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Advances in aqueous humor
proteomics for biomarker
discovery and disease
mechanisms exploration: a
spotlight on primary open angle
glaucoma
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Institute of Translational Proteomics and Core Facility Translational Proteomics,
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Altered protein levels in the aqueous humor (AH) may be a valuable source of

novel biomarkers in neurodegenerative retinal disease. The proximity of this

body fluid to the disease focus, and its corresponding enrichment for tissue

specific proteins, renders it an excellent matrix to study underlying molecular

mechanisms. Novel proteomic methods accordingly hold large potential for

insight into pathologies based on the composition of the AH proteome,

including primary open angle glaucoma (POAG). Recent mass spectrometry-

based studies use novel approaches to tackle the challenges arising from

the combination of low available sample volume and protein concentration,

thereby increasing proteome coverage. But despite significant improvements

in mass spectrometry (MS), a different class of proteomic technologies is

poised to majorly impact the analysis of ocular biofluids. Affinity proteomic

workflows, having become available commercially recently, have started to

complement data obtained by MS and likely will grow into a crucial tool

for ophthalmological biomarker research. This review highlights corresponding

approaches in proteome analysis of aqueous humor and discusses recent

findings on alterations of the AH proteome in POAG.
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Introduction

The aqueous humor (AH) is an ocular fluid supplying cells and tissues of the anterior
chamber with nutrients. It is produced by the ciliary epithelium and drained via the
trabecular meshwork (TM) and Schlemm’s channel. AH liquid biopsies are frequently
performed during surgical intervention such as trabeculectomy or cataract surgery. The
liquid may, however, also be safely obtained using hydro-dissection cannulas, enabling
routine sampling (Kitazawa et al., 2017). AH contains a large number of proteins specific
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to ocular tissue and is thus exquisitely suited to screen for molecular
changes in the eye. Despite being separated from blood by the
blood-aqueous-barrier (BAB), proteins typically expressed in other
organs may also be found in the AH (Coca-Prados, 2014; Yavrum
et al., 2021; Wolf et al., 2023). This fact increasingly directs attention
toward the AH proteome in the context of clinical biomarker
research. Additionally, AH proteomics offers insight into the
pathophysiology of neurodegenerative retinal disease. This review
summarizes current advances in AH proteome investigation and
their relevance to primary open angle glaucoma (POAG), as well as
introduces relevant methodology.

Deciphering the AH proteome

Aqueous humor is collected in limited volumes of ∼50–
150 µL per sampling with low protein concentrations of 0.1–
0.6 µg/mL (Chowdhury et al., 2010; Bennett et al., 2011; Adav
et al., 2018; Nikhalashree et al., 2019). This low protein yield
renders proteomic analysis of AH challenging. Additionally, a
high dynamic range of protein concentrations in AH (7 orders of
magnitude), implies challenges similar to those faced in plasma
proteomics (Yu et al., 2020). In AH, just 17 proteins constitute two
thirds of the total protein content, with albumin alone accounting
for approximately 37% (Figure 1). The remaining third again is
dominated by 27 medium abundance proteins and low abundant
proteins only represent 1% of the total (Yu et al., 2020). This protein
concentration challenge is frequently tackled using depletion of
high abundant proteins to enable detection of low abundance
components (Lee et al., 2022). Functionally, AH proteins are mainly
involved in immune response, inflammation, coagulation as well as
energy metabolism (Yu et al., 2020), and it is considered strongly
influenced by sex and ethnicity (Perumal et al., 2017; Haq et al.,
2021; Vashishtha et al., 2023). General challenges in ocular liquid
proteomics have recently been reviewed (Wolf et al., 2024).

Although AH may be safely sampled via paracentesis (Kitazawa
et al., 2017), samples are usually collected during surgery. This
commonly implies a lack of healthy controls, which is why
AH samples from cataract patients frequently serve as controls.
Moreover, treatment naive patients are often unavailable, further
impeding unbiased analysis of AH proteomes. Treatments to
reduce intra ocular pressure (IOP), commonly relying on timolol
or xalatan, may also impact the AH proteome without appropriate
control. These compounds were shown to in particular prevent
complement activation and further protein level effects cannot be
excluded (Blondin et al., 2003; Adav et al., 2018).

