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Post-stroke cognitive impairment (PSCI) is a major stroke consequence that has 
a severe impact on patients’ quality of life and survival rate. For this reason, it is 
especially crucial to identify and intervene early in high-risk groups during the 
acute phase of stroke. Currently, there are no reliable and efficient techniques 
for the early diagnosis, appropriate evaluation, or prognostication of PSCI. 
Instead, plenty of biomarkers in stroke patients have progressively been linked 
to cognitive impairment in recent years. High-throughput omics techniques 
that generate large amounts of data and process it to a high quality have been 
used to screen and identify biomarkers of PSCI in order to investigate the 
molecular mechanisms of the disease. These techniques include metabolomics, 
which explores dynamic changes in the organism, gut microbiomics, which 
studies host–microbe interactions, genomics, which elucidates deeper disease 
mechanisms, transcriptomics and proteomics, which describe gene expression 
and regulation. We  looked through electronic databases like PubMed, the 
Cochrane Library, Embase, Web of Science, and common databases for each 
omics to find biomarkers that might be connected to the pathophysiology of 
PSCI. As all, we found 34 studies: 14 in the field of metabolomics, 5 in the field of 
gut microbiomics, 5 in the field of genomics, 4 in the field of transcriptomics, and 
7  in the field of proteomics. We discovered that neuroinflammation, oxidative 
stress, and atherosclerosis may be  the primary causes of PSCI development, 
and that metabolomics may play a role in the molecular mechanisms of PSCI. 
In this study, we  summarized the existing issues across omics technologies 
and discuss the latest discoveries of PSCI biomarkers in the context of omics, 
with the goal of investigating the molecular causes of post-stroke cognitive 
impairment. We also discuss the potential therapeutic utility of omics platforms 
for PSCI mechanisms, diagnosis, and intervention in order to promote the area’s 
advancement towards precision PSCI treatment.
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1 Introduction

Post-stroke cognitive impairment (PSCI) is defined as a clinical 
syndrome characterized by cognitive damage that occurs after a stroke 
and persists for up to 6 months (Mijajlović et al., 2017). Large cohort 
studies show that between 24 and 53.4% of people have PSCI (Douiri 
et al., 2013; Lo et al., 2019), yet there are still no accurate billable codes 
in ICD-11. Compared to stroke survivors without cognitive 
impairment, individuals with cognitive impairment had significantly 
greater rates of disability and mortality (Gaynor et al., 2018). PSCI has 
numerous negative effects on stroke survivors’ functional recovery, 
including executive function, attention (Aam et  al., 2020), spatial 
ability, language, and executive ability (Srikanth et  al., 2003). 
Furthermore, little is known about the pathophysiology of PSCI, 
which can be brought on by a number of factors such as cerebral small 
blood vessel disease (Teng et al., 2017), neuroanatomical lesions (Sun 
et al., 2014), neuroinflammation, and oxidative stress (Zhang X. et al., 
2021). In clinical settings, doctors typically use imaging and scale 
assessments to diagnose patients (Potter et  al., 2021), which the 
accuracy and objectivity are easily affected by the patient’s education 
and age (Kim et  al., 2022), so it is critical since to find objective 
biomarkers. On top of that, there is still much to learn about the 
disease’s molecular mechanisms. A thorough understanding of the 
molecular mechanisms behind PSCI will facilitate the identification 
of reliable biomarkers to aid in disease prognosis, therapy, and 
prevention as well as to diagnose and track the progression of illnesses.

Given the complexity of PSCI’s pathophysiology and the 
limitations of current diagnostic methods, there is a pressing need to 
explore innovative approaches. Omics is defined as the probing and 
analysis of large amounts of data on the entire constitutive structure 
and function of a given biological system at a specific level (Dai and 
Shen, 2022). As significant fields of omics, metabolomics, 
microbiomics, genomics, transcriptomics, and proteomics have made 
irreversible contributions to the hunt for biomarkers and underlying 
molecular mechanisms of diseases throughout the past few decades 
(Fu et al., 2010; Chen and Wu, 2012). Each omics approach delivers 
biological insights at distinct phases (Bjerrum et al., 2008), enhancing 
PSCI comprehension. Metabolomics helps identify neurological 
biomarkers (Zhang et al., 2013) by linking metabolic activity to genetic 
and environmental variables (Fiehn, 2002).Similarly, microbiomics 
helps analyze the interactions between microbial communities and the 
human body, offering insights into neurological dysfunctions 
(Layeghifard et  al., 2017; Sorboni et  al., 2022). Genomics and 
transcriptomics, studying genetic variants and gene expression 
patterns respectively, have identified key molecular alterations 
associated with stroke and its cognitive aftermath (Lockhart and 
Winzeler, 2000; Tan et al., 2021; Li W. et al., 2022; Tsimberidou et al., 
2022; Ya et  al., 2023). Lastly, proteomics, by mapping protein 
interactions and functions, supports the diagnosis and development 
of targeted therapies for neurological disorder (Rohlff, 2001; 
Sancesario and Bernardini, 2018). Although omics approaches are 
crucial for deepening our understanding of PSCI, the proliferation of 
omics research in neurological disorders is impeded by technical 
difficulties, limited clinical applicability, and a lack of comprehensive 
reviews specifically focusing on post-stroke cognitive impairment.

This study aimed to identify multi-omics alterations in patients 
with PSCI. In order to assist in characterizing possible biomarkers 
with prospective applications such as early diagnosis and tracking 

disease progression, we offer an overview of the multi-omics attributed 
with post-stroke cognitive impairment. Additionally, the obstacles 
inherent in biomarker research in PSCI are brought to light so that 
we can work towards advancing precision medicine in PSCI. We also 
illustrate the therapeutic relevance of the omics platform for the 
pathogenesis, diagnosis, and treatment of PSCI, as a means to establish 
the groundwork for an extensive investigation of PSCI.

2 Materials and methods

2.1 Diagnostic biomarker

All published articles from database inception to October 2023 
were searched using our listed term combinations 
(Supplementary Tables S1–S5) in electronic databases such as 
PubMed, Cochrane Library, Embase, Web of Science, and common 
databases for each omics. We then used a snowballing strategy to 
expand the search. We adopted standard inclusion criteria for the 
selection of studies: (1) all tissue types belonging to PSCI patients; (2) 
differential biomarker detection using omics techniques; (3) clinical 
trial studies assessing changes in levels of various types of biomarkers 
in patients with PSCI; and (4) peer-reviewed full-text papers published 
in English. These were the conditions for exclusion: (1) interventional 
studies; (2) non-human studies; (3) non-original research (reviews, 
case reports, etc.). Two authors (QL and AY) independently performed 
screening based on inclusion and exclusion criteria. All disagreements 
experienced were resolved through ongoing discussions with 
all authors.

