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Down syndrome is a genetic-based disorder that results from the triplication 
of chromosome 21, leading to an overexpression of many triplicated genes, 
including the gene encoding Dual-Specificity Tyrosine Phosphorylation-
Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate 
numerous cellular processes, including cell proliferation, cell functioning, 
differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has 
been reported to result in cognitive impairment, a key phenotype of individuals 
with Down syndrome. Therefore, downregulating DYRK1A has been explored 
as a potential therapeutic strategy for Down syndrome, with promising 
results observed from in vivo mouse models and human clinical trials that 
administered epigallocatechin gallate. Current DYRK1A inhibitors target the 
protein function directly, which tends to exhibit low specificity and selectivity, 
making them unfeasible for clinical or research purposes. On the other hand, 
antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy 
to downregulate DYRK1A expression at the gene transcript level. Advances in 
ASO research have led to the discovery of numerous chemical modifications 
that increase ASO potency, specificity, and stability. Recently, several ASOs 
have been approved by the U.S. Food and Drug Administration to address 
neuromuscular and neurological conditions, laying the foundation for future 
ASO therapeutics. The limitations of ASOs, including their high production cost 
and difficulty delivering to target tissues can be overcome by further advances 
in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to 
improve the quality of life for individuals with Down syndrome and their families.
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1 Introduction

Down syndrome (DS) is the most common human chromosomal disorder, accounting for 
approximately 1 in 500 live births globally (Al-Biltagi, 2015). This disorder is caused by a 
partial or complete triplication of chromosome 21 and was first recognised by John Langdon 
Down (1887). Individuals with DS often present with characteristic facial features, intellectual 
disability (ID), hypotonia, muscle weakness, early-onset Alzheimer’s disease, increased 
incidence of leukemia, and heart deficits (Malt et al., 2013). While the presence and severity 
of these phenotypes may vary between individuals, almost all exhibit some degree of ID. The 
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underlying cause of this is primarily the result of neurodevelopmental 
complications in specific brain regions. Unfortunately, there is 
currently no cure nor effective treatment for those with DS, leading 
many individuals to depend on familial or societal support for their 
lifetime. However, recent research has identified the Dual specificity 
tyrosine phosphorylation regulated kinase 1 A (DYRK1A) gene and 
protein as a potential therapeutic target for DS and other diseases due 
to its dose-dependent nature (Feki and Hibaoui, 2018; Liu et al., 2022). 
This gene, located at 21q22.13, plays a critical role in the development 
of the cognitive phenotypes associated with DS. Researchers have 
since been attempting to modulate the expression of the DYRK1A 
protein to recover one’s cognitive ability (Feki and Hibaoui, 2018). 
Currently available DYRK1A inhibitors such as epigallocatechin 
gallate (EGCG) derived from green tea or harmine, a hallucinogenic 
alkaloid, have shown a preliminary reduction in neurodevelopmental 
abnormalities across various animal models of DS and some human 
trials (Guedj et  al., 2009; Adayev et al., 2011; Jarhad et al., 2018). 
However, these inhibitors are designed to non-specifically modify the 
protein’s function, increasing undesirable off-target effects, and 
rendering them unsuitable for DS intervention in humans.

In contrast, antisense oligonucleotides (ASOs) are emerging as a 
potential therapeutic modality for numerous genetic diseases that can 
be addressed by modulating gene expression. The specificity of the 
ASOs rely on Watson and Crick base-pairing to the target sequence 
and the oligomer chemistry then determines the subsequent mode of 
action. RNA or DNA-like oligomers, when annealed to a target RNA 
strand can induce degradation of the target through RNA-induced 
silencing complex or activation of RNase-H (Deleavey and Damha, 
2012). In contrast, other oligomers with fully-modified bases and/or 
backbones can act as steric blockers and redirect normal protein 
translation, pre-mRNA splicing and polyadenylation (Iversen, 2001; 
Amantana et al., 2007; Liang et al., 2015; Wang et al., 2018; Scoles 
et al., 2019). Therefore, by altering the expression of DYRK1A at the 
level of RNA, we propose that ASOs could provide a highly specific 
and effective treatment option addressing ID and cognitive issues for 
those with DS, improving their overall quality of life.

This review will outline the current knowledge of DS, with a focus 
on its cognitive phenotypes and include a brief discussion on the 
debate surrounding the DS critical region (DSCR). This will 
be followed by a summary of DYRK1A, its role in DS and the DYRK1A 
inhibitors currently under investigation. Additionally, we will provide 
a brief analysis of ASOs with a focus on their mechanism of action and 
current U.S. Food and Drug Administration (FDA) approvals. The 
review will then conclude with an outline of some of the current 
challenges and strengths of developing and distributing ASOs. At 
present, there is a crucial need for novel therapies that can treat these 
individuals with high efficacy and low side effects. This review 
introduces the rationale behind the research intended to treat DS 
using ASO-based therapeutics.

2 Down syndrome

The complete trisomy of chromosome 21 is the most common 
cause of DS and occurs from an error in cell division during the early 
development of the egg or sperm. It has been observed that 
approximately 88% of cases are of maternal origin, with incidences 

increasing with higher maternal age (Gómez et al., 2000; Fitzpatrick 
et  al., 2017). Complete trisomy most often results from meiotic 
nondisjunction, accounting for 90–95% of DS cases (Papavassiliou 
et al., 2015). This occurs when the chromosomes fail to segregate to 
the opposite poles during meiosis, resulting in either trisomy or 
monosomy (Coppedè, 2016). Mosaicism can also result in DS, which 
accounts for 2–4% of DS cases, and causes a partial triplication of 
chromosome 21. Mosaicism can occur in two ways; after fertilisation, 
when an early mitotic error in an embryo results in the partial 
triplication of chromosome 21 (Papavassiliou et al., 2015); or it can 
occur in a DS zygote where a mitotic error causes some cells to revert 
to a normal karyotype (Papavassiliou et al., 2015). The remaining 
2–4% of DS cases are caused by the inheritance of a chromosomal 
rearrangement/translocation which results in a partial triplication of 
chromosome 21. This occurs when chromosome 21 attaches to 
another chromosome, typically binding to chromosome 14 but can 
also bind to 13, 15, 21 or 22 (Bornstein et al., 2010). The various 
mechanisms for the development of DS are depicted in Figure 1.

2.1 Phenotypes

Those affected by DS present with a host of characteristic 
phenotypes and health complications that impede regular functioning, 
outlined in Table 1. These individuals have an increased risk of heart 
disease, early onset Alzheimer’s disease, leukemia and testicular 
cancer (Hill et al., 2003; Hasle et al., 2016). This not only disturbs the 
individual’s quality of life, but also puts a strain on family, carers and 
the health care system (Hill et al., 2003). While individual phenotypes 
vary, certain characteristics such as ID, hypotonia, craniofacial 
dysmorphology and the histopathology of Alzheimer’s disease, are 
present to some degree in all cases of DS. Understanding the key 
cognitive components of DS is crucial in comprehending the unique 
challenges of developing effective interventions that can improve their 
overall wellbeing.