Current data bases cataloging the AH proteome contain 827
to 1,888 proteins identified using MS. Prominent resources are
the EyeOme project under the auspices of the human proteome
organization (HUPO) (Ahmad et al., 2018) and the recently
released aqueous humor protein data base (AHP-DB), offering
proteomic data deriving from 307 AH samples (Lee et al., 2024).
A meta database combining data from multiple previous studies
also exists (Yu et al., 2020). Beyond these catalogs, individual
studies using label-free liquid chromatography-tandem MS (LC-
MS/MS) in age-related macular degeneration (AMD) and Marfan
Syndrome have reported proteome coverage in excess of 2,300
proteins (Coronado et al., 2021; Shi et al., 2024).

Although 2D-LC-MS/MS shotgun proteomics delivered good
results in identifying 800+ protein groups in AH (Yu et al.,
2020; Liu X. et al., 2021), data-independent acquisition (DIA) is
increasingly applied in clinical proteomics and slowly replaces the
more traditional data-dependent acquisition (DDA) approaches
(Bader et al., 2023). By acquisition followed by informatic
deconvolution of chimeric fragmentation data of all precursor
ions within a defined mass-over-charge (m/z) window, DIA offers
superior analysis depth and coverage. DDA in contrast only
fragments and sequences defined precursor ions based on their
intensity. Prefractionation of AH samples using high-performance
liquid chromatography (HPLC) followed by MS/MS analysis in
DIA mode have vastly increased the number of detectable proteins
(Shi et al., 2024). Zhang and colleagues recently introduced
a Streamlined Workflow based on Anchor-nanoparticles for
Proteomics (SWAP) method in conjunction with DIA-MS, which
identified ∼1,400 proteins from a minute 5 µL of sample (Zhang
et al., 2023). The nanoparticles employed are functionalized
with diverse surface coatings, allowing for differential protein
enrichment from AH samples, and thus providing improved
coverage of low abundant proteins. The approach is similar to the
commercially available Seer Photograph platform (Seer, 2023).

Mass spectrometry (MS)-based AH proteomics, offering
untargeted protein identification and high specificity, represents
an outstanding asset. Achieving comprehensive protein coverage,
however, commonly necessitates the depletion of high-abundant
proteins and sample pre-fractionation. Consequently, and due to
co-depletion, loss through surface coating in complex workflows
and similar effects, detection of biomarkers in the low-abundant
ranges is rendered challenging and inefficient.

The protein coverage of modern affinity-based assay platforms
thus currently outperforms the analytical depth of state-of-the-art
MS workflows in complex body fluids by a wide margin. Novel
affinity proteomics discovery platforms, such as SomaScan 11k and
Olink Explore HT, enable the analysis of thousands of protein
targets in a semi-quantitative manner—without any sample pre-
processing. While being largely developed for the analysis of blood-
derived samples, the platforms offer access to sample matrices
beyond those, including saliva (Scholtz et al., 2020), urine (Daza
et al., 2023), ascites (Finkernagel et al., 2019) and many other bodily
fluids including AH and vitreous humor (VH) (Lamy et al., 2020;
Peng et al., 2023; Wolf et al., 2023).