2.2 Data extraction and processing

Excel software was implemented to manually organize the data 
and perform statistical analysis (Microsoft, Ver. 2019). We separately 
retrieved data from publications that qualified using a pre-designed 
table. Elected information consisted of three sections: (1) article 
information including title, first author, year of publication, and region 
of recruitment; (2) patient information including sample size, sex 
ratio, mean age, stroke type, and cognitive function assessment tool; 
and (3) biomarker information included sample type and selected 
metabolites that were statistically significant (p < 0.05 was considered 
statistically significant). The pictures for this article were drawn in 
Adobe Photoshop and Adobe Illustrator.

3 Results

3.1 Literature search results

We systematically retrieved a total of 19,112 records in 
PubMed, Cochrane Library, Embase, and Web of Science 
databases (Figure 1A; the outcomes of each omics search are shown 
in Supplementary Tables S6–S10). After a first screening of titles and 
abstracts, a second assessment of the entire text, and additional 
resources, 34 papers were retained based on our predetermined 
inclusion and exclusion criteria. Out of the results we  kept, 14 
publications described metabolomics (one of which also discussed 
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microbiomics), 5 articles covered microbiomics, 4 papers concerned 
genomics, 4 articles concerned transcriptomics, and 7 studies 
described proteomics (Figure 1B).

3.2 Characteristics of the included studies

Ultimately, 34 articles were included in our study, with publication 
years between 2011 and 2023. The features of the included studies are 
displayed in Table 1. Of these articles meeting the criteria, 23 (67.65%) 
were undertaken in China, the rest in Poland (2, 5.88%), the 
United States (2, 5.88%), France, Switzerland, Canada, Iran, Korea, 
Indonesia, Singapore, and other countries. We  only counted the 
sample size once in the following research since two Polish studies that 
analyzed the same sample of subjects produced different results. A 

total of 4,223 stroke patients and 702 healthy controls were involved 
in the 34 included studies, with sample size ranging from 10 to 617. 
Of these, the patient source for 26 research was solely ischemic stroke, 
1 study was hemorrhagic stroke, and 7 studies were not defined. 
Subjects were assessed neuropsychologically primarily using the 
Montreal Cognitive Assessment (MoCA) scale or Mini-Mental State 
Examination (MMSE) scale, but the study from Poland also used the 
California Verbal Learning Test 2nd (CVLT2) to assess 
specific abilities.

3.3 Metabolomics in PSCI

Metabolomics demonstrates the qualitative and quantitative 
analysis of the dynamic metabolic responses of the human body in 

FIGURE 1 (Continued)
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response to multifactorial stimuli (Nicholson et al., 1999). Researchers 
typically isolate small molecules using gas chromatography (Xiayan 
and Legido-Quigley, 2008), liquid chromatography, or capillary 
electrophoresis and quantify potential biomarkers using nuclear 
magnetic resonance spectroscopy or mass spectrometry.

Of the research that we looked into, 14 publications described 
differential metabolites, with serum (50.0%) and plasma (41.7%) 
accounting for the majority of biological samples and one (8.3%) for 
feces. We  extracted 54 metabolites from these studies (shown in 
Table 2), and 51 metabolites in total were selected once duplicates 
were eliminated.

There is now more evidence linking B vitamins to PSCI. For 
example, in patients with cerebral infarction, thiamine deficiency is 
predictive with early cognitive impairment (Feng et al., 2020). It has also 
been demonstrated that folic acid, together with its serum-specific 
marker methylmalonic acid (MMA), can predict (Pascoe and Linden, 
2016) and help diagnose (Durga et  al., 2007) cognitive function in 
patients with post-stroke. Following a stroke, it was discovered that folic 
acid metabolism products, choline and betaine (Ueland, 2011), had a 
negative correlation with cognitive performance (Zhong et al., 2021).

One of the possible pathologic mechanisms of PSCI is the 
generation of inflammation after stroke (Zhang X. et al., 2021), which 
activates indoleamine 2,3-dioxygenase (IDO), whose activity is 
associated with cognitive impairment (Gold et al., 2011; Cogo et al., 

2021). IDO leads to increased production of kynurenine, while 
kynurenine (Sapko et al., 2006) and quinolinic acid (Santamaría et al., 
2001; Stone and Darlington, 2002) are involved in the induction of 
synaptic plasticity, and changes in these two substances’ concentrations 
and ratios have been considered accurate indicators of PSCI (Cogo 
et al., 2021). Serum glutamate levels in PSCI patients further support 
the idea (Wang X. et al., 2022) that although glutamate is an excitatory 
neurotransmitter linked to cognitive function, excessive quantities 
might cause severe excitotoxicity that can aggravate ROS and 
inflammation (Liu et al., 2020b). Meng et al. (2016) found that PSCI 
patients had a considerably lower N-acetylaspartic acid/creatine ratio 
in their hippocampal regions, whereas Liu et al. (2015) also discovered 
an increase in serum creatine. Several other alterations in amino acid 
levels have likewise been suggested to be associated with PSCI (Liu 
et al., 2015), including glutamine, proline, tyrosine, phenylalanine, 
isoleucine, tryptophan, valine, and N-acetylneuraminic acid. Notably, 
PSCI was negatively correlated with L-carnitine (Liu et al., 2015; Che 
et al., 2022), which is produced naturally from two necessary amino 
acids (Tein et al., 1993). This is probably because L-carnitine has a 
greater ability to cross the blood–brain barrier and shields neuronal 
cells from ischemia injury (Zhang R. et al., 2012; Ribas et al., 2014).

PSCI pathophysiology involves the metabolic cascade of 
polyunsaturated fatty acids (Baierle et  al., 2014). Whereas alpha-
linolenic acid acts as a substrate for gamma-linolenic acid, which then 

FIGURE 1

(A) Flow diagram of literature search and study selection. (B) Overview of multi-omics of post-stroke cognitive impairment.

https://doi.org/10.3389/fnmol.2024.1375973
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fnmol.2024.1375973

Frontiers in Molecular Neuroscience 05 frontiersin.org

produces arachidonic acid through a sequence of reactions (Kotlega 
et al., 2020), it has been demonstrated that this inflammatory cascade 
is linked to cognitive impairment in stroke survivors (Kotlęga et al., 
2021b). Arachidonic acid may also serve as a bridge between lipid 

metabolism, neuroinflammation, and cognitive function in the 
pathophysiology of ischemic stroke (Szczuko et  al., 2020). 
Prostaglandins formed from arachidonic acid are key mediators of 
neuroinflammation, among which prostaglandin E2, 9S-HODE, and 

TABLE 1 Basic information for omics studies.