2.2 Cognition

Individuals with DS account for approximately 10–20% of the 
intellectually disabled population, with some form of impairment 
present in nearly all cases of DS (Torr et al., 2010). This is the result of 
overexpressed genes altering neural development and functioning. 
Individuals with DS generally have an intelligence quotient (IQ) that 
ranges from 20 to 80. Their IQ being its highest when they are children 
and gradually declines as the individual ages (Carr, 1988; Anneren and 
Edman, 1993; Chapman and Hesketh, 2000). This is believed to be a 
consequence of the slow rate of neural development when compared 
to unaffected children (Carr, 1988; Chapman and Hesketh, 2000). By 
adulthood, an individual with DS is likely to have an IQ of 25 to 55, 
equating their mental age to be  approximately 7–8 years old 
(Pennington et al., 2003).

The specific cognitive shortfalls associated with DS include deficits 
in memory, language, speech, hearing, processing speed and 
numerous aspects of executive function (Silverman, 2007; Lanfranchi 
et al., 2010). In early childhood, ID is not as prominent, with steady 
cognitive decline being observed from late childhood into early 
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adulthood, with a further decline in middle to late adulthood, typically 
associated with early onset Alzheimer’s disease (Grieco et al., 2015). 
Interestingly, there is a discrepancy between cognitive tasks, with 
verbal-based tasks being performed worse than non-verbal-based 
tasks (Abbeduto et al., 2001; Couzens et al., 2011; Channell et al., 
2014). Language skills until age 5 are generally within the expected 
developmental range, however, steadily decline into adulthood 
(Guralnick, 2002). These language shortfalls have been hypothesised 
to be  a secondary consequence of the deficit in verbal working 

memory more specifically, in the phonological loop located in the 
temporal lobe (Chapman, 2006; Vicari and Carlesimo, 2006). 
Additionally, those with DS have been shown to exhibit numerous 
deficits in executive function, including impairments of attention, 
inhibition, processing speed, multi-tasking, self-monitoring, working 
memory and organisation (Grieco et  al., 2015). These executive 
function skills are processed in the frontal lobes and have a secondary 
impact on one’s learning ability. Furthermore, learning and memory 
deficits are believed to result from errors in the encoding and retrieval 

FIGURE 1

Illustration of the three pathways for Down syndrome development. (A) Representation of mitotic nondisjunction with the left being the most 
common form, resulting in a complete trisomy of chromosome 21. Where ‘n’ represents the typical number of chromosomes. (B) Is a representation of 
the partial trisomy of chromosome 21 through mosaicism which occurs from an early error in mitosis which results in a variation in chromosome 
number across the cells. Peach colour representing cells with typical number of chromosomes, light blue representing chromosomes with trisomy 21. 
(C) Is a representation of a second partial trisomy of chromosome 21 where chromosome 21 binds to chromosome 14, the most common site, leading 
to a partial trisomy in some cells. Purple represents Chromosome 21. Adapted from “Human Karyotype,” by BioRender.com (2023). Retrieved from 
https://app.biorender.com/biorender-templates.
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of memories, which are processed in the temporal lobe and the 
hippocampus (Carlesimo et al., 1997). While there is some debate in 
the literature over the underlying mechanisms that result in these 
cognitive deficits, there is largely an agreement that the individual 
deficits in each cognitive area are largely of primary origin, with some 
top-down cascade also influencing cognitive functioning (Grieco 
et  al., 2015). This conclusion has been supported by studies that 
identify alterations in brain structure in similar brain regions.

2.3 Alterations in brain structure

Deficits in cognition are almost always the result of abnormal 
brain structure, with global cortical volume loss often being correlated 
with cognitive decline (Jack et  al., 2008; Soria-Pastor et  al., 2008; 
Calabrese et al., 2011; Mcdonald et al., 2012). Consistently, the brains 
of individuals with DS are smaller when compared to healthy 
individuals, with a study on children finding a 13.3% reduction in 
total brain volume (Rachidi and Lopes, 2011; Śmigielska-Kuzia et al., 
2011). This has been observed to increase to 20% in adults with DS 
(Kemper, 1991). Interestingly, this global reduction in brain volume 

has not been observed in trisomic mouse models (Contestabile et al., 
2010). Some suggest that these findings indicate that volume is not 
directly related to cognitive impairment. However, we postulate that 
this may be a result of the difference in neuronal complexities between 
mice and humans, resulting in more severe and widespread disability 
in humans due to the complexity of our neuronal development when 
compared to that of mice. Global cortical volume loss often results 
from a catastrophic cascade of errors that leads to drastically reduced 
neuronal cell numbers. With that said, early DS mouse models 
exhibited increased ventricle size and brachycephaly (Guedj et al., 
2012). These phenotypes typically indicate some form of cortical 
atrophy, which may be attributed to improper neurodevelopment or 
neuronal cell death that has also been observed (Arbones et al., 2019).

Across the literature, the primary regions affected in mice are the 
cerebellum and the hippocampus. Some mouse models have detected 
a cerebellar volume loss of up to 12% and in models that do not exhibit 
a volume loss, a lower density of neuronal cells is still observed (Baxter 
et al., 2000; Olson et al., 2004a). A well-characterised mouse model for 
DS is the Ts65Dn mouse which is trisomic for approximately 
two-thirds of the genes orthologous to human chromosome 21 
(Hsa21). Interestingly, in Ts65Dn mice, there is no alteration in 

TABLE 1 Outline of the common features observed in Down syndrome and incidence where applicable.

Features Incidence (%) References

Physical symptoms

Hypotonia (at birth) 70–76 Bull and Genetics (2011), Muthumani (2020)

Flattened facial profile 51–89 Kava et al. (2004), Muthumani (2020)

Malformed head 45 Muthumani (2020)

Ear abnormalities 67 Kava et al. (2004)

Upward slanting eyes 84–86 Kava et al. (2004), Muthumani (2020)

Excess skin at nape of neck 36.8 Kava et al. (2004)

Simian crease (unilateral or bilateral) 33.2 Bull and Genetics (2011)

Bushfield spots on iris 3.2 Kava et al. (2004)

Cognitive symptoms

Attention problems Silverman (2007)

Poor working memory capacity Silverman (2007)

Memory impairment Silverman (2007)

Highly sociable Fidler et al. (2008)

Learning deficit Silverman (2007)

Delayed language and speech development Silverman (2007)

Associated medical conditions

Heart disease 50 Bull and Genetics (2011)

Dementia (by 70 years old) 90 Ballard et al. (2016)

Serious otitis media 50–70 Bull and Genetics (2011)

Ocular deficits 60 Bull and Genetics (2011)

Gastrointestinal defects 12 Bull and Genetics (2011)

Hearing loss 75 Bull and Genetics (2011)