As suggested by its moniker, the new SomaScan 11K platform,
developed by Somalogic, provides ∼11,000 protein targets,
encompassing half the human proteome, and provides the deepest
coverage of all currently available methods (SomaLogic, 2024).
For protein binders, SomaScan utilizes enhanced aptamers, short
oligo single strand DNA (ssDNA) nucleotides, named slow off-
rate modified aptamers (SOMAmers). Chemically modified to
enhance affinity to protein targets, SOMAmers are conjugated
to a fluorophore and a biotin tag via a photocleavable linker.
Bound to streptavidin beads they capture proteins from the
sample. Following biotinylation of captured proteins and cleavage
of SOMAmer/protein complexes from the beads using UV light,
the complexes are recaptured on fresh beads via the biotinylated
proteins and SOMAmers eluted and analyzed on a microarray
chip with signal intensity correlating to protein concentration.
A first study using the SomaScan platform for ocular fluid analysis
was conducted by Pessuti et al. (2023). AH from 28 patients
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FIGURE 1

Protein abundance in the AH proteome based on mean PSM (peptide-to-spectrum matching) counts from AHP DB (Lee et al., 2024). The AH
proteome is mostly composed of 17 high abundant proteins, representing 2/3 of the whole AH proteome (left). Of these, albumin (ALB) alone
accounts for ∼37%. Half of the remaining third is represented by 27 mid-abundant proteins (right). The remaining 1,640 proteins from the AHP DB
together account for only 1% of the total AH proteome, including many proteins differentially expressed in glaucoma (e.g., APOD, APOC3, GSTP1,
NWD1).

with infectious uveitis and 29 samples from non-infectious uveitis
patients was analyzed in comparison to 35 AH samples from
cataract patients, using the SomaScan v3 Assay, identifying a
minimum of 4,074 proteins across all groups.

An updated version of the SomaScan assay (v4.1) comprising
6,345 protein targets was also recently applied to analyze AH and
VH liquid biopsies (Wolf et al., 2023). The authors were able to
detect 5,953 proteins in the AH of healthy subjects, 5,887 of which
replicated paired RNA-seq findings. This represents a significant
improvement in analysis depth as compared to existing LC-MS/MS
approaches. It is noteworthy, that the target menu of SomaScan
v4.1 lacks coverage of various eye specific targets (Wolf et al., 2024),
rendering likely an even higher number of protein detections from
the sample type when subjected to the novel 11k panel.

A strong competitor in large panel affinity proteomics is the
Swedish company Olink. Its Olink Explore HT platform covers
approximately 5,400 protein targets and is based on proximity
extension assay (PEA) technology (Olink, 2024). PEA uses two
antibodies binding to distinct epitopes on a target protein. The
antibodies covalently carry DNA probes that hybridize when
in proximity. PCR amplifies the double-stranded sequences for
readout using qPCR or Next-Gen Sequencing. Target protein-
specific DNA barcodes comprised within the amplicon correlate
with protein concentration, enabling relative protein abundance
measurements. PEA offers minimal cross-reactivity, as well as high
specificity and multiplexing capacity across a broad dynamic range,
rendering it ideal for high-throughput analyses. While the latest
Explore HT platform has yet to be applied to AH proteomics,
the method has proven applicable using smaller panels and shown
good detectability of AH proteins, as ∼70% of proteins form
different Olink Target panels were detected in at least 30% of
patients (Wilson et al., 2023). Olink affinity proteomic data from
AH liquid biopsies was further demonstrated to be valuable for
the prognosis of metastasis in uveal melanoma, an intraocular

malignancy, rendering disease state accessible even in the absence
of tumor biopsies (Wierenga et al., 2019; Peng et al., 2023).
Here both the Olink Target Immuno-Oncology panel, targeting
90 marker proteins (Wierenga et al., 2019), as well as the more
comprehensive Explore 1.5k panel, covering ∼1,500 protein targets
(Peng et al., 2023) where employed to analyze AH samples. The
studies identified new potential biomarkers for disease prognosis
as well as stratification of metastasis, and highlight the efficacy
of PEA-based methodology to comprehensively profile the AH
proteome for biomarker discovery and mechanistic insight into the
underlying disease.

Correlation of serum and AH
proteins: crossing the
blood-aqueous-barrier?

