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Non-coding RNAs (ncRNAs) play essential regulatory functions in various 
physiological and pathological processes in the brain. To systematically 
characterize the ncRNA profile in cortical cells, we  downloaded single-cell 
SMART-Seq v4 data of mouse cerebral cortex. Our results revealed that the 
ncRNAs alone are sufficient to define the identity of most cortical cell types. 
We  identified 1,600 ncRNAs that exhibited cell type specificity, even yielding 
to distinguish microglia from perivascular macrophages with ncRNA. Moreover, 
we characterized cortical layer and region specific ncRNAs, in line with the results 
by spatial transcriptome (ST) data. By constructing a co-expression network 
of ncRNAs and protein-coding genes, we  predicted the function of ncRNAs. 
By integrating with genome-wide association studies data, we  established 
associations between cell type-specific ncRNAs and traits related to neurological 
disorders. Collectively, our study identified differentially expressed ncRNAs at 
multiple levels and provided the valuable resource to explore the functions and 
dysfunctions of ncRNAs in cortical cells.
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Introduction

Non-coding RNAs (ncRNAs) comprise a substantial part of genome transcription, but do 
not possess the capacity to encode proteins (Yang et al., 2012). Although some ncRNAs might 
exhibit structural similarities to genes, those are classified as pseudogenes (Tay et al., 2014). 
ncRNAs are generally subdivided into small non-coding RNA (sncRNA) and long non-coding 
RNA (lncRNA) according to their length, the first being around 21–25 nucleotide and the 
latter usually longer that 200 nucleotides (Losko et al., 2016; Bhat et al., 2020). ncRNAs are 
abundantly expressed in several cell types of the mammalian brain (Derrien et al., 2012; 
Ransohoff et al., 2018; de Goede et al., 2021), shaping a distinctive and dynamic molecular 
profile of the brain through diverse regulatory mechanisms (Zimmer-Bensch, 2019; Srinivas 
et al., 2023). Previous inspection of ncRNAs roles has mainly relied on in situ hybridization 
(ISH) (Mercer et al., 2008) and bulk RNA-sequencing (RNA-seq) technologies (Kadakkuzha 
et  al., 2015; Isakova et  al., 2020), which are not adequate enough for comprehensively 
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examining ncRNAs specificity and their involvement in intricate 
regulatory mechanisms governing cerebral cortex’s function. To date, 
a comprehensive compendium of cell-specific roles of ncRNAs in the 
adult mouse cerebral cortex is currently lacking.

In recent years, the continuous development of single-cell 
technologies has significantly advanced our understanding of ncRNA 
at the single-cell level (Petropoulos et al., 2016; Hwang et al., 2018). In 
comparison to other 3’ RNA sequencing methods (Ziegenhain et al., 
2017; Zhang et al., 2019), SMART-Seq v4 utilizes full-length coverage 
across transcripts thus enabling the capture of a greater number of 
genes, including ncRNAs (Ziegenhain et al., 2017; Song et al., 2018; 
Wang et al., 2021). Such technology facilitates the identification of 
previously uncharacterized ncRNAs specific to particular cell types. 
Accumulating evidence has demonstrated that a limited set of ncRNAs 
display cell type and layer-specific expression patterns in the cerebral 
cortex (Liu et al., 2016). For instance, DLX6-AS1 has been observed 
to be  specifically expressed in interneurons, while AK017893 and 
AK159011 were found to be  abundant in layer 2/3 and layer 5, 
respectively (Mercer et al., 2008; Liu et al., 2016). In addition, the 
existence of regional specificity of ncRNA within the cortex remains 
to be elucidated.

Whilst ncRNAs are involved in a wide range of biological 
processes in the brain (Kleaveland et al., 2018; Nie et al., 2019; Mehta 
et al., 2020; Li et al., 2022; Wu et al., 2022), their specific functions 
remain largely elusive compared to protein-coding genes (pcGs). 
Genome-wide association studies (GWAS) have identified numerous 
genetic variants that are associated with neuropsychiatric disorders, 
most of which are located in noncoding regions of the genome (Han 
et al., 2022; Morris et al., 2023). Previous study has reported that 
individuals with autism spectrum disorder (ASD) carrying the 
rs4307059 T allele exhibit increased expression of MSNP1AS, 
suggesting that high levels of the MSNP1AS transcript might 
contribute to the risk of ASD. These variants may disrupt critical 
neuronal processes and contribute to the pathogenesis of 
neuropsychiatric diseases (Kyzar et  al., 2022). Therefore, it is 
paramount to further investigate the association between cell type-
specific ncRNAs and mental disorders in order to comprehensively 
understand the role of ncRNAs in the development of 
neurological diseases.