Post-stroke cognitive 
impairment

Non-post-stroke 
cognitive impairment

Healthy control Issue 
type

Patience 
source

Stroke 
type

Reference

Sample 
size (F/M)

Average 
age 

(year)a

Sample 
size 

(F/M)

Average 
age 

(year)a

Sample 
size 

(F/M)

Average 
age 

(year)a

72 (40/32) 60.70 NA NA 30 (18/12) 63.1 Serum Poland IS Kotlęga et al. (2021b)

617 (184/433) 60.0 ± 10.5 NA NA NA NA Plasma China IS Che et al. (2022)

73 (40/33) 63.40 NA NA 30 (18/12) 63.1 Plasma Poland IS Kotlęga et al. (2021a)

86 (36/50) 71.10 ± 10.40 170 (81/89) 65.00 ± 10.80 100 (NA) NA Plasma China IS Zhu et al. (2020)

20 (10/10) 66.10 ± 6.50 20 (10/10) 67.50 ± 8.64 20 (10/10) 67.30 ± 6.81 Serum China IS Liu et al. (2015)

30 (5/25) 64.90 ± 8.13 35 (11/24) 64.06 ± 8.67 NA NA Fecal China IS Liu et al. (2020a)

617 (184/433) 60.00 ± 10.50 NA NA NA NA Plasma China IS Zhong et al. (2021)

99 (46/53) 65.30 ± 9.03 83 (24/59) 61.27 ± 10.17 NA NA Serum China IS Feng et al. (2020)

122 (42/80) 64.32 ± 9.82 106 (25/81) 60.55 ± 11.03 NA NA Plasma China IS Gong et al. (2021)

40 (21/19) 61.32 NA NA 20 (9/11) 61.03 Serum China IS Wang X. et al. (2022)

13 (5/8) 69.40 ± 17.80 10 (4/6) 64.70 ± 13.30 NA NA Serum France IS Cogo et al. (2021)

149 (97/52) 81.04 ± 5.30 NA NA NA NA Serum Sweden IS Pascoe and Linden 

(2016)

36 (16/20) 59.00 ± 9.3 36 (17/19) 59.300 ± 8.20 NA NA Brain China IS Meng et al. (2016)

41 (19/22) 72.30 ± 12.20 NA NA NA NA Plasma Canada IS Gold et al. (2011)

34 (24/10) 61.50 49 (44/5) 54.00 NA NA Fecal China IS, HS Wang H. et al. (2022)

53 (18/35) 72.20 ± 10.30 40 (13/27) 66.00 ± 10.80 NA NA Fecal China IS Ling et al. (2020a)

41 (24/17) 69.63 ± 9.35 25 (11/14) 68.92 ± 8.46 NA NA Fecal China IS Ling et al. (2020b)

29 (9/20) NA 27 (13/14) NA 19 NA Fecal China IS Huang et al. (2021)

86 (36/50) 63.12 ± 12.47 NA NA NA NA Blood America IS, HS Han Z. et al. (2020)

48 (34/14) 74.52 ± 8.80 158 (93/65) 61.49 ± 10.78 NA NA Blood Iran IS, HS Rezaei et al. (2016)

81 (20/61) 71.40 ± 11.32 NA NA NA NA Serum China IS Zeng et al. (2019)

361 (123/238) 63.80 ± 9.60 NA NA 346 

(155/191)

60.6 ± 10.6 Blood China IS Han Y. et al. (2020)

36 (20/16) 68.00 38 (23/15) 67.00 NA NA Plasma China IS, HS Wang et al. (2020)

45 (NA) NA 32 NA NA NA Serum China IS, HS Yuan et al. (2022)

108 (41/67) 53.78 ± 11.32 NA NA 72 (37/39) 54.07 ± 11.18 Blood China IS, HS Zhai et al. (2020)

39 (19/20) 66.20 ± 8.80 37 (17/20) 65.80 ± 9.20 38 (18/20) 65.6 ± 7.4 Serum China IS, HS Huang et al. (2016)

35 (11/24) 61.63 ± 8.47 21 (10/11) 58.67 ± 9.01 NA NA Serum Indonesia IS Prodjohardjono et al. 

(2020)

23 (NA) NA NA NA 17 (13/4) 56 Plasma Singapore IS Datta et al. (2022)

61 (NA) NA NA Plasma America IS Hazelwood et al. 

(2022)

80 (39/41) 64.50 ± 10.20 118 (44/74) 67.60 ± 9.10 NA NA Serum China IS Zhang Y. et al. (2021)

192 (72/120) 65.70 ± 7.80 124 (49/75) 65.30 ± 8.20 NA NA Serum China HS Gao et al. (2022)

37 (NA) NA 43 (NA) NA NA NA Serum China IS Li Z. et al. (2022)

286 (117/189) NA NA NA NA NA Blood Korea IS Kim et al. (2012)

10 (5/5) 60.30 ± 9.17 NA NA 10 (4/6) 55.80 ± 6.92 Plasma China IS Qi et al. (2023)

aContinuous variables are presented as mean ± SD; NA means not available.
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13S-HODE were found to be  significantly correlated with PSCI 
(Kotlęga et al., 2021a).

Apart from the metabolites present in blood samples of patients, 
the metabolomics of PSCI are also influenced by differential 
metabolites that are broken down by gut microbes. These metabolites 
include butyrate (Wang H. et  al., 2022), lipopolysaccharide, 
trimethylamine-n-oxide (TMAO) (Zhu et al., 2020; Gong et al., 2021), 
and seven major short-chain fatty acids (Liu et al., 2020a), which are 
acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric 
acid, valeric acid, and caproic acid.

Heterogeneity in current metabolomics research on PSCI is 
challenging to avoid because of variations in areas, sample sizes, and 
analytical techniques. Secondly, most of the selected studies are blood 
studies, and there are no metabolomics studies of brain tissue and 
other organs yet. Thirdly, there is a wide variety of metabolites and a 
lack of replicability. Fourthly, there aren’t many viable biomarkers for 
PSCI research in nuclear magnetic resonance spectroscopy, one of the 
potent metabolomics techniques. We  believe that future research 
directions for study could focus on enhancing these elements and 
delving deeper into PSCI therapy that targets lipid level alterations.