Even though sampling of AH via paracentesis is considered
safe (Kitazawa et al., 2017), protein biomarker analysis for
routine diagnostics using blood-derived samples is even more
so. Possible correlations between AH and blood proteins are
thus of particular interest. The eye is an immune-privileged site,
isolated from immune cells and other molecules from the blood-
circulation by the blood-retina- and blood-aqueous-barrier (BRB,
BAB) in protection from inflammation induced tissue damage.
Nonetheless, passage of proteins through ocular barriers is possible
and pathological conditions like elevated IOP may weaken them
and facilitate reciprocal molecular transfer (Plange et al., 2012).
Only limited overall correlation was, however, found between
AH and serum proteins in patients suffering from various retinal
disorders (Wu et al., 2020; Wilson et al., 2023). While complement
component proteins C3 and C3a detected in AH did also not
correlate well with serum levels, their ratio, was found to correlate
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exceptionally well between the two fluids (Hubens et al., 2021).
Taken together, these observations, however, suggest insufficient
suitability of AH biomarkers in blood-derived samples, limiting
their suitability in routine diagnostics.

Another promising sample source for analyzing disease related
proteome alterations and gaining insight into molecular disease
mechanisms is the VH. Its proximity to the retina and optic nerve
head renders it appealing for proteomic analysis. Unfortunately,
obtaining samples of VH carries a significant risk for complications,
resulting in limited availability for clinical studies. In contrast
to limited exchange with blood via the BAB, however, studies
have demonstrated the diffusion of vitreous proteins into the AH,
alongside a significant correlation between the proteomic profiles
of AH and VH (Wu et al., 2020; Wilson et al., 2023). In extension
of that work it was only recently demonstrated that 87% of VH
proteins were also detected in AH (Wolf et al., 2023). This provides
an opportunity to examine differential protein expression linked to
pathological changes in both the anterior and posterior portions
of the eye through AH, thus potentially rendering accessible
indicators of retinal neurodegeneration.

Novel insight into glaucomatous
changes of the aqueous humor
proteome

Glaucoma is an umbrella term for a variety of conditions with a
heterogenous presentation. They have in common a characteristic
loss of retinal ganglion cells (RGCs) and associated optic nerve
damage. Elevated intraocular pressure (IOP) is strongly correlated
with, but not solely causative of glaucoma (Leske et al., 2001;
Le et al., 2003). Untreated ocular hypertension (OHT) converts
into glaucoma with a probability of 9.5% within five years of
diagnosis (Kass et al., 2002). On the other hand, about one third
of glaucomas are classified as normal tension glaucoma (NTG),
never developing an increased IOP (Gutteridge, 2000). Occurring
damage to the optic nerve head is hypothesized to be related to
alterations in the translaminar pressure difference (TLPD) caused
by alterations in CSF-mediated intracranial pressure (ICP) (Jonas
et al., 2015). Abnormally low ICP and high IOP are thought to
share similar pathogenic mechanisms affecting the lamina cribrosa.
In fact, ICP is frequently reported to be lower in NTG compared
to high tension glaucoma and healthy controls (Berdahl et al.,
2008; Ren et al., 2010; Siaudvytyte et al., 2014). Accordingly, TLPD,
referring to the pressure gradient between IOP and ICP (IOP minus
ICP), is significantly higher in NTG patients (Ren et al., 2010;
Siaudvytyte et al., 2014). Currently, IOP is the only risk factor
accessible to treatment. Lowering IOP may stall disease progression
and was found to reduce the five-year OHT conversion rate to
4.4% (Kass et al., 2002). Altogether, this implies a crucial role
of AH dynamics in glaucoma pathogenesis and dysregulated AH
fluctuation is frequently observed in high-pressure glaucoma. The
etiology of increased intraocular pressure may, however, vary across
different forms of glaucoma.

In primary open-angle glaucoma (POAG), AH efflux is
impaired by enhanced extracellular matrix (ECM) deposition and
altered actin cytoskeleton dynamics, causing a stiffening of TM
tissue. In contrast, AH drainage in pseudoexfoliation glaucoma

(PEXG) is obstructed by an accumulation of pseudoexfoliation
material. Although different root causes may increase AH outflow
resistance, they share the outcome of dysregulated AH dynamics.
Frequent reports of AH proteome alteration associated with
glaucoma underscore the significant role of AH dynamics in this
disease and the analysis of its proteome consequently attractive
to exploration of molecular mechanisms and identification of
candidate drug targets.