In the present study, we have generated a comprehensive map 
of ncRNA specificity at multiple levels, including cell types, 
cortical layers and cortical regions in the adult mouse brain using 
the SMART-Seq v4 data. By constructing a gene co-expression 
network and performing gene ontology (GO) functional 
enrichment analysis, we have predicted the potential biological 
processes in which ncRNAs may participate. Additionally, 
we have uncovered the potential connection between neurological 
diseases and cell type specific ncRNAs. Our findings  
provide valuable insights for both basic and clinical research 
on ncRNAs.

Materials and methods

Data acquire, quality control and clustering

The single-cell RNA-seq expression matrix and meta file of adult 
mouse cortex (~8 week-old male and female mouse) was downloaded 

from the website.1 According to the provided brain region annotation, 
we first extracted data from 18 cortical regions, including ACA, AI, 
AUD, CLA, ENTl, ENTm, GU, MOp, MOs-FRP, ORB, PL-ILA, PTLp, 
RSP, SSp, SSs, TEa-PERI-ECT, VIS, and VISp. According to the 
metadata annotation, we removed outlier cells and cell types with a 
cell count less than 50. In order to facilitate subsequent analysis, 
we merged cells from different brain regions but belonging to the same 
cell type, including L2/3 IT (L2 IT ENTl, L2 IT RHP, L2/3 IT ENTl, 
L2/3 IT CTX-1, L2/3 IT CTX-2 and L3 IT ENT), L5 IT (L5 IT 
TPE-ENT and L5 IT CTX), L6b/CT (L6b CTX and L6b/CT ENT), 
and Sst (Sst and Sst Chodl) and finally we obtained 24 cell types.

The single-cell expression data matrix (total RNA matrix) was 
then quality controlled. Filtered total RNA matrix was normalized 
using the calculateTPM functions from the scuttle package (v1.8.0) 
(McCarthy et al., 2017). According to the genome annotation file, the 
single-cell expression data matrix was divided into a pcG matrix and 
a ncRNA matrix. The ncRNA gene type includes three categories, 
namely lncRNA, sncRNA (including misc_RNA, scaRNA, snRNA, 
miRNA and snoRNA) and pseudogene (pseudogene, transcribed_
unitary_pseudogene, unitary_pseudogene, translated_unprocessed_
pseudogene, unprocessed_pseudogene, processed_pseudogene, 
transcribed_processed_pseudogene, and transcribed_unprocessed_ 
pseudogene).

Global clustering of the mouse cortex dataset was performed 
using Seurat package (v4.3.0) (Hao et al., 2021) in a R environment 
(v4.2.2). Filtered data were normalized using the calculateTPM 
functions form the scuttle package (v1.8.0) (McCarthy et al., 2017), 
and the highly variable genes were selected according to their average 
expression and dispersion. Each gene was scaled with default options 
and Principal Component Analysis (PCA) was used to linear 
dimensionality reduction. UMAP using 30 principal components was 
used for non-linear dimensionality reduction to visualize the data. 
Lastly, clustering was performed to determine the optimal resolution 
for clustering the pcG (res = 2.0) and ncRNA (res = 2.0) separately, 
based on the resolution that yielded the clearest clusters.

Acquisition of 10x V2 (left) / V3 (right) 
single-cell/singe-nucleus RNA sequencing 
data

We obtained gene expression of adult mouse brain MOp single-cell/
singe-nucleus transcriptome data from https://nemoanalytics.org/index.
html?multigene_plots=0&gene_symbol_exact_match=1&gene_
symbol=Aldh1a3.

Acquisition and processing of spatial 
transcriptome data

The adult mouse brain (Sagittal) spatial transcriptome data with 
the Visium platform can be acquired from https://www.10xgenomics.
com/datasets?menu%5Bproducts.name%5D=Spatial%20Gene%20

1 https://portal.brain-map.org/atlases-and-data/rnaseq/

mouse-whole-cortex-and-hippocampus-smart-seq
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Expression&query=&page=1&configure%5BhitsPerPage%5D=50&c
onfigure%5BmaxValuesPerFacet%5D=1000. The data was processed 
according to the standard process provided by Seurat (v4.3.0) (Hao 
et al., 2021), including quality control, data filtering, dimensionality 
reduction, and clustering using BayesSpace (v1.6.0) (Zhao et al., 2021). 
Then, Data were annotated based on expression of known layer 
marker genes.

Differential expression analysis

Analysis of differentially expressed genes was performed with the 
FindAllMarkers function in the Seurat package (v4.3.0) (Hao et al., 
2021) to examine differences across different cell types, cortical layers, 
and cortical areas. The Benjamini and Hochberg (BH) algorithm was 
used to correct the false discovery rate (FDR) during the analysis. 
Differentially expressed genes were defined as genes with a 
log2FC > 0.25 and FDR < 0.05.