3.4 Gut microbiomics in PSCI

Microbiomics is an emerging field of research aimed at identifying 
the components of the microbiome, characterizing the interactions 
between the microbiome and the host, and determining its impact on 
disease (Barko et al., 2018). The most used techniques are bacterial 16s 
ribosomal RNA genome sequencing (Wang and Qian, 2009) and 
shotgun sequencing (Quince et al., 2017).

Among the five studies on gut microbiomics that were 
considered, we found divergent microbiota in two phyla, one class, 
two orders, three families, and six genera. The emergence of the 
gut-brain axis (GBA) has enhanced our understanding of 
neurological disease progression. The gut microbiota may interact 
with GBA through autonomic, endocrine, and immune crosstalk 
(Zhao et al., 2021). Therefore, researchers also paid attention to the 
gut microbiome of PSCI patients. Bacillota (Liu et  al., 2020a), 
Proteobacteria (Ling et  al., 2020a,b) and Bacteroidetes (Liu et  al., 
2020a) at the phylum level in PSCI patients. Gammaproteobacteria 
was negatively correlated with MoCA scores in patients with post-
stroke comorbid cognitive impairment and depression (Ling et al., 
2020a,b). Patients with PSCI exhibited notable visual changes in 
Enterobacterales and Lactobacillales, which were linked to 
inflammation (Ling et  al., 2020a). Whereas the abundance of 
Enterobacteriaceae (Huang et  al., 2021; Wang H. et  al., 2022), 
Streptococcaceae, and Lactobacillaceae increased significantly in PSCI 
patients (Ling et al., 2020a). At the genus level, Fusobacterium (Liu 
et  al., 2020a), Streptococcus, Klebsiella, Lactobacillus (Ling et  al., 
2020a) and Enterococcus, Bacteroides (Huang et  al., 2021) were 
significantly altered in post-stroke patients. Patients with PSCI 
exhibited a specific deficiency in microorganisms that produce short-
chain fatty acids (SCFAs), including Oscillibacter, Ruminococcus, 
Gemmiger, Coprococcus, and Barnesiella (Liu et al., 2020a). SCFAs can 
cross the blood-brain barrier into the brain and act in the central 
nervous system (Kekuda et  al., 2013), which also confirms the 
gut-brain axis of bidirectional communication.

TABLE 2 Metabolites in PSCI.

Metabolite Tissue 
type

Expression Reference

Arachidonic acid Serum Down

Kotlęga et al. 

(2021b)

Eicosapentaenoic acid Serum Down

Alpha-linolenic acid Serum Up

Stearidonic acid Serum Up

Tricosanoic acid Serum Up

Pentadecanoid acid Serum Down

Gamma-linolenic acid Serum Down

Myristic acid Serum Up

Myristoleic acid Serum Up

Vaccenic acid Serum Up

Arachidic acid Serum Up

L-carnitinea Plasma Down Che et al. (2022)

Prostaglandin E2 Plasma Up

Kotlęga et al. 

(2021a)

9-hydroxyoctadecadienoic 

acid

Plasma Up

13-hydroxyoctadecadienoic 

acid

Plasma Up

5-hydroxyeicosatetraenoic 

acid

Plasma Up

12-hydroxyeicosatetraenoic 

acid

Plasma Up

Maresin 1 Plasma Up

Leukotriene B4 Plasma Up

Resolvin D1 Plasma Down

Trimethylamine N-oxidea Plasma Up Zhu et al. (2020)

L-carnitinea Serum Up

Liu et al. (2015)

Creatine Serum Up

L-glutamine Serum Up

L-proline Serum Up

N-acetylneuraminic acid Serum Up

Hypoxanthine Serum Up

Uric acid Serum Up

L-tyrosine Serum Up

L-kynureninea Serum Up

L-phenylalanine Serum Up

Sphingosine-1-phosphate Serum Up

L-palmitoylcarnitine Serum Up

Citric acid Serum Down

L-valine Serum Down

L-isoleucine Serum Down

L-tryptophan Serum Down

LysoPCs Serum Down

Stearoylcarnitine Serum Down

(Continued)
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The results of changed biodiversity in the PSCI microbiome 
varied, depending on a number of variables including age, 
antibiotic use, and diet (Lozupone et al., 2012). The present study 
did not exclude the influence of the aforementioned factors, and 
the cross-sectional study design made it impossible to establish a 
causal link between PSCI and changes in the microbiota. 
We  further propose that, upon the present flaws have been 
addressed, future research should concentrate on delving deeper 
into the connections between PSCI and the gut microbiota in 
combination with other omics analyses.

3.5 Genomics in PSCI

High-throughput sequencing technology has made human 
diseases easier to investigate in recent years by giving researchers a 
deeper and more comprehensive platform to examine disease 
processes and underlying mechanisms. Genetic linkage analysis, 
candidate gene studies, genome-wide association studies (GWAS), 
and next-generation sequencing techniques (NGS) have become the 
main means to study disease etiology and risk genes (Giri et al., 2016).

Out of the 5 genomics studies we found, 4 genes were described 
to be significantly associated with PSCI. Brain-derived neurotrophic 
factor (BDNF) promotes neurology and angiogenesis (Kurozumi 
et al., 2004; Schäbitz et al., 2007) and influences post-stroke recovery 
through its neuroplastic effects (Lu, 2003). BDNF Val is considered a 
risk allele for patients with poststroke dementia, and it was found that 
ischemic stroke patients with a heterozygous Val/Met genotype 
developed cognitive impairment earlier than those with a Met/Met 

homozygous genotype and had significantly reduced survival (Kim 
et al., 2012; Rezaei et al., 2016). The BDNF val66Met single nucleotide 
polymorphism (SNP) leads to intracellular packaging of proBNDF 
and secretion of mature BDNF (Chen et al., 2004; Yoshida et al., 2012) 
and is considered a key predictor of cognitive outcome and functional 
recovery after stroke in hospitalized patients (Rezaei et al., 2016; Han 
Z. et al., 2020). The reason may be that BNDF val66Met is associated 
with the prefrontal cortex, anterior cingulate cortex, and hippocampus 
volume (Niendam et al., 2012; Balconi, 2013), affecting the neural 
circuits that control cognition (Schweiger et al., 2019). Serum cystatin 
C is similarly thought to prevent cognitive impairment by inhibiting 
amyloid Aβ (Sastre et al., 2004; Kaeser et al., 2007), a protein encoded 
by the CST3 gene. Zeng et al. (2019) claimed that the CST3B allele or 
CST3 gene polymorphism could be  one of the early diagnostic 
indicators of PSCI. In addition, apolipoprotein E (APOE), one of the 
major members of very low-density lipoproteins (Levy et al., 2001), 
was found to have three alleles (ε2, ε3, and ε4), and APOE ε4 carriers 
and ε4 alleles are more susceptible to PSCI than healthy populations 
(Han Y. et al., 2020). APOE ε4 allele has also been suggested to be a 
biologically active factor for β-amyloid peptide deposition in the 
brain, which ultimately leads to the narrowing of blood vessels and 
altered cerebral perfusion (Gurol et al., 2006; Godin et al., 2009).