A higher total protein concentration of AH in POAG has
been reported repeatedly (Nikhalashree et al., 2019; Cappelli et al.,
2020). AH proteome composition has also been found affected and
might be reflective of pathological alterations in the TM, but also
changes in the posterior of the eye (Kaeslin et al., 2016; Kodeboyina
et al., 2021; Wolf et al., 2023). Given the diffusion of proteins
from the posterior, including retina and optic nerve head, to the
anterior chamber via the vitreous, protein profiles representative
of pathological changes in the retina may also be observable.
Differentially expressed proteins were found to correlate with
visual field assessing parameters used in glaucoma diagnostics
(Kodeboyina et al., 2021). For a number of proteins involved in
neurodegeneration, immune response and metabolism this holds
true for mean deviation (MD), pattern standard deviation (PSD),
visual field index (VFI) and glaucoma Hemifield test (GHT)
(Kodeboyina et al., 2021).

Currently, MS-based workflows represent the vanguard of
AH proteomics. An overview of recent POAG studies on the
AH proteome is given in Table 1. The highest protein coverage
in a single experiment comparing proteomes of POAG and
control samples, was accomplished to date by Adav et al.
(2018). Using state-of-the-art LC-MS/MS, they identified 865
proteins including 150 differentially expressed ones. Among
these, proteins associated with the complement system, neural
degeneration, regulation of cholesterol esterification and apoptosis
were significantly enriched (Adav et al., 2018). The reported
alteration in complement component levels (down-regulation of
C1q, C1r, C1s, C3, C4A, C4B, C5, C6, and C8) and lipid metabolism
(upregulation of apolipoprotein A-IV), in particular, are frequently
replicated observations. Another study, for example, identified 32
complement associated proteins in AH using LC-MS/MS, with
C3, C4B and C4A as the most prevalent ones (Vashishtha et al.,
2023). Of these, complement protein F2 was higher expressed in
POAG samples, while C8G, C6, and complement factor H (CFH)
were detected in lower concentration as compared to cataract
controls. In contrast, C1q, C8B, C9, and C3 have been reported
at higher levels in POAG (Kaeslin et al., 2016; Liu et al., 2020).
Complement activation in AH of POAG patients was further
investigated by analysis of C3a/C3 ratios (Hubens et al., 2021). An
elevated ratio was observed in patients with progressing disease,
while complement activation in stable POAG did not differ from
cataract controls. The complement associated proteins C1s, C4A,
C4B, as well as C8B were also observed to relate to abnormal
PSD, VFI or GHT (Kodeboyina et al., 2021). Activation of the
complement system via the three common pathways yields cleaved
C3 and C5, leading to formation of the membrane attack complex
(MAC). The complement system in POAG is broadly studied
and its involvement in the pathogenesis has been extensively
reviewed (Hoppe and Gregory-Ksander, 2024). Briefly, deposition
of MACs and complement components in the glaucomatous retina
have been repeatedly reported, also in relation to elevated IOP
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TABLE 1 Overview of recent AH proteome studies in POAG.

Goal of investigation Samples (n) Method details Protein IDs References

Machine Method

Complement proteins in
POAG

258
(196 CAT, 62 POAG)

Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA)

LC-MS/MS, DDA 32 Vashishtha et al.,
2023

Pathological processes and
biomarker candidates

10
(5 POAG vs. 5 CTRL)

QExactive MS (Thermo
Scientific)
Easy-nLC nano-LC (Thermo
Scientific)

LC-MS/MS, DDA,
HRM-MS (SWATH)

448 Kaeslin et al., 2016

Proteome changes in POAG
and PACG

9
(3 POAG, 3 PACG, 3 CAT)