High dimensional weighted gene 
co-expression network analysis

High dimensional weighted gene co-expression network analysis 
(hdWGCNA) was used to construct a scale-free network at single cell 
level by R package ‘hdWGCNA’ (v0.2.1) (Morabito et al., 2023). First, 
metacells were constructed by the k-Nearest Neighbors (KNN) 
algorithm. Then, the data was normalized using the calculateTPM 
functions from the scuttle package. Gene modules were identified by 
Construct Network with soft_power = 5. Hub genes were identified as 
the most connected genes within each module. Module scores were 
assigned using the ModuleExprScore function based on the genes 
contained in each module. Finally, an interaction network was 
constructed by extracting all ncRNAs in each module and their top 10 
most highly correlated genes. The Cytoscape software (v3.9.1) was 
used for visualization of this network.

Functional annotation gene ontology term 
analysis

GO enrichment analysis for biological process (BP) was 
performed using the clusterProfiler software package (v4.2.2) on 
identified gene modules. GO terms with a false discovery rate 
(FDR) < 0.05 were considered to be significantly enriched.

Association of human GWAS and genetic 
disease data with mouse cortical cell types

In order to test the enrichment of genes related to human 
neurological disorders and traits for each cell type, we performed 
linkage disequilibrium (LD) score regression analysis as previously 
described.2 Then, we considered DE pcGs and DE ncRNAs with an 

2 https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial

adjusted FDR < 0.05 and log2FC > 0.1 in each cell type and converted 
the genome coordinates of GRCm38 into hg19 genome coordinates 
by this website.3 The summary statistics file for each trait was 
downloaded from the UK Biobank database or published studies 
(Supplementary Table S7). To calculate cell-type-specific LD scores, 
we first created annotation files for 22 chromosomes in each cell type 
with script make_annot.py using options --bed-file --bimfile 1000G.
EUR.QC.bim --annot-file. Then, the annotation files were used as 
input to compute LD scores with the ldsc.py script using options --l2 
--bfile 1000G.EUR.QC --ld-wind-cm 1 --annot --thin-annot --print-
snps. Next, we ran the ldsc.py script with the --h2-cts flag to perform 
regressions following the standard workflow.4 We report the coefficient 
p value as a measure of the association of each cell type with the traits. 
All plots show the −log-transformed p-value of partitioned LD 
score regression.

Results

Profiling of non-coding RNA in mouse 
cortical cells

The mammalian cerebral cortex is composed of diverse cell types 
that are characterized by distinct molecular profiles (di Bella et al., 
2021). In order to investigate the expression patterns of ncRNAs in 
different cell types within the mouse cerebral cortex, we analyzed 
publicly available SMART-Seq v4 single cell RNA-seq (scRNA-seq) 
data (Tasic et al., 2018; Yao et al., 2021b) from 18 cortical regions of 
approximately 8 week-old mice (Figure  1A). Those include the 
anterior cingulate area (ACA), agranular insular cortex (AI), auditory 
cortex (AUD), claustrum (CLA), lateral entorhinal cortex (ENTl), 
medial entorhinal cortex (ENTm), gustatory cortex (GU), primary 
motor cortex (MOp), secondary motor cortex and frontal pole cortex 
(MOs-FRP), orbital cortex (ORB), prelimbic and infralimbic cortex 
(PL-ILA), posterior parietal association cortex (PTLp), retrosplenial 
cortex (RSP), primary somatosensory cortex (SSp), supplemental 
somatosensory cortex (SSs), temporal association-perirhinal-
ectorhinal cortex (TEa-PERI-ECT), visual cortex (VIS), and primary 
visual cortex (VISp). In this dataset, a total of 31,785 genes were 
detected, with pcGs accounting for the majority with 20,189 genes 
(63.5%). ncRNAs accounted for 11,596 genes (36.5%), which were 
further classified into three major categories, those being 3,865 
lncRNAs (12.2%), 1,025 sncRNAs (3.2%), and 6,706 pseudogenes 
(21.1%) (Supplementary Figure S1A).