Abnormal immune response Ram and Chinen (2011)

Epilepsy 8–26 Lefter et al. (2011), Vignoli et al. (2011)

Hyperthyroidism 15 Bull and Genetics (2011)

Leukemia 2–2.5 Baruchel et al. (2023)
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hippocampal volume at 7 months of age and no alteration in neuronal 
density at one month of age (Lorenzi and Reeves, 2006; Olson et al., 
2007). However, at 16–17 months old, neuronal density has been 
found to be significantly lower in the cornu ammonis (CA) 1 region 
of the hippocampus and synapse density has also been found to 
be reduced in the dentate gyrus, CA1 and CA3 when compared to 
diploid mice (Kurt et al., 2004; Lorenzi and Reeves, 2006). This is 
similar to what is observed in humans, where these regions have been 
reported to have a reduced volume of the brainstem, frontal, temporal 
and parietal lobes. It is suggested that this is indicative of a decreased 

formation of new neurons during development and increased atrophy 
in adult life. An overview of the common neuronal features of DS in 
humans can be found in Figure 2. Additionally, in this figure we have 
indicated similar phenotypes observed in the murine models 
previously  
mentioned.

Studies on humans with DS have noted similar abnormalities to 
the murine models listed in comparable brain regions. Evidence of 
improper cortical development from DS-affected brains have been 
observed at the cellular level with abnormal dendrite formation, 

FIGURE 2

Illustrations of the neuroanatomical and cognitive features of Down syndrome. (A) Cortical mapping of affected regions. (B) Coronal section revealing 
the subcortical structures influenced by Down syndrome. Mouse models with known similar phenotypes have been identified with superscripts; ‘1’ for 
Ts65Dn, ‘2’ for Dp(16)1yey, and ‘3’ Ts1Rhr. Created with BioRender.com.
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impaired neurogenesis, lower neurotransmitter counts, and reduced 
synaptic proteins (Vacca et al., 2019). Notably, dendritic abnormalities 
in the hippocampus and the dentate gyrus appear to be  the most 
pervasive, with murine models exhibiting reduced synaptic density, 
altered dendritic arbours, and altered dendritic spines (Contestabile 
et al., 2010). Numerous other alterations in neurotransmitter systems, 
cellular mechanisms, and degradation due to age-associated dementia 
are outlined in the literature. However, these are outside of the scope 
of this review, but have been reviewed by Arbones et al. (2019) and 
Vacca et al. (2019). The previously mentioned alterations in brain 
morphology are common hallmarks of many forms of ID and provide 
the morphological basis for the poor cognition observed in DS 
individuals. Consistent neurobiological abnormalities had sparked 
interest in the possibility of a critical region of chromosome 21 that 
may be present in all cases of DS, providing a rationale for the main 
phenotypes and potential therapeutic target.

2.4 Down syndrome critical region

As there exists both a complete and partial trisomy of chromosome 
21  in DS populations, the concept of a DSCR has been debated 
amongst the literature. Korenberg et al. (1990) hypothesised a DSCR 
that extended from the start of q21.2 to the end of chromosome 21. 

This was heavily based on earlier literature that pinpointed a crucial 
area on the distal end of chromosome 21. This was later refined by 
Delabar et al. (1993) using genotype–phenotype analysis of 10 people 
with partial trisomy 21 to the region D21S55 (~37.8 Mb) to MX1 
(~41.7 Mb). They hypothesised that this region is responsible for 19 of 
the 33 phenotypes they assessed. Another paper by Korenberg et al. 
(1994) emphasised the importance of genes outside the D21S55 region 
and, through their own molecular and phenotypic analysis, defined a 
region with a proximal boundary of D21S17 (~35.9 Mb) and a distal 
boundary at MX1. All DCSRs mentioned can be seen in Figure 3 
(Korenberg et al., 1990; Delabar et al., 1993; Korenberg et al., 1994; 
Yamamoto et al., 2011; Schnabel et al., 2018).

Since its conception, the idea of a DSCR has been heavily debated, 
with some reviews and more recent literature finding their own 
definitions of the region, such as in the review by Rachidi and Lopes 
(2008). This led to the question of whether it is valid to conclude that 
such a region exists at all. Recent research has failed to support the 
prevalence of a DSCR, as per the original Korenberg et al. (1990) 
hypothesis. Two critical studies on mice had shown that the 
triplication of the DSCR alone does not result in the characteristic 
facial or neurological DS phenotypes (Olson et al., 2004b, 2007). The 
physical phenotypes observed when comparing DS mice (Ts65Dn) 
and triplicated DSCR-only mice (Ts1Rhr) presented an opposite 
phenotypic pattern, where Ts65Dn mice were smaller while Ts1Rhr 

FIGURE 3

Schematic of mouse mutants aneuploid segments and Down syndrome critical regions described in this literature review. Human chromosome 21 
(Hsa21) and the orthologous region of mouse chromosome 16 (Mmu16) are shown. Dashed lines identify locations of specific genes or chromosomal 
landmarks. All mouse models are aligned according to Hsa21, and the Mmu16 chromosome segment is scaled according to Hsa21. Red indicates 
trisomic sections, green indicates haploid sections, and blue indicates hypothesised Down syndrome critical regions. Created with BioRender.com.
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mice were larger (Olson et  al., 2004b). Additionally, neurological 
characteristics like cerebellar volume, hippocampal size and function 
were either not as severe or protected in Ts1Rhr mice, suggesting that 
the DSCR proposed in the original hypothesis does not fully 
recapitulate the main DS phenotypes (Olson et al., 2007). However, 
some caution is advised when drawing conclusions based on this 
study as the orthologous region of Hsa21 in murine models is located 
across three separate chromosomes, potentially adding some 
variability. Additionally, animal models may require multiple copies 
to replicate the human phenotype, such as in experiments involving 
SOD1 replicating motor neuron disease (Ferraiuolo et al., 2007; Nardo 
et al., 2016). Future studies should be conducted with more copies of 
the DSCR to see if phenotypes differ. Additionally, the researchers 
bred trisomic Ts65Dn mice with monosomic DSCR Ms1Rhr mice, 
producing offspring that were trisomic for chromosome 21 with a 
normalised analogous DSCR (Olson et  al., 2007). These DSCR-
normalised mice were found to perform similarly in the Morris water 
maze when compared to a control euploid mouse (Olson et al., 2007). 
These researchers agree that the DSCR hypothesis has been disproved, 
however, they concluded that the genes within the DSCR are necessary 
but not sufficient to produce a learning deficit in DS (Olson et al., 
2007). Most importantly, this suggested that a return to normal gene 
expression in DSCR genes may induce an improvement in cognitive 
functioning. Contradicting these studies, other researchers concluded 
that the DSCR is sufficient to produce the DS phenotype, coming to 
this conclusion as Ts1Rhr mice were found to significantly differ on 
20 of 48 characteristics when compared to control ‘2 N’ mice 
(Belichenko et  al., 2009). These included altered long-term 
potentiation effects, dendritic spine enlargement and density in the 
fascia dentata, among others (Belichenko et al., 2009). While they 
concluded that the triplicated region present in Ts1Rhr mice is 
sufficient to reproduce the DS phenotype, they also mention that 
differing combinations of single or multiple gene dosage effects may 
give rise to different phenotypes. This is very similar to a more recent 
‘gene dosage effect’ hypothesis proposed by Moreau et al. (2021). This 
hypothesis suggests that DS results from an imbalance in gene dosage, 
leading to the overexpression of specific causative genes, which can 
alter interactions between other genes in the genome. Unlike the 
DSCR hypothesis, which attributes the DS phenotypes solely to the 
genes within a specific region. The gene-dosage effect hypothesis 
considers a broader range of genetic interactions across the entire 
genome that are responsible for the DS phenotypes. We consider this 
to be more plausible than the original DSCR hypothesis. However, the 
gene-dosage hypothesis requires more sophisticated methods to 
identify the most relevant genes involved in DS.