There are currently no genome-wide investigations of PSCI, and 
research is restricted to potential genes at this time. Genome-wide 
data from PSCI patients must be gathered and processed immediately 
in order to identify all loci of variations linked with PSCI risk and any 
potential regulatory mechanisms. Finding all degrees of association 
responses and PSCI mechanisms will be made easier by connecting 
genetic variations to the development of the disease. In addition, 
we advocate further exploration of the clinical and pharmacological 
applications of BDNF for stroke and PSCI, which we  believe is a 
powerful way forward.

3.6 Transcriptomics in PSCI

Not only is transcription the initial stage of gene expression, but 
it is also a crucial regulatory stage. The post-genome age has seen a 
rise in interest in transcriptomics. These days, techniques for analyzing 
gene expression include RNA sequencing, microarray screening, and 
real-time PCR (Bagyinszky et al., 2020). Not only that, for microRNA 
detection, other methods based on nucleic acid amplification have 
been developed (Ye et al., 2019), including rolling loop amplification 
(RLA), double-stranded specific nuclease (DSN)-based amplification, 
loop-mediated isothermal amplification (LAMP), etc.

Six distinct miRNAs were proposed as PSCI biomarkers from a 
total of 4 transcription-related studies that were deemed relevant to 
patients with PSCI. MicroRNA (miRNA) is increasingly being 
recognized as a novel biomarker and therapeutic target for a variety of 
diseases, including ischemic stroke (Yang S. et  al., 2020). MiRNA 
dysregulation provides early warning signals of brain disease outwardly 
by causing changes in mRNA through exosomes in concert with 
proteins (Zhang et al., 2015). MiRNA-132 interferes with neuronal 
maturation by affecting dendritic arborization and spinogenesis and 
has been demonstrated to exist as a key activity-dependent regulator 
of cognition (Hansen et al., 2013). The predictive effect of miRNA-132 
on PSCI has been found (Huang et al., 2016; Yuan et al., 2022). Clinical 
studies have shown that miRNA-21 attenuates brain injury and 

TABLE 2 (Continued)

Metabolite Tissue 
type

Expression Reference

Acetic acid Plasma Up

Liu et al. 

(2020a)

Acetic acid Fecal Down

Propionic acid Fecal Down

Isobutyric acid Fecal Down

Butyric acid Fecal Down

Isovaleric acid Fecal Down

Valeric acid Fecal Down

Caproic acid Fecal Down

Choline Plasma Down Zhong et al. 

(2021)Betaine Plasma Down

Thiamine Serum Down Feng et al. 

(2020)

Trimethylamine N-oxidea Plasma Up Gong et al. 

(2021)

L-glutamate Serum Up Wang X. et al. 

(2022)L-kynureninea Serum Up

Quinolinic acid Serum Up Cogo et al. 

(2021)

Methylmalonic acid Serum Up Pascoe and 

Linden (2016)

aFor the duplicate metabolites.
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neurological dysfunction through neurogenesis and angiogenesis 
(Lopez et al., 2017), and its upregulation is significantly associated with 
an increased risk of PSCI (Yuan et al., 2022). Moreover, miRNA-200b 
was found to be associated with the vascular endothelial growth factor 
A gene (Li et al., 2017), which can enhance vascular permeability, and 
its expression level was also found to be up-regulated in PSCI patients 
(Yuan et al., 2022). Also capable of regulating VEGF expression was 
miRNA-195 (Wang et al., 2013), which was also found to be associated 
with PSCI by Zhai et  al. (2020). There are also miRNAs such as 
miRNA-497 (Zhai et al., 2020) and miRNA-let-7i (Wang et al., 2020) 
that were found to be  significantly associated with post-stroke 
cognitive function in PSCI patients.

Both non-protein-coding and protein-coding RNA are included 
in the entire gene expression profile linked to PSCI. Unfortunately, the 
present study was limited to miRNA. The supremacy of transcriptome 
development must be understood in order to facilitate the deciphering 
of PSCI molecular networks. To provide a more thorough 
understanding, we propose that future efforts be directed towards 
investigating the entire range of gene expression in PSCI.

3.7 Proteomics in PSCI

Proteomics is the characterization of the proteome, including the 
expression, structure, function, interactions, and modifications of 
proteins at any stage (Domon and Aebersold, 2006). Proteomics plays 
a key role in early diagnosis, prevention, and tracking of the progress 
of diseases. Proteomics assay techniques are complex and numerous, 
such as chromatography-based purification, electrophoresis-based 
separation, and high-throughput technologies.

Seven research on PSCI proteomics have been reported to date. 
One of the main roles that inflammation appears to have in the 
pathophysiology of PSCI. Serum amyloid A is involved in the 
chemotactic recruitment of inflammatory cells (Sack, 2018) and has 
been shown to play a role in various central nervous system diseases 
(Kisilevsky and Manley, 2012), including PSCI (Zhang Y. et  al., 
2021). The upregulation of the inflammatory protein GP1BA, which 
binds to the von Willebrand factor and is involved in platelet 
adhesion and activation (Kroll et  al., 1991), indicates a 
pro-inflammatory response of the immune system to ischemic 
injury and promotes the occurrence of PSCI (Hazelwood et al., 
2022). The proteins ARTN, HGF (Gallo et al., 2015), and VEGF 
(Lee et  al., 2010) are associated with angiogenesis and 
neuroprotection, and their early predictive role in PSCI patients was 
identified (Prodjohardjono et al., 2020; Hazelwood et al., 2022). 
Both neuroglobin and hemoglobin, which are subtypes of pearl 
proteins (Lopez et al., 2010; Baez et al., 2016), play an important 
role in oxidative stress and protect brain tissue from hypoxic and 
ischemic damage, so their reduced levels increase the risk of 
developing PSCI (Gao et al., 2022; Li Z. et al., 2022).

According to Qi et al. (2023), 31 proteins that were up-regulated in 
PSCI patients compared to controls may be  connected to platelet 
aggregation and coagulation, whereas 128 proteins that were down-
regulated may be connected to pathways such complement activation, 
fibrin clotting, and cell adhesion protein binding. However, a quantitative 
proteomics study of plasma in patients with lacunar infarction identified 
112 proteins associated with cognitive decline (Datta et al., 2022), most 
of which were not associated with inflammation, complement activation, 

coagulation, fibrinolysis, or endothelium. We  hypothesize that this 
variability exists because of geographic differences, sample selection 
time, and subject individualization differences.