The profiling of mouse cerebral cortex by using total RNA (Yao 
et al., 2021b), was conducted on a total of 71,234 individual cells which 
were clustered in 24 cell types (Figure  1B), including 12 types of 
glutamatergic excitatory neurons (Glu), 6 types of GABAergic 
inhibitory neurons (GABA), and 6 types of non-neuronal cells (Non-
neu), covering most of cell types within the cortex. The number of cells 
for each of these 24 cell types ranged from 11,518 for L4/5 IT CTX to 
83 for L6 IT ENTL (Figure  1C). We  sought to assess whether the 
expression of ncRNAs alone would lead to the same cell type 

3 https://genome.ucsc.edu/cgi-bin/hgLiftOver

4 https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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FIGURE 1

Expression specificity of ncRNA across mouse cerebral cortex. (A) Schematic overview of the analysis workflow for SMART-Seq v4 dataset in mouse 
cerebral cortex. (B) UMAP visualization of all cells clustered using total RNA (left), protein coding gene (pcG) (middle) and noncoding RNA (ncRNA) 
(right), colored by 24 cell types. Bottom: Histogram showing the number of cells for each cell type. L2/3 IT, Layer 2/3 intratelencephalic neuron; L2/3 
IT PPP, Layer 2/3 intratelencephalic neuron in postsubiculum, presubiculum and parasubiculum areas; L3 RSP-ACA, Layer 3 glutamatergic neuron in 
retrosplenial and anterior cingulate areas; L4/5 IT CTX, Layer 4/5 intratelencephalic neuron in isocortex; L5 IT, Layer 5 intratelencephalic neuron; L5 NP 
CTX, Layer 5 near-projecting neuron in isocortex; L5 PT CTX, Layer 5 pyramidal tract neuron in isocortex; L6 CT CTX, Layer 6 corticothalamic neuron 
in isocortex; L6 IT CTX, Layer 6 intratelencephalic neuron in isocortex; L6 IT ENTL, Layer 6 intratelencephalic neuron in lateral entorhinal area; L6b/CT, 
Layer 6b/corticothalamic neuron; Car3, Car3 glutamatergic neuron; Meis2, Meis2 GABAergic neuron; Lamp5, Lamp5 GABAergic neuron; Sncg, Sncg 
GABAergic neuron; Vip, Vip GABAergic neuron; Sst, Sst GABAergic neuron; Pvalb, Pvalb GABAergic neuron; Oligo, Oligodendrocyte; Astro, Astrocyte; 
SMC-Peri, Smooth muscle cell-Pericyte; Micro-PVM, Microglia-perivascular macrophage; Endo, Endothelial cell; VLMC, Vascular and leptomeningeal 
cell. (C) Histogram showing the number of cells for each cell type. (D) The heatmap showing the percentage of cell types in the cluster clustered by 
pcG (left) and ncRNA (right). (E) UMAP visualization of pcGs (top) and ncRNAs (bottom) specifically expressed in L2/3 IT, Sst and Astro.
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identification. To do so, we first normalized the total RNA matrix and 
divided the data into two matrices based on gene type into a pcG 
matrix and ncRNA matrix. Both were then subjected to clustering, 
resulting in the identification of 57 clusters for pcG matrix and 39 
clusters for ncRNA matrix (See methods). We then projected the cell 
identities obtained by total RNA profiling onto each cell cluster 
identified by uniform manifold approximation and projection (UMAP) 
of pcG and ncRNA, respectively (Figure 1B). We observed that the 
average number of genes detected per cell were higher for pcGs (gene, 
8,232) than that of ncRNAs (gene, 1,024) (Supplementary Figure S1B). 
From a cell type perspective, we noticed that the number of both pcGs 
and ncRNAs detected in neuron was generally higher compared to 
Non-neu (Supplementary Figure S1C). To examine correlation of cell 
clusters identified by either pcGs or ncRNAs and cell types defined by 
total RNA profiling, we calculated the proportion of each cell type in 
different clusters and found that clusters with a high proportion of the 
same cell type tended to cluster together (Figures  1B,D and 
Supplementary Figure S1D), suggesting that the expression of ncRNAs 
alone is sufficient to distinguish most cell types and that this capacity 
is roughly equivalent to that of pcGs, despite the number of ncRNAs 
detected in each cell type being much lower than pcGs.

Next, we performed differential expression analysis separately for 
pcG and ncRNA in each cell type and detected a set of cell type-
specific pcGs and ncRNAs (Supplementary Figure S1E), such as Otof 
(pcG) and Gm10421 (ncRNA) in L2/3 IT, Sst (pcG) and 
9630002D21Rik (ncRNA) for Sst neuron, and Aqp4 (pcG) and 
Gm35552 (ncRNA) for Astro (Figure 1E). Many of these pcGs have 
been previously reported as marker genes specific to particular cell 
type (Kozareva et  al., 2021; Zhang et  al., 2021; Yao et  al., 2021a), 
providing support for the cell type specificity of ncRNAs.