Pelleri et al. (2016) conducted a thorough review which detailed 
the score for association with DS of numerous individuals with partial 
trisomy 21 to identify a highly restricted DSCR (HR-DSCR). This 
region is defined by a triplication of genes present in all DS cases and 
absent in all non-DS cases. They identified the HR-DSCR region as 
genes with a prevalence score over 97. However, it contained genes 
only homologous to the chimpanzee genome that have not been 
thoroughly researched. We suggest that it would be more useful to 
direct future exploration toward genes just outside this HR-DSCR that 
are homologous to more common disease models. The small region 
with a score over 90 includes nearly the entire q22.13 segment (Pelleri 
et  al., 2016). A high score in this study indicates an increased 
probability of association with DS. This region includes seven protein 

coding genes: DYRK1A, DSCR3, TTC3, PIGP, RIPPLY3, KCNJ15, 
KCNJ6, and DSCR4. Of these the former 5 are expressed in the adult 
brain and are potential targets for DS treatment. Given the wealth of 
literature and its potential implications for various diseases, our review 
will focus on the gene DYRK1A. From the Pelleri et al. (2016) study, 
this gene has a prevalence score of 91 out of 100 for its association with 
DS. Additionally, DYRK1A has been consistently overexpressed in DS 
human and mouse models and has been found to play a vital role in 
neural function, processing and development (Guimera et al., 1999; 
Dowjat et al., 2007). Interestingly, a recovery in the developmental 
cognitive deficit was reported after a partial rescue of DYRK1A in DS 
mice. Researchers utilised mice with a gene trap vector inserted in 
intron 4 resulting in disruption of the 321 amino acid kinase domain 
resulting in a haploinsufficiency of DYRK1A and was referred to as 
Dyrk1am1 (Jiang et al., 2015). They bred this mouse with their DS 
mouse model, Dp (16)1, to generate a DS mouse with a normalised 
DYRK1A expression, Dp (16)1/Dyrk1am1 (Jiang et al., 2015). These 
mice exhibited performance improvements in T-maze and contextual 
fear-conditioning tests when compared to Dp (16)1 mice (Jiang et al., 
2015). Thereby supporting the potential causative role of DYRK1A in 
the cognitive phenotype and potential for recovery if the DYRK1A 
gene is normalised. All the chromosomal segments for the murine 
models are presented in Figure 3.

The conclusion of much of the literature appears to be  that a 
strictly defined DSCR does not exist, and while there are certain genes 
that appear necessary to produce the phenotypes of DS, these are not 
sufficient when viewed in isolation. Therefore, we also agree that the 
restrictive DSCR approach is not adequate to explain the phenotypic 
outcomes of DS. Importantly, the recovery of the widely researched 
gene DYRK1A has shown to alleviate the severity of cognitive 
phenotypes in DS models, making the regulation of these genes a 
promising potential therapeutic strategy.

3 DYRK1A

DYRK1A has been found to play a vital role in the regulation and 
functioning of the processes involved in neurodevelopment (Olson 
et al., 2004b, 2007). The first evidence was studied in Drosophila mini 
brain (mnb) mutants which exhibited altered neural proliferation and 
smaller brain size (Tejedor et al., 1995). Mini brain (discovered in 
insects) is an orthologous gene to the vertebrate DYRK1A; hence forth 
in this review, mnb/DYRK1A will only be referred to as DYRK1A 
(Tejedor and Hämmerle, 2011). Among others in the DYRK family, 
DYRK1A is activated via tyrosine autophosphorylation in the 
activation loop but phosphorylates its substrates on serine and 
threonine residues only (Lochhead et al., 2005). However, DYRK1A 
is unique in that it is the most ubiquitously expressed when compared 
to other DYRK members. These other DYRK’s are often more 
restricted and often highly expressed in the testes and muscle (Becker 
et al., 1998; Leder et al., 1999; Zhang et al., 2005; Sacher et al., 2007). 

Multiple DYRK1A transcripts exist through alternative splicing 
and untranslated region changes Figure 4A, which in turn encodes 
two main DYRK1A protein isoforms Figure 4B. It should be noted 
that there are other shorter isoforms that are reported via internal 
splicing events, however, there is currently no evidence of a functional 
difference between these. Examining the protein isoforms 1 and 2, 
DYRK1A exhibits a conserved N-terminal motif that stabilises the 
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kinase domain during protein maturation (Soundararajan et al., 2013). 
This N-terminal is shared amongst the other members of the DYRK 
family and is commonly referred to as the DYRK homology box (DH). 
DYRK1A exhibits a two nuclear localisation signals (NLS) one next to 
the DH and the other within the kinase domain. The main DYRK1A 
isoforms also exhibit PEST, polyhistidine (His) and serine-threonine 
rich (Ser/Thr) motifs.

DYRK1A has been found to exhibit numerous effects on key 
aspects of the central nervous system (CNS) such as synaptic plasticity 
and neuronal differentiation (Arbones et al., 2019; Atas-Ozcan et al., 
2021; Ananthapadmanabhan et  al., 2023). Additionally, it plays a 
broader role in cellular development, function and repair. This 
includes vital functions in cell cycle progression, splicing, chromatin 
transcription, cell signalling, exocytosis, endocytosis and apoptosis. 
Recent research highlights DYRK1A’s role in modifying RNF169, 
which is crucial for DNA repair following damage (Guard et al., 2019). 
The protein interactions that DYRK1A alters to produce these effects 
are outlined in Figure 5. Additionally, the effect on neurodevelopment 
was further observed by a study on haploinsufficient DYRK1A+/− mice 
that had smaller brains and fewer neurons when compared to wild-
type littermates (Fotaki et al., 2002). Additional studies have noted 
that altered DYRK1A expression influenced neural numbers, 
neurogenesis, synaptogenesis, neural functions, and 
neurotransmission across various human and murine models 
(Arbones et al., 2019). Expression of DYRK1A across the lifespan in 
mice is relegated primarily to the CNS. It has been found to peak near 
birth during neuronal dendritic morphogenesis and later maintained 
at lower levels in adulthood (Okui et al., 1999). This provided evidence 
of its crucial role in neurodevelopment and maintenance and has 
shown that an alteration in DYRK1A expression levels can greatly 
affect the individual’s neural functioning.