Based on current research findings, proteins are powerful 
biomarkers for the diagnosis and prognosis of PSCI. However, the 
majority of research conducted thus far has utilised blood samples, 
with only a small number examining additional samples such urine, 
saliva, brain tissue, and cerebrospinal fluid. We  look forward to 
improving the differential expression analysis and co-expression 
network analysis of different samples of PSCI patients in the future to 
further explore the mechanism behind PSCI.

4 The clinical application prospect of 
multi-omics in PSCI

A variety of omics platforms have been developed to detect 
biomarkers at different levels, enabling us to delve into previously 
uncharted territories of understanding, such as diagnosis, mechanism 
exploration and targeted therapy for PSCI (Figure 2).

4.1 Potential diagnostic biomarker

Based on the current metabolomics of PSCI, amino acids such as 
glutamine, kynurenine, and its metabolite quinolinic acid may 
be  employed as PSCI diagnostic indicators. Glutamate has been 
implicated in the pathophysiology of cerebral ischemia in earlier 
research (Dirnagl et al., 1999), and it has also been suggested that 
glutamate may be a biomarker for stroke (Castellanos et al., 2008), 
Parkinson’s disease (Vascellari et al., 2020), Huntington’s disease, and 
other neurodegenerative diseases that cause early cognitive 
dysfunction (Unschuld et  al., 2012) due to the excitotoxicity of 
glutamate (Estrada Sánchez et al., 2008). One of the necessary amino 
acids, L-tryptophan, can be  metabolized to quinolinic acid and 
kynurenine via the kynurenine pathway. It has been discovered that 
these metabolites have the ability to distinguish between 
atherosclerotic and cardiac cerebral infarcts (Lee et  al., 2023). 
Moreover, a number of processes by which the kynurenine pathway 
causes neurotoxicity and neuronal death (Guillemin, 2012) can 
contribute to cognitive impairments (Heisler and O'Connor, 2015). 
Also, folate has been proposed for the diagnosis of PSCI and has 
previously been found to have potential as a biomarker for ischemic 
stroke (Sidorov et al., 2019).

Gut microbiomics at PSCI identified microbiota that could 
equally serve as non-invasive diagnostic biomarkers, including 
Firmicutes, Bacteroidetes, Enterobacteriaceae, and Bacteroides. Current 
ideas suggest that dysregulation of Firmicutes/Bacteroidetes ratio can 
be used as a potential biomarker of cognitive impairment (Ticinesi 
et al., 2019) and is also highly associated with obesity (Sze and Schloss, 
2016). Bacteroides, one of the Bacteroidetes, can also be used as a 
biomarker for the recanalization of ischemic stroke (Chou et al., 2023) 
and the worsening of multiple sclerosis (Devolder et  al., 2023), 
possibly because of the pathogenicity and pro-inflammatory 
neurotoxins it produces (Sears, 2009). Enterobacteriaceae, mostly 
considered as pro-inflammatory bacteria, have been shown to serve 
as noninvasive diagnostic biomarkers for Alzheimer’s disease (Chen 
et al., 2023) and epilepsy (Cui et al., 2021).
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The transcriptomics of PSCI has also highlighted the effectiveness 
of certain miRNAs in terms of diagnosis, including miR-21, miR-132, 
miR-195, miR-200b, miR-497, and miR-let-7i. Thus far, research has 
validated the molecular diagnostic capability of miR-21  in several 
diseases such as acute cerebral infarction (Mohammed et al., 2022), 
atherosclerosis (Fontanella et al., 2021), and glioma (Zhou et al., 2018). 
Other studies have identified the diagnostic properties of miR-132 in 
mild cognitive impairment (Sheinerman et al., 2012; Xie et al., 2015) 
due to its modulation of glutamate receptor levels. Not only that, 
miR-132 also plays the role of a biomarker in the diagnosis of major 
depression and a variety of central nervous system disorders (van den 
Berg et al., 2020). The researchers also found miR-195 and miR-497 in 
acute stroke (Zhai et  al., 2020) and cognitive impairment in 
schizophrenia (Huang et al., 2020). For miR-200b, current research has 
only identified its diagnostic possibilities in Alzheimer’s disease or mild 
cognitive impairment (Liu et al., 2014). And more study is still needed 
to fully understand the precise diagnostic performance of miR-let-7i.

Only neuroglobin, which has also been utilized in the diagnosis 
of delayed cerebral ischemia after craniocerebral injury (Chen et al., 
2015) and subarachnoid hemorrhage (Ding et al., 2020), has been 
asserted as a diagnostic biomarker by the proteomics of PSCI. In 
contrast, the genomics of PSCI is limited to the study of candidate 
genes without biomarker discovery.

It is worth noting that only a small number of studies have 
demonstrated the diagnostic performance of these markers and their 
causal relationship with PSCI, such as neuroglobin (Gao et al., 2022), 
serum amyloid A (Zhang Y. et al., 2021), L-carnitine (Che et al., 2022) 
and TMAO (Zhu et al., 2020). The rest of the biomarkers have only 
shown associations with PSCI at a statistical level, and these changes 
may be  related to multiple pathways including inflammation, so 
subsequent studies need to be approached with caution. But there is 
not enough evidence to show how these pathways interact with each 
other. Also, the studies that are already out there are still in the 
experimental stage and absence of any multicenter or large-sample 

FIGURE 2

Prospects for clinical applications of the multi-omics of PSCI.
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cohort studies. This needs to be fixed in the future, which means that 
researchers will have to deal with results that aren’t identical because 
of different technologies, groups, or causes. Still, we prefer more study 
to be done on the omics of PSCI and how the results can be used in 
the clinic. More importantly, we need to come up with consistent 
diagnostic standards for these possible biomarkers so that we can 
quickly find the best ways to treat PSCI.

