). This study opens the door to more

investigations into the dysfunction of ubiquitin signaling and

proteasomal degradation in other NDDs, and it demonstrates

that targeting ubiquitin signaling could be a new pathway for

therapeutic development.

One of the most studied ubiquitin ligases linked to

neurodevelopmental disorders is UBE3A, with loss of function

mutations causing Angelman syndrome (AS; Kalsner and

Chamberlain, 2015). AS is characterized by intellectual disability,

developmental delay, seizures, motor disruptions, and an

unusually positive demeanor (LaSalle et al., 2015). Many studies

have identified targets of Ube3a in mouse, rats and human

AS samples (Pandya et al., 2022) including some regulators of

protein synthesis. One interesting target of Ube3a is the mTOR

suppressor protein TSC2 (Zheng et al., 2008), directly involved

in the regulation of protein synthesis. Recent work suggests

that degradation of TSC2 following ubiquitination by Ube3a

may contribute to pathology, as treatment with the mTOR

inhibitor rapamycin rescued motor deficits and abnormal dendritic

branching in AS mutant mice (Sun et al., 2015). Furthermore,

lovastatin, previously shown to correct excessive protein synthesis

rates and seizures in FXS (Osterweil et al., 2013; Asiminas et al.,

2019), was also shown to correct seizures in the AS mouse

model (Chung et al., 2018), suggesting that protein synthesis

rates could be increased in the AS mutant mouse. This was

indeed confirmed in a recent study that found increased de

novo protein synthesis in the hippocampus of the AS mutant

mouse (Aria et al., 2023), as well as impaired autophagy that

when enhanced was able to ameliorate cognitive impairments in

AS mice.

Altogether, these findings show the intricate crosstalk

between ubiquitin signaling and translation in NDDs. Targeted

protein degradation technologies have emerged over 20 years

ago with potential for targeting undruggable protein targets.

PROTAC (proteolysis-targeting chimera) or molecular glue

(MG)-driven ternary complex formation with an ubiquitin

E3 ligase utilizes cells’ UPS to degrade target proteins. Several

such molecules have entered clinical development (Kong and

Jones, 2023). Recent clinical proof-of-concept for PROTAC

molecules against two cancer targets confirmed the successful

clinical targeting of proteins previously considered “undruggable.”

There are currently over 20 new PROTACs under clinical

development (Békés et al., 2022). The application of these

strategies to brain disorders offers several advantages and
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FIGURE 1

Ubiquitin signaling as a central regulator of RNA metabolism in the

brain. Ubiquitination regulates splicing, through regulation of the

spliceosome remodeling; RNA-binding protein abundance and

binding partners; translation rates through ribosomal protein

ubiquitination and the turnover rates of proteins in the brain.

Disruption of these pathways has been implicated in

neurodevelopmental disorders, therefore targeting the ubiquitin

signaling is a promising new therapeutic strategy.

challenges but recent studies have shown promise in the

context of neurodegenerative disorders [recently reviewed by

Farrell and Jarome (2021)] suggesting that this new therapeutic

avenue for NDDs could offer increased specificity and lower

off-target effects.

Conclusions and perspectives

Molecular analysis of patient-derived tissues andmousemodels

of the monogenic ID has shown widespread changes at the

epigenetic, transcriptional, and translational gene expression levels.

The interplay between changes at multiple levels is essential to

the pathophysiology of NDDs. Importantly, coordination between

the translational machinery, RBPs and the ubiquitin proteasome

system regulates dendritic proteostasis in response to neuronal

activity (Hanus and Schuman, 2013). Indeed, mutations in

components of these systems are associated with altered plasticity

and may underlie the pathogenesis of NDDs. Considering that

in several models of NDDs protein synthesis rates are affected

(Auerbach et al., 2011; Barnes et al., 2015; Aria et al., 2023),

ribosome abundance is increased and the ubiquitin proteasome

system is overexpressed (Seo et al., 2022; Louros et al., 2023), it

is pertinent to investigate the contributions of ubiquitin signaling

dysfunction to ribosome quality control and alternative splicing.

However, the isolation and identification of ubiquitinated proteins

under physiological conditions from in vivo tissues is a challenging

task, particularly in the brain, as the ubiquitinated proteins are

generally found at very low levels within the cells. Besides, the

fast kinetics at which some of the proteins conjugated with

ubiquitin are degraded (Ronchi and Haas, 2012), the action of the

deubiquitinating enzymes (Stegmeier et al., 2007) or the fact that

proteins might be modified with ubiquitin only in well-defined

temporal windows (Clute and Pines, 1999), make their analysis

even more challenging. Considering that ubiquitin signaling

modulates so many aspects of RNA biogenesis that are affected

in NDDs (Figure 1), we believe it is vital to develop methods to

improve the identification of dysregulated ubiquitination in the

brain to accelerate the development of novel therapeutic options

for NDDs.
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