3.1 Dose sensitivity

In humans, chromosome 21 contains over 300 genes, with only 
one-third found to be dose-sensitive and are hypothesised to be the 
primary genes associated with the DS phenotype (Yahya-Graison 
et al., 2007; Becker et al., 2014). DYRK1A is one of these dose-sensitive 
protein-coding genes that, if over or under-expressed, can affect 
essential cellular development and functional roles depending on the 
pattern of expression. Duchon and Herault (2016) postulated that the 
formation of active DYRK1A protein complexes may be the cause of 
the dose sensitivity (Duchon and Herault, 2016). Whereby the dosage 
sensitive protein forms a tripartite complex with two partners (Veitia 
et  al., 2008; Duchon and Herault, 2016). This hypothesis was 
corroborated by co-immunoprecipitation studies that identified 
DYRK1A complexes that formed with cytoskeleton filamentous actin, 
neurofilaments and tubulin (Kaczmarski et al., 2014). However, the 
symptoms observed when DYRK1A is under-expressed differ from 
those when it is over-expressed, contrary to what this tripartite model 
may suggest (Arque et al., 2013; Raveau et al., 2018). Additionally, 
numerous DS studies and transgenic models overexpressing DYRK1A 
have found that DYRK1A protein activity is increased, contradicting 
this model. These findings suggest that even if a tripartite system 
exists, it likely does not act alone (Ryoo et al., 2007; Wegiel et al., 2011; 
Kim et al., 2016). Therefore, the DYRK1A system is likely to be more 
complex, with other mechanisms influencing symptomology. Further 
research may elucidate this underlying mechanism, as this is 
speculation at the time of writing.

3.1.1 Under-expression in DYRK1A syndrome
Heterozygous disruption or mutations causing a loss of function 

can result in a rare partial monosomy of chromosome 21 known as 

FIGURE 4

A schematic representation of (A) the DYRK1A mRNA transcripts that encode (B) isoforms 1 & 2 DYRK1A proteins. Both isoforms share the same 
features and domains but differ in amino acid coordinates. The amino acid positions of each domain/feature are specified for isoform 1. These include: 
two nuclear localisation signals (p117–135 & p380–386, NLS); a DYRK homology box (p137–152, DH); a PEST-rich region (p482–525, PEST); a 
polyhistidine stretch (p607–619, His); and a serine and threonine rich region (p659–672, Ser/Thr). Created with SnapGene software (www.snapgene.
com).
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DYRK1A Related Intellectual Disability Syndrome (DYRK1A 
Syndrome), also referred to as Autosomal Dominant Mental 
Retardation 7. These individuals often present with numerous 
developmental delays, ID, dysmorphic facial features, autism spectrum 
disorder, microcephaly, and a high frequency of epileptic seizures 
(Courcet et al., 2012; Bronicki et al., 2015; Ruaud et al., 2015; Van Bon 
et al., 2016). A critical study by Matsumoto et al. (1997) narrowed the 
loci of the microcephaly and intrauterine growth retardation to a 
segment of 21.q22.2 that’s 1.2 Mb long that includes DYRK1A and 
several other genes. Further exploration into DYRK1A syndrome is 
outside the scope of this review. For more information, we recommend 
the review by van Bon et al. (2021).

3.1.2 Over-expression in down syndrome
The triplication of chromosome 21 in humans results in an over-

expression of the genetic information retained within it. 
Lymphoblastoid cells retrieved from humans with DS exhibited an 
approximate 1.4-fold increase in DYRK1A expression (Yahya-Graison 
et  al., 2007). Similarly, studies on Ts65Dn mice analysed their 
DYRK1A protein expression in the cortex, hippocampus and 
cerebellum and observed an approximate 1.6-fold increase in 
expression across all regions (Souchet et al., 2014). This expression 
pattern has been echoed in mice triplicated for DYRK1A alone, 
BACTgDyrk1a. However, the relative expression was found to vary 
depending on the brain region, with a 1.6-fold increase in the cortex, 
a 1.9-fold increase in the hippocampus and a 1.7-fold increase in the 
cerebellum (Guedj et al., 2009, 2012).

Mouse models bred to exhibit three functional copies of DYRK1A 
have shown some neurodevelopmental deficits and cognitive 
phenotypes similar to DS models. For example, TgDyrk1a mice have 

displayed difficulties in locomotion, negative geotaxis, and spontaneous 
alternation (Arque et al., 2013). Numerous studies have also reported 
developmental and functional changes in the murine and human brains, 
including suppression of cortical neurogenesis (Chakrabarti et al., 2007), 
increased ventricles (Schimmel et  al., 2006), increased inhibitory 
interneurons (Pérez-Cremades et  al., 2010), and altered dendrites 
(Dierssen and Ramakers, 2006), long term potentiation and long term 
depression in prefrontal cortex (Souchet et al., 2014; Thomazeau et al., 
2014). Interestingly, there has been found to be an inversely correlated 
relationship between DYRK1A expression and neuron numbers in the 
neocortex, while there still exhibits a positive correlation in other brain 
regions (Guedj et al., 2012). This highlights the region-specific nature of 
DYRK1A and its importance in neuronal development.

Furthermore, Ts65Dn DS mice crossbred with heterozygous 
DYRK1A+/− mice produced a DS mouse model with a normalised 
DYRK1A expression level. The results of studies using these mice 
found that the long-term potentiation in the hippocampus was 
protected, early neurogenesis was increased, and Cyclin D1 was 
recovered (García-Cerro et al., 2014; Najas et al., 2015), providing 
evidence that DYRK1A is necessary in the development of these 
phenotypes. Importantly, pharmacological inhibition of DYRK1A has 
shown to exhibit similar deficit recovery, suggesting that normalising 
the gene’s expression could correct adverse phenotypes.

3.2 Current DYRK1A inhibitors

The dose-dependent nature of DYRK1A has made it an attractive 
target gene and protein for therapeutic intervention, resulting in the 
development and discovery of numerous pharmacological therapies. 

FIGURE 5

Schematic displaying the protein–protein interactions of DYRK1A and the widespread downstream molecular functions that are affected. Created with 
BioRender.com.
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Given the extensive range of DYRK1A inhibitors currently available, 
we will briefly outline the most notable ones, with a primary focus on 
those aimed at alleviating neurological deficits.