4.2 Possible mechanism

Inflammation and oxidative stress appear to play important roles 
in PSCI (Figure 3). It is well known that cognitive function is based on 
synaptic plasticity (Sloley et al., 2021). Thiamine, an antioxidant, binds 
to several mitochondrial enzymes and alters mitochondrial interactions 
(Marcé-Grau et al., 2019), and its deficiency reduces the level of the 
neurotransmitter acetylcholine by decreasing the activity of choline 
acetyltransferase (Jankowska-Kulawy et al., 2010) and induces excessive 
glutamate release (Mkrtchyan et al., 2016). Glutamine is a precursor of 
excitatory neurotransmitter glutamate, which plays an important role 
in synaptic plasticity (Reiner and Levitz, 2018). Overconsumption of 
glutamine can lead to mitochondrial damage and produce a large 
number of reactive oxygen species (ROS) (Verma et al., 2022), which 
induces neurotoxicity. Choline, a precursor of acetylcholine, is 
implicated in cholinergic transmission and signaling, whereas reduced 
or absent levels of choline in the brain lead to impaired cognitive 
function (de Medeiros et al., 2019). It is worth noting that choline is 
likewise recognized as a precursor to phosphatidylcholine, which slows 
cognitive decline (Blusztajn et al., 2017). An imbalance in the ratio of 
quinolinic acid, an NMDA (N-methyl-D-aspartic acid) receptor 
agonist, to kynurenine, an NMDA receptor antagonist, which is a 

kynurenine pathway metabolite of tryptophan and induces synaptic 
plasticity (Hestad et al., 2022), also contributes to neuroinflammation 
(Forrest et  al., 2015). Also, hemoglobin and neuroglobin are 
neuroprotective, scavenging and detoxifying reactive oxygen species 
(Agyemang et  al., 2021; Gorabi et  al., 2021), so deficiencies in 
hemoglobin and neuroglobin predispose the body to cognitive 
dysfunction. In addition to these two proteins, serum amyloid A is 
involved in the chemotactic recruitment of inflammatory cells (Lee 
et al., 2020), and after stroke activates NLRP3 (NOD-like receptor 
thermal protein domain associated protein 3) inflammasome through 
oxidative stress to impair neuronal cells and cognitive function (Shridas 
and Tannock, 2019). The gut microbiota plays an important role in 
regulating the body’s metabolism, so ecological imbalances after stroke 
often cause activation of pro-inflammatory microglia leading to 
cognition-related neuroinflammation (Liu et al., 2022). Trimethylamine- 
n-oxide (TMAO) produced through gut microbial metabolism can 
lead to neuronal cell senescence by affecting mitochondrial energy 
metabolism, further exacerbating neuroinflammation and oxidative 
stress, ultimately leading to degeneration of brain function and 
cognitive impairment (Brunt et al., 2021).

Another important mechanism of PSCI may be atherosclerosis 
(Figure 3). After stroke, changes in the body’s fatty acid levels may lead 
to plaque formation by inducing the production of β-amyloid (Díaz 
et al., 2022). In turn, β-amyloid has neurotoxic effects on neurons 
(Fukuchi et  al., 1993) and can be  deposited in blood vessel walls 
leading to atherosclerosis (Stakos et al., 2020). The APOE ε4 allele was 
found to be  a biologically active factor in β-amyloid deposition, 
(Rasmussen, 2016) and it is more likely to be found in post-stroke 
patients (Abboud et al., 2008). Even though β-amyloid may be initially 
eliminated by cystatin C, the neuroprotective effect of cystatin C 
decreases rapidly once the demand increases (Sheikh et al., 2021). In 

FIGURE 3

Possible pathogenesis of PSCI. NMDA receptor, N-methyl-D-aspartic acid receptor; NLRP3 inflammasome, NOD-like receptor thermal protein domain 
associated protein 3 inflammasome; TMAO, trimethylamine-n-oxide.
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contrast, CST3 B, an allele of cystatin C, often leads to a decrease in 
cystatin C secretion, which ultimately leads to the development of 
atherosclerosis (Zeng et al., 2019). In addition, Enterobacteriaceae, one 
of the microorganisms, metabolizes lipopolysaccharide, which not 
only leads to the release of pro-inflammatory factors, but also leads to 
the deposition of β-amyloid (Płóciennikowska et  al., 2015). Most 
animal studies have shown that β-amyloid is often deposited in the 
thalamus after stroke (van Groen et al., 2005; Mäkinen et al., 2008; 
Zhang J. et al., 2012), while other studies have found that β-amyloid is 
deposited in the hippocampus (Dietrich et  al., 1998; Basak et  al., 
2023). It is well known that the thalamic nuclei play an important role 
in cognitive function (Dalrymple-Alford et  al., 2015), and the 
hippocampus is closely related to the thalamic nuclei (Braak 
et al., 1996).

The main causes of PSCI tend to be neuroinflammation, oxidative 
stress, and atherosclerosis. Similar to Alzheimer’s disease (Acharya 
et al., 2024) and post-traumatic encephalopathy dementia (Kornblith 
et al., 2022), the pathophysiology of this disease remains complex and 
poorly understood. Existing research have primarily demonstrated a 
statistical link rather than a definitive causal relationship between 
specific mechanisms and the disease. Studies discovered that the 
accumulation of amyloid β might trigger an inflammatory reaction, 
and subsequent processes resulting from these inflammatory changes 
may be the underlying cause of the disease in PSCI (Lalancette-Hébert 
et al., 2012; Ott et al., 2018; Izzy et al., 2021). Likewise, oxidative stress 
can impact the integrity of neurons and the expression of genes, which 
in turn affects cognitive performance by causing changes in the 
structure of hippocampal dendrites (Chi et al., 2023). There is also 
data suggesting that atherosclerosis may be a separate yet collaborative 
disease phase of PSCI (Yang Z. et al., 2020). Thus far, ongoing research 
has not been able to conclusively establish the individual contribution 
of a specific mechanism in PSCI. Neuroinflammation, oxidative stress, 
and atherosclerosis are potential factors that could potentially 
contribute to the disease and/or its progression. However, the specific 
impact of these factors is still unknown. To fully comprehend the 
precise mechanisms and causal pathways underlying PSCI, more 
study is undoubtedly required in the future.

In addition, this paper focuses solely on the potential involvement 
of biomarkers in the pathogenesis within the omics context, without 
conducting a thorough assessment of current research findings. This 
limitation significantly hinders our understanding of the mechanism, 
which is a key drawback of the paper. Apart from these two possible 
mechanisms, cerebral small blood vessel disease (Teng et al., 2017), 
neuroanatomical lesions (Sun et al., 2014), and lymphatic pathway 
damage (Back et al., 2017) are also on the radar, but most of them are 
secondary to various levels of brain damage and lack a specific 
association with cognitive function. Based on this, we  encourage 
scholars to comprehensively and further explore the pathogenesis of 
PSCI in order to solve the current clinical difficulties.

4.3 Feasible treatment and intervention

On the basis of existing omics research, we suggest treating PSCI 
with a combination of dietary intervention and drug-targeted therapy.