NA LC-MS/MS, MSe

mode
184 CAT

190 POAG
299 PACG

Nikhalashree et al.,
2019

Exosomes in AH:
sub-proteome

26
(16 POAG, 10 CTRL)

QExactive MS (Thermo
Scientific)
Easy-nLC nano-LC (Thermo
Scientific)

iTRAQ (8-plex) 15 Mueller et al., 2023

POAG related proteomic
changes

35
(12 CAT, 23 POAG)

Linear trap quadrupole Orbitrap
MS

LC-MS/MS 175 Liu et al., 2020

Explore pathogenesis, Identify
drug targets

20
(10 POAG, 10 CAT)

QExactive MS (Thermo
Scientific)

Nano-HPLC-MS,
LFQ

610 Liu A. et al., 2021

Correlation of AH proteome
with visual field indices

49
(POAG only)

Orbitrap Fusion Tribrid (Thermo
Scientific)
Ultimate 3000 nano-UPLC
(Thermo Scientific)

DDA LC-MS/MS 222 Kodeboyina et al.,
2021

AH proteome glaucoma with
and without PEX

29
(13 POAG (6/w PEX, 7/wo
PEX) vs. 16 CAT (5/w PEX,
11/wo PEX))

Orbitrap QExactive (Thermo
Scientific)

LFQ, DDA 269 Kliuchnikova et al.,
2016

POAG pathogenesis and
progression, treatment effects

10
(5 POAG, 5 CAT)

LFQ: QExactive (Thermo Fisher,
Waltham, MA, USA)
Dionex UltiMate 3000 UHPLC;
MRM: TSQ Vantage triple
quadrupole + EASY-nLC
nano-LC (Thermo Scientific)

LC-MS/MS, LFQ,
+MRM-MS

865 Adav et al., 2018

Proteomic alterations in POAG 47
(32 CAT, 15 POAG)

Orbitrap Fusion Tribrid mass
spectrometer (Thermo Scientific)
Ultimate 3000 nano-UPLC
(Thermo Scientific)

LC-MS/MS 401 Sharma et al., 2018

HRM, hyper reaction monitoring; CAT, cataract; POAG, primary open angle glaucoma; PACG, primary angle closure glaucoma; CTRL, control; PEX, pseudoexfoliation; DDA, data-dependent
acquisition; DIA, data-independent acquisition; SWATH-MS, sequential window acquisition of all theoretical mass spectra; iTRAQ, isobaric tags for relative and absolute quantitation.

(Kuehn et al., 2006; Tezel et al., 2010; Jha et al., 2011), reaffirming
a pivotal role in glaucoma pathogenesis and progression. In
recapitulation, however, the aforementioned AH studies do not
show a uniform expression profile of complement associated
proteins. This may be attributable to IOP-reducing medication like
timolol or xalatan, the enrolled patients were receiving (Blondin
et al., 2003; Adav et al., 2018), potentially contributing to proteomic
alterations beyond disease effects.

Another protein class frequently linked to eye disease by
proteomics is that of apolipoproteins. Apolipoprotein D (APOD),
in particular, is found upregulated in AH of POAG patients (Kaeslin
et al., 2016; Liu et al., 2020; Kodeboyina et al., 2021). It correlates
positively with PSD, and negatively with VFI and MD. APOD
further strongly associates with GHT. Its relation to these visual
field indices hints at a role in glaucomatous neurodegeneration
(Kodeboyina et al., 2021). APOD is a member of the lipocalin
protein family with the main function of binding and transporting
lipids and other small molecules (Rassart et al., 2020). It has been

found upregulated in other neurodegenerative disorders, such as
Alzheimer’s disease, Parkinson’s disease or multiple sclerosis, and
is in general linked to aging and associated neurodegeneration
(Dassati et al., 2014). APOD is suggested to be involved in
neuroprotection based on its anti-oxidative and anti-inflammatory
properties (Dassati et al., 2014). Other proteins belonging to this
family, particularly APOA4, APOE, APOC1 and APOC3, are
upregulated in AH of POAG patients as well (Kaeslin et al., 2016;
Adav et al., 2018; Sharma et al., 2018), and have further been
reported as upregulated in glaucoma in retina and/or VH (Mirzaei
et al., 2017). Their link to neurodegenerative events in the retina
renders them biomarker candidates for AH-based diagnostics, yet
in turn potentially unfitting to a distinction between glaucoma and
other neurodegenerative disease.