Cell class/cell type specific ncRNA in 
mouse cerebral cortex

The mouse cerebral cortex consists mainly neurons and Non-neu, 
with neurons further categorized as Glu and GABA (Delgado et al., 
2022; Wei et al., 2022). The majority of cortical cells profiled in this 
study are neurons (Glu, cell number: 43,285, cell percentage: 67%; 
GABA, cell number: 19,591, cell percentage: 30%), while only 1,910 
cortical cells were identified as Non-neu, accounting for roughly 3% 
(Supplementary Figure S2A). This profound unbalance in the 
percentage of the cells captured can be  attributed to the use of 
fluorescence activated cell sorting (FACS) which selectively enriches 
for neurons. To perform a profiling based on ncRNA expression in 
different population of cortical cells, we collapsed the 24 cell types 
identified into three major classes of cortical cells, that is Glu, GABA 
and Non-neu, and projected them on UMAP clustering those by 
either pcG or ncRNA expression (Figure 2A). Next, we performed 
differential expression analysis among these 3 classes of cells 
(Supplementary Table S1) to identify cell type-specific pcGs or 
ncRNAs. Notably, we observed that Glu displayed the highest cell 
number of differentially expressed (DE) pcGs and ncRNAs 
(Supplementary Figure S2B), possibly owing this to more number of 
cell types in Glu. The ratio of DE pcGs was higher than that of ncRNAs 
in all three cell classes (Figure 2B). Additionally, the number of DE 
lncRNAs and pseudogenes was much higher than that of sncRNAs in 

all three cell classes (Figure  2B), this difference possibly being 
attributed to the inability of technology to adequately capture shorter 
ncRNAs. Several cell type-specific pcGs are well-known (Zhang et al., 
2021), such as Neurod6 and Slc17a7 in Glu, Gad1 and Gad2 in GABA, 
Myl9 and Gjb6 in Non-neu (Figure 2D). Similarly, we also identified 
several ncRNAs specifically expressed in distinct cell types. For 
instance, we detected 9130024F11Rik and C730002L08Rik expression 
in Glu, Dlx1as, Gm14204 and Pvt1 in GABA while Neat1 and Gstm2-
ps1 were uniquely detected in Non-neu (Figures  2C,D and 
Supplementary Figure S2C). Our observations are in agreement with 
previous studies in which Gm14204 and Dlx1as were reported to 
be specifically expressed in GABA (Fukumoto et al., 2018; Li et al., 
2018). Dlx1as, as an antisense ncRNA of Dlx1, plays an important role 
in regulating the transcriptional level and stability of Dlx1, a 
transcription factor that determines the fate of GABAergic neurons 
(Kraus et al., 2013). ncRNA Pvt1 is highly expressed in GABA, and it 
has been confirmed to have a regulatory effect on human neuronal 
differentiation (Wu et al., 2022, 2023), indicating its role in the lineage 
commitment of GABA neurons.

Having observed that ncRNAs are sufficient to discriminate 
specific classes of cells, we  next surveyed whether ncRNAs can 
be used to define specific cell type identities by re-clustering cells 
from each cell class on the basis of ncRNA expression only. 
We projected the cell type annotation obtained by total RNA profiling 
to the re-clustered cells and observed that cells with same annotation 
tended to accumulate together to form distinct clusters (Figure 2E), 
indicating that both neuronal and non-neuronal cell types can 
be effectively distinguished by the expression of ncRNA. Furthermore, 
we noticed that ncRNAs are not only able distinguish these cell types 
but also provide a way to further divide those cell type into different 
subclusters (Figure 2E). For example, Micro-PVM could be clearly 
divided into two populations (Supplementary Figure S2D), that, 
based on the use of canonical marker genes (Yang et al., 2019; Prinz 
et  al., 2021; Jeong et  al., 2022; Supplementary Figure S2E), can 
be  annotated as Micro and PVM. Those cell type could also 
be  distinguished based on the distinct expression of Gm33858 
(Micro) and Gm1966 (PVM) ncRNAs (Supplementary Figure S2F). 
We  then performed ncRNAs differential expression analysis in 
different cell types and calculated the proportion of each gene type. 
We found that the ratio of pseudogenes was much less in cortical IT 
neurons except for L2/3 IT PPP (Figure  2F). In GABA cells, 
we observed that the ratio of pseudogenes in Meis2 and Pvalb was 
higher compared to other cell types (Figure 2F). We also observed 
that the proportion of pseudogenes in non-neuronal cell types was 
higher than 75% with the exception of Astro in which those 
accounted for roughly 50% (Figure 2F). Instead, sncRNAs displayed 
the lowest ratio in all cell types (Figure 2F).