The main intervention for PSCI should be dietary changes since 
they are more widely accessible. ALA, EPA, and DHA are examples of 
n-3 unsaturated fatty acids, which are necessary fats that are 

exclusively found in food. n-3 unsaturated fatty acids (including ALA, 
EPA, and DHA) are essential fatty acids that can only be obtained 
through food. It has been found that n-3 fatty acids can produce 
specialized pro-resolving mediators through the cyclooxygenase and 
lipoxygenase pathways (Artiach et al., 2020; Christie and Harwood, 
2020), while ALA and EPA have been shown to reduce the risk of 
neurological disorders such as stroke and mild cognitive impairment 
(Abdelhamid et al., 2020), and supplementation with ALA protects 
hippocampal neurons after a stroke and can also improve memory 
and spatial learning ability (Crupi et al., 2013). More than that, DHA 
has been found to reduce β-amyloid deposition and oxidative stress 
after stroke (Cardoso et al., 2016). Choline and its derivative betaine 
are involved in the irreversible cycling of methionine and 
homocysteine (Veskovic et al., 2019), and their addition to the diet 
may improve hyperhomocysteinemia to a certain extent (Rosas-
Rodríguez and Valenzuela-Soto, 2021), thereby preventing stroke and 
cognitive impairment. L-carnitine supplementation has been found to 
not only improve cerebral blood flow supply in stroke patients (Endo 
et al., 2018) but also regulate mitochondrial energy metabolism and 
promote neurotransmitter release (Ferreira and McKenna, 2017), and 
about 3/4 of the body’s L-carnitine is obtained from the diet. Gut 
microbes can break down dietary fiber into a variety of short-chain 
fatty acids (SCFAs), which not only promote cognitive function but 
also provide synaptic plasticity and play an important role in the 
gut-brain axis (Dalile et  al., 2019). Some studies have found that 
administration of SCFAs improved cognitive function and inhibited 
β-amyloid aggregation (Ho et al., 2018).

Pharmacological treatment is also required for PSCI. miRNAs 
exist in a stable form in human plasma and are not affected by 
endogenous RNase activity (Eisenberg et al., 2015). miRNAs in the 
blood of PSCI patients suffer from an imbalance in the miRNA cycle 
due to tissue damage (Pascual et al., 2021). Several studies have shown 
that miR-21 is not only an anti-apoptotic factor (Seike et al., 2009), but 
also has neuroprotective effects against cerebral ischemia/reperfusion 
injury, and moreover alleviates neuroinflammation (Yan et al., 2021). 
Whereas miR-132 has been found to be a key regulator of cognition 
(Walgrave et al., 2021), and overexpression inhibits learning ability 
(Cong et al., 2021). Drug therapy for PSCI can be targeted to regulate 
miRNA balance in the body, thereby regulating neuronal activity and 
maintaining synaptic plasticity. BDNF is also believed to regulate 
synaptic plasticity and enhance learning ability (Lu et al., 2014), and 
studies have shown that BDNF can promote the recovery of movement 
and sensation in stroke patients (Schäbitz et al., 2007). The treatment 
of BDNF can also be used as a new therapeutic target to improve PSCI 
in the future.

In order to implement targeted interventions at various stages of 
the disease’s incidence, we advise researchers to keep investigating the 
use of these biomarkers in PSCI intervention and therapy in the future 
and to provide constructive recommendations. However, looking at 
the future of PSCI intervention and treatment only from the 
perspective of omics is one of the limitations of this paper, because the 
current intervention and treatment initiatives for PSCI are numerous. 
The underlying method of ‘hierarchical prevention’ is more 
appropriate when discussing PSCI treatment and prevention from a 
non-omics standpoint. According to research, most dementia cases 
and strokes can be avoided (Casolla et al., 2019). We propose that 
primary preventive methods should take into account both stroke and 
cognitive impairment, since the pathophysiology of PSCI remains 
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uncertain. Given the current body of data, early multi-target 
intervention based on lifestyle or vascular problems is imperative to 
reduce the occurrence of PSCI. High-risk factors for PSCI include 
genetic predisposition, vascular risk factors, and population variables 
(Huang et  al., 2022), so treatment in the acute stage following a 
cerebrovascular injury is crucial. During secondary prevention phase, 
it is frequently essential to actively investigate the underlying cause 
and administer focused care, such as thrombus removal, 
hyperlipidemia control, education enhancement, and improved motor 
function training, to prevent stroke and early cognitive damage. 
Postponing the additional deterioration of cognitive function and 
enhancing daily living skills are the primary goals of tertiary 
prevention of PSCI. However, PSCI is now treated mostly with other 
cognitive dysfunction disorders, including drug therapy and non-drug 
therapy, as there are no large-scale, randomized, double-blind, 
controlled clinical trials available. Though further clinical research is 
required to validate their effectiveness in PSCI, recent studies have 
suggested that medications such as Actovegin (Guekht et al., 2017), 
Ginkgo biloba extract (Berthier et al., 2009), and Acetylcholinesterase 
inhibitors (Donepezil) (Kim et  al., 2020) may be  able to improve 
cognitive performance. Acupuncture (Wang et al., 2016), transcranial 
magnetic stimulation, transcranial direct current stimulation 
(Begemann et al., 2020), adaptive cognitive training (Tang et al., 2019), 
and other sophisticated non-pharmacological treatments for post-
stroke cognitive impairment have all demonstrated some promise in 
enhancing cognitive function. Therefore, we are still looking forward 
to advances in the treatment of PSCI, whether based on omics or 
traditional hierarchical prevention, which may greatly improve 
patient outcomes.

5 Conclusion

All things considered, the use of biomarkers in mechanism 
mining, early diagnostic support, illness progression tracking, and 
therapeutic target investigations has been eye-opening. In the context 
of omics, uncovering potential biomarkers of disease, exploring 
molecular pathways of disease, and testing drug efficacy are no longer 
limited to the single analyses of the past, and advances in high-
throughput technologies have made PSCI research less slow. It is also 
the demand for disease research that in return promotes the 
development of omics technology, and new technologies and new 
platforms continue to help PSCI research. However, omics studies of 
PSCI are in their infancy, and there are currently no approved 
biomarkers for the diagnosis and prediction of PSCI. Translating 
initial research into clinical applications requires a more rigorous 
validation process involving the use of expertise, the development of 
predictive models, and ethical and market regulation.

We believe that future omics-based studies will help to understand 
the specific interactions of these biomarkers, help to determine the 
meaning of changes at each time node and advance the study of PSCI-
specific drugs. Omics will surely show a greater light in the future 
market, and its other potential applications are yet to be explored.
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