3.2.1 Epigallocatechin gallate
The first DYRK1A inhibitor in animals and humans was 

identified as EGCG, which is derived from green tea (Jarhad et al., 
2018). It inhibits the DYRK1A protein with high potency 
(IC50 = 330 nM), albeit with low specificity—as it has also been 
found to inhibit p38-regulated/activated kinase among numerous 
others (Lamoral-Theys et al., 2010). This has significantly impacted 
the ability to establish firm conclusions regarding a causative 
influence on DYRK1A expression. However, it is a common 
supplement with a high safety profile that has still been used in 
studies on humans. Mice overexpressing DYRK1A were 
administered EGCG orally and exhibited improved structural 
development and cognitive abilities (Guedj et  al., 2009). 
Additionally, it has been given to human young adults with DS and 
improved hippocampal functioning, particularly in visual and 
spatial working memory-based tasks (De La Torre et al., 2014). A 
phase II clinical study showed similar results, with the EGCG group 
performing better in some cognitive tests and adaptive behaviour 
up to 12 months post-treatment (De La Torre et  al., 2016). 
Curiously, evidence suggests that EGCG does not cross the blood 
brain barrier (BBB) effectively, which makes these previous findings 
peculiar (Becker et al., 2014). It has been suggested that this may 
be due to the other beneficial effects of EGCG, such its antioxidant 
effects or its effects on other proteins (Becker et  al., 2014). 
Additionally, recent discoveries have noted that relatively strong 
doses of EGCG administered to mice at early life could disrupt 
facial development and, in some cases, cause more severe facial 
dysmorphia (Starbuck et al., 2021). This could indicate that very low 
DYRK1A have caused these undesirable effects. However, a more 
likely hypothesis is that these result from the non-specific nature 
of EGCG.

3.2.2 Harmine
Harmine is a β-carboline alkaloid initially isolated from a South 

American vine and was found to be a potent inhibitor of DYRK1A 
(IC50 = 80 nM). However, it also inhibited monoamine oxidase A 
(MAO-A), and other members of the DYRK family, particularly 
DYRK2 (IC50 = 0.9 μM), and DYRK3 (IC50 = 0.8 μM) (Bain et al., 2007). 
Like many other DYRK1A inhibitors, Harmine and its derivatives 
work via competing with ATP binding to DYRK1A, which inhibits 
serine/threonine phosphorylation activity (Adayev et al., 2011). Due 
to its potent inhibition of MAO-A, numerous derivatives have been 
designed to increase the selectivity to DYRK1A. However, not all have 
been successful and still exhibit inhibition of MAO-A to some degree 
(Jarhad et al., 2018).

3.2.3 Other inhibitors
A non-exhaustive list of the various DYRK1A inhibitor categories 

has been included in Table 2. Jarhad et al. (2018) and Liu et al. (2022) 
provide comprehensive reviews on these and more DYRK1A 
inhibitors. Currently, the field of DYRK1A inhibitor research is in a 
state of development. The existing inhibitors have been observed to 
exhibit significant off-target effects, primarily due to DYRK1A being 
highly homologous with numerous other kinases, particularly of the 
CMGC family. The off-target effects render these inhibitors unviable 

for clinical use and may result in inconclusive findings in research. 
Additionally these inhibitors display numerous issues with drug 
metabolism, which can include rapid degradation, low metabolic 
stability or low BBB permeability (Liu et al., 2022).

This is where ASOs may offer a revolutionary treatment option as 
they can be designed to specifically target the DYRK1A gene transcript 
and modulate expression of the protein. Additionally, ASOs designed to 
treat other CNS-based disorders have shown stability in the CNS with 
several having received FDA approval (Goodkey et al., 2018; Wilton-
Clark and Yokota, 2021; Eser and Topaloğlu, 2022; Patterson et al., 2023; 
Van Roon-Mom et al., 2023). Should a DYRK1A inhibitor become 
available, this would not be limited to a treatment for DS as it would 
have benefits for cancers, Alzheimer’s disease, viral infections, heart 
disease, Huntington’s disease, among others (Deboever et al., 2022). 
Therefore, individuals and researchers would benefit immensely from 
the production of a highly selective and specific DYRK1A inhibitor.

4 Antisense oligonucleotides

Antisense oligonucleotides are short (~12–30 nucleotides long) 
synthetic nucleic acid analogues that can be  used to alter gene 
expression via hybridisation to a complementary DNA or RNA 
through Watson-Crick base pairing (Crooke et  al., 2021). First 
discovered by Zamecnik and Stephenson (1978), they noticed that 

TABLE 2 Outline of the various DYRK1A inhibitor types outlining the 
number of common variants and/or structural analogues from Jarhad 
et al. (2018).

DYRK1A Inhibitor Type References

Naturally occurring

EGCG Singh et al. (2011)

Harmine & Derivatives Zhang et al. (2020)

Acrifoline Beniddir et al. (2014)

Leucettines Naert et al. (2015)

Meridianins Yadav et al. (2015)

Staurosporine Alexeeva et al. (2015)

Synthetic

Benzothiazoles Rothweiler et al. (2016)

Indolocarbazole Sánchez et al. (2009)

Indazole Hood et al. (2017)

Benzimidazoles and 

Imidazopyridines
Hulme et al. (2020)

Azaindoles Gourdain et al. (2013)

Purine Derivatives Demange et al. (2013)

Thiazoloquinazoline Derivatives Foucourt et al. (2014)

Naphthyridines Grygier et al. (2023)

β-Carboline Derivatives Frost et al. (2011)

Quinoline Derivatives Falke et al. (2015)

Quinazoline Derivatives Tazarki et al. (2019)

Pyrimidine Derivatives Li et al. (2016)

Pyridazine Derivatives Bruel et al. (2014)

Polyphenol derivatives Araldi and Hwang (2022)
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ASOs inhibited viral replication in vitro. However, before the late 
1980s, no effort was made toward a medicinal use for oligonucleotides. 
Since then, considerable effort has been made to improve upon every 
facet of ASO technology, aside from those required for Watson-Crick 
base pairing. This has amounted to many analogues being synthesised 
and evaluated. Critical strategies for enhancing these chemistries 
safety and efficiency mainly involved the modifications of the 
phosphodiester backbone and the 2′ position of the sugar moiety and 
eventually the creation of the neutrally charged, synthetic 
phosphorodiamidate morpholino oligomer (PMO). Several other 
mechanisms of manipulating gene expression include transcription 
blocking (Melton, 1985), polyadenylation blocking (Vickers et al., 
2001), small interfering RNAs (Foster et  al., 2018), translational 
blocking (Setten et al., 2019), and gene therapies (Anguela and High, 
2019). However, exploration into these is outside the scope of 
this review.

4.1 Mechanism of action

The mechanistic action of an ASO is largely dependent on its 
chemistry and the region of mRNA in which it is designed to anneal, 
which can be split into two groups: occupancy-mediated degradation 
and occupancy-only mechanisms, also known as steric interference. 
Depending upon the base modifications, phosphorothioate (PS) ASOs 

can be designed to exploit both groups of mechanisms, while PMOs 
do not support occupancy-mediated degradation.