Additionally, we  also screened DE ncRNAs in each cell type 
(Figure  2G) identifying, for example, the specific expression of 
Gm12371 in L2/3 IT, Gm29674 in L4/5 IT CTX, 9330158H4Rik in L5 
NP, Gm10635 in L6 CT CTX, Gm28154 in Lamp5, Gm13629 in Pvalb, 
D030055H07Rik in Vip, 1700047M11Rik and C030029H02Rik in 
Oligo, Gm35552 in Astro, and Gm32688 in Endo (Figure 2H and 
Supplementary Figure S2I). These cell type-specific ncRNAs could 
also be confirmed in other independent scRNA-seq and snRNA-seq 
data (Supplementary Figure S2G) from the adult mouse MOp 
(Supplementary Figures S2G–I; Yao et al., 2021a). Taken together, 
we identified 1,600 cell type specific ncRNAs (Supplementary Table S2) 
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FIGURE 2

ncRNAs specifically expressed in Glu/GABA/Non-neu. (A) UMAP visualization of Glu, GABA and Non-neu using pcG (left) and ncRNA (right). (B) Stacked 
bar plots showing the proportion of differentially expressed (DE) gene type in Glu/GABA/Non-neu. Left, pcG and ncRNA. Right, ncRNA type including 

(Continued)

https://doi.org/10.3389/fnmol.2024.1365978
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fnmol.2024.1365978

Frontiers in Molecular Neuroscience 07 frontiersin.org

and provided a resource for further exploring the function of ncRNAs 
in different cell types.

Layer specific ncRNA in mouse cerebral 
cortex

In the mouse cerebral cortex, the Glu represent the largest 
neuronal population and exhibit a distinct laminar preference across 
different regions which is determined by specific transcriptional 
programs. This aspect has been largely assessed in previous studies by 
focusing on the expression of pcGs (Kwan et al., 2012; Bijanzadeh 
et al., 2018), thus neglecting the potential roles of ncRNAs in both 
neural development and laminar formation. In order to characterize 
the ncRNAs expression patterns across different cortical layers, 
we initially performed cell clustering based on either pcG or ncRNA 
expression and then merged L2/3 IT, L2/3 IT PPP, and L3 RSP-ACA 
into layer 2/3 (L2/3), L4/5 IT CTX, L5 IT, L5 NP CTX, and L5 PT CTX 
into layer 4/5 (L4/5), and L6 CT CTX, L6 IT CTX, L6 IT ENTI, and 
L6b/CTX into layer 6 (L6) (Figure 3A).

Next, we performed differential expression analysis in L2/3, 
L4/5 and L6 Glu and observed variations in the proportion of DE 
gene types across these layers. Notably, the number of DE pcGs 
and ncRNA were both lowest in L6 (Figure 3B). The proportion 
of DE pcGs gradually decreased from upper layer to the deeper 
layers (Figure 3C). Similarly, the proportion of DE lncRNAs also 
decreased along the layer depth with a sharply decline from 86.8% 
in L4/5 to 63.2% in L6 (Figure 3C). As expected, these DE pcGs 
and ncRNAs displayed layer-specific patterns (Figure  3D, 
Supplementary Figure S3A, and Supplementary Table S3). For 
instance, the expression of specific genes was determined for layer 
L2/3 (pcG: Lpl; ncRNA: Gm12371), L4/5 (pcG: Trpc3; ncRNA: 
Gm13629) and L6 (pcG: Sulf1; ncRNA: 5330416C01Rik) 
(Figure 3E).

To validate the layer-specific genes, we  analyzed publicly 
available ST data obtained from adult mouse sagittal brain slices 
generated using the Visium platform (See methods). We  first 
performed BayesSpace clustering (See methods) in the whole brain 
slice (Supplementary Figure S3B) and identified cortical layers 
based on known markers such as Calb1 in L2/3, Rorb in L4, Etv1 in 
L5 and Tle4 in L6 (Clark et  al., 2020; Kozareva et  al., 2021; 
Supplementary Figure S3D). In comparison to non-cortical areas, 
the cortex demonstrated a higher number of genes (average 5,133) 
and unique molecular identifier (UMIs) (average 20,617), indicating 
the high quality of this ST data (Supplementary Figure S3C). A set 
of layer-specific genes, including pcGs and ncRNAs derived from 
SMART-Seq v4 data (Figure 3D), were also found to be enriched in 

their corresponding cortical layers (Figures  3F,G and 
Supplementary Figures S3E,F), thus confirming the reliability of 
these layer-specific ncRNAs.