Beyond the frequently observed alteration in apolipoproteins
and the complement cascade, various other glaucoma pathogenesis
associated proteins were identified in AH. An accumulation
of amyloid-beta (Aβ), associated with Alzheimer’s disease
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(Abyadeh et al., 2024), was for example observed (Adav et al.,
2018), but the finding was not reproduced in another study
(Cappelli et al., 2020). Artificially elevated Aβ in cerebrospinal
fluid (CSF) was, however, demonstrated to directly transfer to AH
in a transgenic AD mouse model, implying a potential for AD
diagnostics (Kwak et al., 2020).

Furthermore, with GSTP1, a protein involved in the glutathione
metabolism pathway associated with increased reactive oxygen
species production and oxidative stress was identified as reduced
in AH of POAG patients with cataract, (Liu A. et al., 2021). Low
GSTP1 levels were discovered by MS-based proteomic analysis
and subsequently verified by enzyme-linked immunosorbent assay
(ELISA), validating this potential biomarker candidate and new
treatment target. The authors identified a further 48 up- and 49
downregulated proteins in POAG that were mainly involved in the
processes of inflammation, oxidative stress and ECM remodeling.
These changes in oxidative stress response and inflammation are
hypothesized to be linked to pathogenic alterations in the AH
microenvironment. Other proteins associated with glycosylation,
immune response, molecular transport and lipid metabolism
(especially cholesterol homeostasis), such as NPC2, COL18A1,
SERPINF2, NWD1 and KIAA0100, were found to be correlated
with POAG odds ratios (Sharma et al., 2018). Receiver operating
characteristic (ROC) analysis of these proteins further revealed
promising potential for use as diagnostic biomarkers (AUC = 0.751
– AUC = 0.793).

Not only the liquid phase of AH is subject to disease related
alterations, but cargo of AH derived extracellular vesicles (EVs)
also differ between POAG and controls (Mueller et al., 2023). EV
proteins from POAG patients and controls were labeled using
isobaric tags for relative and absolute quantitation (iTRAQ) (Ross
et al., 2004; DeSouza et al., 2005) and analyzed using high resolution
MS. STT3B was found consistently downregulated in POAG EVs,
a finding confirmed by western blot and ELISA. STT3B catalyzes
lipid and protein N-glycosylation in the endoplasmic reticulum
(ER), and is involved in the detection of misfolded proteins.
Lower levels of STT3B may therefore indicate dysregulation of the
unfolded protein response (UPR) as a coping mechanism for ER
stress in TM cells, which is thought to be involved in glaucoma
pathogenesis (McLaughlin et al., 2022).

Conclusion

State-of-the-art MS proteomic workflows are increasingly
expanding the knowledge about the AH proteome in health and
disease. Several identified differentially expressed proteins bear the
potential to serve as disease biomarkers in AH-based diagnostics.

A transition from AH biomarkers to detection in blood-based
samples, however, does not appear realizable as correlation between
the two matrices proves insufficient. While sampling of AH is
considered safe, it remains uncomfortable and is thus unlikely
to be suitable for standard diagnostic testing. However, AH
proteome studies shine in the discovery of disease mechanisms,
with application in the development of causative treatments or
neuroprotection through identification of candidate drug targets.
Large potential for furthering such mechanistic insight from AH-
analysis in glaucoma research lies with novel affinity proteomic
technologies, which largely remain underutilized. The astounding
capacity of such platforms to provide extensive protein coverage
under conditions of extreme dynamic protein concentration range
and using minimal amounts of precious sample material at
high throughput is expected to significantly advance the field in
the years to come.
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