4.1.1 Occupancy-mediated degradation 
(RNase-H)

The earliest and most commonly applied ASO-mediated mode of 
action was RNase-H mediated cleavage (Crooke et al., 2021). RNase-H 
is essential for gene stability and most notably is used to cleave RNA 
primers in Okazaki fragments involved in DNA replication (Cerritelli 
and Crouch, 2009). Additionally, it plays a cooperative role in the 
prevention of R-loop accumulation which induce genome instability 
as a result of transcription-induced supercoiling, a hallmark of cancer 
cells (Broccoli et al., 2004; Santos-Pereira and Aguilera, 2015). These 
proteins are grouped into two distinct categories based on their 
substrates for enzyme cleavage. RNase-H1 can function independently 
of the cell cycle and cleaves the phosphodiester bonds of RNA in 
RNA:DNA hybrids. While RNase-H2 has strict cell-cycle requirements 
and plays a similar role with the addition of cleaving the single 
ribonucleotides embedded within DNA. RNase-H1 based cleavage is 
the mechanism by which many partially modified PS-ASOs operate. 
Once the ASO hybridises and forms a duplex with the pre-mRNA/
mRNA, the RNase-H1 cleaves the RNA target, exposing the transcript 
to exonuclease action to accelerate degradation, resulting in the 
downregulation of specific gene expression (Dias and Stein, 2002). 
This is outlined in Figure 6A.

FIGURE 6

Diagram of splice modulation mechanism of action of antisense oligonucleotides (ASO). (A) RNase-H mediated degradation. (B) Splice-switching exon 
skipping. (C) Exonic retention. Chevron side indicates partial codon. SR, serine-arginine rich splicing factors; hnRNP, heterogeneous ribonucleoprotein 
particle. ASO is shown in red or indicated ASO in the figure. Created with BioRender.com.
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TABLE 3 Summary of currently available ASO therapies that achieved FDA approval.

Drug name Brand name Disease ASO Mechanism ASO Chemistry Approval year References

Fomivirsen
Vitravene® CMV retinitis RNase-H PS-based 1998 de Smet et al. (1999)

Mipomersen
Kynamro® Familial hyper-

cholesterolemia

RNase-H PS-based 2013 Thomas et al. (2013)

Eteplirsen Exondys 51™ Duchenne Muscular 

Dystrophy

Exon Skipping PMO 2016 Eser and Topaloğlu 

(2022)

Nusinersen
Spinraza® Spinal muscular 

atrophy

Exon Inclusion PS-based 2016 Goodkey et al. (2018)

Defibrotide
Defitelio® Veno-occlusive 

disease

Complex Phospho-diester 

Backbone

2016 Aziz et al. (2018)

Milasen N/A Batten disease Exon skipping 2’-MOE 2017 Aartsma-Rus et al. 

(2023)

Inotersen
Tegsedi® Transthyretin-

mediated amyloidosis

RNase-H 2’-MOE 2018 Mathew and Wang 

(2019)

Golodirsen Vyondys 53™ Duchenne Muscular 

Dystrophy

Exon Skipping PMO 2019 Eser and Topaloğlu 

(2022)

Viltolarsen
Viltepso® Duchenne Muscular 

Dystrophy

Exon Skipping PMO 2020 Patterson et al. (2023)

Casimersen Amondys 45™ Duchenne Muscular 

Dystrophy

Exon Skipping PMO 2021 Wilton-Clark and 

Yokota (2021)

Tofersen QALSODY™ Amyloid Lateral 

Sclerosis

RNase-H PS 2′-MOE 2023 van Roon-Mom et al. 

(2023)

ASO, antisense oligonucleotide; CMV, cytomegalovirus; FDA, US Food and Drug Administration; PMO, phosphorodiamidate morpholino oligomer; PS, phosphorothioate; MOE, 2-Methoxyethyl.

4.1.2 Occupancy-only (steric hindrance)
Steric hindrance offers several pathways for manipulating 

gene expression, these include influencing translation, splicing 
and polyadenylation. However, many of these methods fall outside 
the scope of our review. One of the greatest applications of steric 
hindrance in human therapeutic settings involves splice switching, 
which can degrade/restore reading frames and downregulate/
upregulate gene and protein expression. This mechanism works 
through designing ASOs that anneal to complementary sequences 
within or flanking an exon or intron. The ASO then blocks regions 
critical to the delicate balance of exon:intron recognition by the 
spliceosome, resulting in the region being excised or retained in 
the mature mRNA. If the ASO targets positive splicing motifs of 
pre-mRNA, then this should typically induce exon skipping via 
inhibiting recognition of the exon by the spliceosome. Conversely, 
an ASO can be designed to target silencer motifs in pre-mRNA, 
which will result in a retention of the sequence in the mature 
mRNA. This mechanism essentially modifies the 
pre-mRNA’s usual splicing machinery via altering the recognition 
of the natural or cryptic splice sites by the spliceosome, 
(Figures 6B,C).

One such mechanism with potential to treat DS is exon skipping, 
which can alter the expression of the subsequent transcript dependent 
on the type of exon that is targeted. If an exon is targeted for excision 
and if that retains the reading frame, then this will result in the 
formation of a truncated and potentially functional protein, like that 
seen in the treatment for Duchenne muscular dystrophy and ATXN3 
(Mcclorey et al., 2006; Moore et al., 2017; Mcintosh et al., 2019). In 
contrast, targeting an exon that, if excised, induced a disruption in the 

reading frame would result in a non-functional protein that would 
be degraded via nonsense-mediated decay. This approach is similar to 
the treatment for multiple sclerosis, which targets ITGA4 (Aung-Htut 
et al., 2019). Consequences of a disrupted reading frame can be seen 
in Figure 6C. Additionally, mechanisms such as isoform switching or 
translation blocking could be utilised, however, these are outside the 
scope of the current review.

4.2 FDA approved ASOs

As of April 2023, there have been a total of 13 antisense 
oligonucleotide therapies approved by the FDA, outlined in Table 3. 
These have received approval to treat previously untreatable genetic-
based diseases like spinal muscular atrophy, Duchenne muscular 
dystrophy and familial amyloid polyneuropathy (Shadid et al., 2021). 
In this review we will not spend the time to explore the various FDA 
approved ASOs as this is outside the scope.

4.3 Benefits of ASOs and challenges of CNS 
delivery

Developing treatments for neurological conditions remain some 
of the most challenging but these conditions have become a major 
focus for researchers in the field of oligonucleotide therapy. Antisense 
oligonucleotide researchers and clinicians treating neurological 
disorders are faced with the ongoing challenges of CNS drug 
development. Currently, there are no effective modalities of reaching 
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the CNS without invasive methods. For example, spinal muscular 
atrophy treatment has seen success using ASOs, however drug delivery 
involves an invasive injection into the spinal canal.