Cortical region specific ncRNA in mouse 
cerebral cortex

The cerebral cortex is composed of multiple cortical subregions 
such as MOp, SSp and VISp, which exhibit distinct functional roles 
(Hübener, 2003; Li et al., 2015; Rabinovich et al., 2022). The diverse 
functions of these cortical regions are determined by neural 
connection, cell composition and gene expression patterns (Nie et al., 
2019). While several studies on cerebral cortex have been conducted 
to study cell composition and function on the basis pcG expression 
(Jorstad et al., 2023), a systematic exploration of ncRNA expression 
profiles across cortical regions is currently lacking.

In this study, we  focused on three cortical regions, namely 
MOp, SSp, and VISp which are located along the anterior–posterior 
(A-P) axis of the mouse brain (Supplementary Figure S4A). We first 
performed clustering analysis of the SMART-Seq v4 data obtained 
from these three regions using either pcG or ncRNA expression 
(Figure 4A). Next, we calculated the proportion of each cell type in 
individual cortical region, revealing a significant variation in cell 
type proportions. Notably, L2/3 IT and L4/5 IT CTX cell types were 
abundant in the SSp region, while L6 CT CTX was enriched in the 
MOp. Interestingly, the L5 PT CTX was predominantly observed in 
the VISp region (Figure  4B). Differential expression analysis 
conducted among cell types identified specific ncRNAs (Gm2164, 
9930014A18Rik, and Gm26604) associated with the L5 PT CTX cell 
type (Supplementary Figure S4B), indicating the possible 
involvement of those ncRNAs in the formation of region-specific 
neural circuits. To examine genes that are specific to cortical 
regions, we merged the SMART-Seq v4 data from cells within the 
same cortical region to create pseudo-bulk data. By performing 
differential expression analysis of the cortical regions 
(Supplementary Table S4), we observed a gradual decrease in the 
proportion of DE ncRNAs along the A-P axis. However, the overall 
distribution of ncRNA types across these regions was relatively 
similar (Figure  4C). Notably, we  identified a set of genes that 
exhibited cortical area specificity not only among pcGs but also 
among ncRNAs (Figure 4D). Subsequently, these identified genes 
were also validated using ST data (Figures  4E,F and 
Supplementary Figure S4C). For instance, in the MOp region, 
specific genes included Col12a1 and Cpa6 (pcGs) as well as 
Gm10635 and C730002L08Rik (ncRNA), while C1ra and Tmem215 
(pcGs) and Gm35248 and Gm29674 (ncRNAs) were detected in the 

lncRNA, sncRNA and pseudogene. (C) UMAP visualization of ncRNAs specifically expressed in Glu, GABA, and Non-neu. (D) Heatmap showing the top 
DE pcGs and ncRNAs of each class. Known marker pcGs and ncRNAs shown in panel (C) and Supplementary Figure S2C are marked in red. (E) UMAP 
visualization of all cells clustered using ncRNA, colored by Glu cell type (top), GABA cell type (middle) and Non-neu cell type (bottom). (F) Stacked bar 
plots showing the proportion of DE ncRNA type in Glu cell type (top), GABA cell type (middle) and Non-neu cell type (bottom). (G) Heatmap showing 
the top DE ncRNA in Glu cell type (top), GABA cell type (middle) and Non-neu cell type (bottom). ncRNAs shown in panel (H) and 
Supplementary Figure S2I are marked. (H) UMAP visualization of ncRNAs specifically expressed in L4/5 IT, L5 NP, Lamp5, Pvalb, Oligo, and Astro.

FIGURE 2 (Continued)

https://doi.org/10.3389/fnmol.2024.1365978
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fnmol.2024.1365978

Frontiers in Molecular Neuroscience 08 frontiersin.org

FIGURE 3

ncRNAs specifically expressed in different layers. (A) UMAP visualization of all cells clustered using pcG (top) and ncRNA (bottom), colored by layer (left) 
and cell type (right). (B) Histogram showing the number of DEGs per layer with pcG (red) and ncRNA (blue). DE genes were defined as genes with 
log2(fold change)  >  0.25 (light color bars) or  >  0.75 (dark color bars) and FDR-adjusted p-value <0.05. (C) Stacked bar plots showing the proportion of 
DE gene type in different Layers. Top, pcG and ncRNA. Bottom, ncRNA type including lncRNA, sncRNA and pseudogenes. (D) Line plot showing layer-
specifically expressed pcGs and ncRNAs. Gray lines represent the expression dynamics of individual genes and the red line represents the average 
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SSp region. In the VISp regions, the specific genes consisted of 
Egfem1 and Cd63 (pcG) as well as Arin (ncRNA).