To provide some context, spinal muscular atrophy is the most 
common genetic cause of death in infants and is an inherited 
neurological disorder that leads to the atrophy of the alpha motor 
neurons (D'amico et  al., 2011). This causes a degeneration of the 
bulbar and spinal muscles, in addition to respiratory muscles, which 
later result in respiratory failure. The 2′-Methoxyethyl (MOE) PS ASO 
Nusinersen was approved by the FDA in 2016. This ASO increased the 
amount of SMN protein via inhibition of the negative splicing factors 
of intron 7 in the SMN2 pre-mRNA, thereby promoting the inclusion 
of exon 7 (Wurster and Ludolph, 2018). Phase I, II, and III studies on 
infants found statistically significant improvements after treatment 
with Nusinersen, which ultimately led the drug from the bench to the 
clinic (Finkel et al., 2016, 2017a; Darras et al., 2019). However, much 
like other ASOs, the treatment had to be administered repeatedly; on 
days 0, 15, 29, 64, and then every 4 months (Finkel et al., 2017b). 
Secondly, Nusinersen is too large a molecule to cross the 
BBB. Therefore, the ASO had to be  administered via invasive 
intrathecal injection. The crossing of the BBB is one of the largest 
challenges facing drug treatment of neurological disorders.

The BBB is the divider between the CNS and the periphery, 
acting as a mediator which protects the brain from toxic 
substances while allowing a steady supply of nutrients. Many 
advances in ASO chemistry have improved cellular uptake, 
although not many have been designed to overcome the crossing 
of the BBB. Current ASOs do not efficiently cross the BBB due to 
their charged nature and large size, with some studies finding that 
less than 1% of ASOs delivered peripherally reach the brain 
(Agrawal et al., 1991; Cossum et al., 1993; Banks et al., 2001; Farr 
et al., 2014). Multiple methods are being investigated to increase 
BBB penetrating efficiency. One method utilises receptor-
mediated endocytosis which has been used to successfully deliver 
ASOs to the brains of parenchyma via nanoparticles (Pardridge, 
2007; Kozlu et al., 2014). Another method utilised is a 5–30 amino 
acid long, positively-charged, cell-penetrating peptide which has 
shown successful distribution in the brain after crossing the BBB 
in mice (El-Andaloussi et  al., 2005; Du et  al., 2011). Adeno-
associated viral vectors and encapsulating the gene therapies in 
exosomes have shown some promise in crossing the BBB 
(Stanimirovic et  al., 2018). However, adeno-associated viral 
vectors have shown some levels of toxicity in recent studies on 
primates (Keiser et  al., 2021). This leaves the only effective 
modality of delivery being direct administration to the CNS via 
intrathecal injection (Geary et al., 2015). While this has been an 
effective delivery method for many individuals, there is a risk of 
developing lumbar puncture syndrome (Cordts et al., 2020). A 
summary of the main delivery methods for ASOs can be found in 
Figure 7.

We have identified a few potential strategies to modulate the 
expression of DYRK1A through utilising ASOs. One possible 
method for addressing DS phenotypes would be  to lower the 
expression of a dose-sensitive, over-expressed gene transcript via 
inducing exon skipping to disrupt the reading frame. Theoretically, 
this will result in nonsense-mediated decay of the transcript and 
thereby reduce the expression of the over-expressed target protein. 

For this treatment to be effective, one would need to be aware of the 
importance of dosing the ASO to not suppress DYRK1A expression 
in an excessive manner (most likely around 33% reduction—for 
gene dosage normalisation), as this could result in negative side 
effects that may appear similar to DYRK1A syndrome phenotypes. 
It is unlikely to be completely suppressed but there would need to 
be  tests on optimising dosage using titrations which may prove 
challenging, but possible. Antisense oligonucleotides offer an 
exquisite method for specificity and sensitivity. The DYRK genes 
have enough genetic differences to design ASOs that only target 
DYRK1A (Aranda et  al., 2011). Moreover, although various 
DYRK1A transcripts exist, all have a similar reading frame, thus 
targeting out of frame exons in one transcript should target all 
DYRK1A transcripts with a similar effect.

Ultimately, ASOs have a high potential to treat numerous 
neurological disorders with high specificity. With current 
advancements, particularly with the more recent PMO and peptide-
conjugated PMO technologies, we have witnessed significant increases 
in the safety profile and efficacy. Ultimately, providing these an 
advantage when compared to other DYRK1A inhibitors. Current 
research is highly focused on applying this treatment strategy to many 
other disorders that have previously been deemed untreatable. Current 
research has attempted to utilise ASOs to treat myotonic dystrophies, 
Huntington’s disease, amyotrophic lateral sclerosis, and Alzheimer’s 
disease to name a few (Gao and Cooper, 2013; Hinrich et al., 2016; 
Aslesh and Yokota, 2020; Boros et al., 2022). As ASO therapies become 
more widely adopted, we  should see a reduction in costs due to 
streamlining synthesis consistency and efficiency. Particularly, the 
possibility of class approval for ASOs will speed up the application 
process and reduce costs attributable to ongoing clinical safety trials 
(Aartsma-Rus and Krieg, 2017). Moreover, if ASOs can be applied to 
widespread disorders like DS, the increased demand should help 
distribute the cost, making them more affordable.

FIGURE 7

Illustration of the various mechanisms that can assist in antisense 
oligonucleotide delivery through the blood brain barrier. Delivery 
methods have been categorised by whether they encapsulate or are 
conjugated to the antisense oligonucleotide. Created with 
BioRender.com.
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5 Conclusion

This literature review has outlined the great potential for ASOs 
to be  used as a treatment for DS through downregulating 
DYRK1A. We aimed to distil current research perspectives on DS, 
DYRK1A, and ASOs to justify the potential of using ASOs to address 
the cognitive deficits associated with DS. Much of the literature 
supports that DYRK1A is a vital gene implicated in neural 
development, function and repair. Promising research that has 
normalised DYRK1A expression in DS animal models have shown 
improvements across numerous cognitive abilities. We  have also 
shown that whilst numerous DYRK1A inhibitors are under 
investigation, all are aimed toward altering the protein’s function. 
Whereas a DYRK1A-targeted ASO would uniquely target the 
transcript directly, offering enhanced selectivity compared to the 
other inhibitors and thereby minimising off-target effects. While 
challenges persist in implementing ASO-based therapeutics, such as 
their difficult delivery to the CNS, recent advances in the field provide 
some hope. These include the development of delivery systems and 
improvements in specificity, potency, and stability. As a result, 
numerous ASOs have received FDA approval, further cementing 
their therapeutic potential for treating previously untreatable genetic-
based disorders. In conclusion, ASOs targeting DYRK1A would not 
only aid in mitigating the cognitive deficits from DS but also have the 
potential to address a broader range of neurological and other 
diseases. As research and advancements continue, ASOs will become 
more refined and hopefully overcome the previously mentioned 
limitations. We are currently on the cusp of a future where individuals 
with DS can experience substantial improvements in their cognitive 
functioning and overall quality of life.
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