Specifically, we  observed that cells from same cortical region 
tended to cluster together in the UMAP, even within the same cell type 
(Figure 4A). For example, L4/5 IT CTX, L5 IT and L6 IT CTX cells 
showed a close proximity (Figure  4G and Supplementary  
Figures S4D,H), indicating that cells of the same cell type acquire 
substantial differences in terms of transcriptomic programs due to the 
distinct cortical environment in which they reside. To further 
investigate the heterogeneity of these neuronal types across different 
cortical regions, we  performed re-clustering and differential 
expression analysis for each cell type (Supplementary Table S5). For 
L4/5 IT CTX, we observed a clear separation of cell clusters on the 
basis of their cortical origin (Figure  4G). The proportion of DE 
lncRNAs was much higher in the VISp region, while the proportion 
of pseudogenes was higher in the MOp and SSp regions (Figure 4H). 
These ncRNAs demonstrated consistent spatial specificity in both 
single-cell and ST data, exemplified by genes such as 5033430l15Rik 
in MOp, Gm14015 in SSp and Gm5 in VISp (Figures 4I,J). Similar 
spatial expression heterogeneity was observed in other cell types, 
including L5 IT (Supplementary Figures S4D–G) and L6 IT CTX 
(Supplementary Figures S4H–K). Conversely, there were also cell 
types that showed minimal or no difference between cortical regions, 
such as, L5 NP CTX, L6b/CT, Sst, and Lamp5 (Supplementary  
Figure S4L). In summary, these findings highlight the variations in the 
coherence of different cell types across cortical regions.

Functional prediction of ncRNA in the 
mouse cerebral cortex

ncRNAs exhibit substantial transcriptional activity in the adult 
mammalian brain and play a crucial role in gene regulation at a broad 
and complex level (Guennewig and Cooper, 2014). The regulatory 
mechanisms of ncRNA encompass various processes such as 
chromatin modification, transcriptional regulation and alternative 
splicing, among others (Wang and Chang, 2011; Statello et al., 2021). 
These ncRNA are thought to be the primary driving force behind 
brain development complexity and cognitive functions (Guennewig 
and Cooper, 2014; Nie et al., 2019).

To gain insights into the function of ncRNAs in the mouse cortex 
and understand how those ncRNAs coordinate with pcGs to form 
complex networks, we performed high dimensional weighted gene 
co-expression network analysis (hdWGCNA) (See methods) using the 
total RNA data from all cell types. The optimal soft-power threshold 
was determined at 5, which corresponded to the elbow point of the 
curve (Supplementary Figure S5A). After filtering, we retained strong 
connection relationships and identified 18 gene co-expression 
modules (GMs) (Figure 5A and Supplementary Table S6). Correlative 
analysis between GMs revealed high correlation among certain 

modules (Supplementary Figure S5B). We also calculated the gene 
score of each GM across all cell types (Figure 5B) and observed that 
many GMs were specifically enriched in particular cell types. For 
example, GM1 was enriched in neuron, GM3 in Glu, GM8 in GABA, 
GM9 in Non-neu, GM5 in L5 NP CTX, GM10 in Car3, GM16 in 
Endo and GM17 in Micro-PVM. Generally, the ratio of ncRNA was 
consistently lower across all modules (Figure  5C). Among the 
ncRNAs, Glu-related modules (GM14, GM3, GM5, GM11, and 
GM10) exhibited a higher proportion of lncRNA compared to 
pseudogenes whereas Pvalb (GM6 and GM18), Astro (GM4) and 
Non-neu (GM9) related modules were predominantly composed of 
pseudogenes (Figure 5C). Moreover, the top 5 pcGs in many GMs 
ranked by eigengene-based connectivity (kME) were cell type-specific 
marker genes, such as Slc17a7 (Glu) in GM3, Gad1 and Gad2 (GABA) 
in GM8, Etv1 (L5 Glu) in GM5, Pecam1 (Endo) in GM16 and Spi1 
(Micro-PVM) in GM17 (Figure 5D and Supplementary Figure S5C). 
Intriguingly, GM9, a module related to Non-neu, was enriched with 
ribosome- and mitochondria-associated genes but not cell type-
specific genes (Supplementary Figure S5C). The expression patterns 
of the top ncRNAs selected in this manner were highly consistent with 
their corresponding pcG marker genes. For instance, 9130024F11Rik 
from GM3 was specifically enriched in Glu cells, consistent with the 
expression pattern of Slc17a7 (Figure  5E). Similar patterns were 
observed for the top ncRNAs in the GABA-related module (GM8), 
Endo-related module (GM16) and Micro-PVM-related module 
(GM17), aligning with the expression pattern of their respective pcG 
marker genes (Figure 5E).

Furthermore, we performed GO enrichment analysis on the genes 
within each module and identified corresponding functions that were 
in line with their associated cell type. For instance, GM3, enriched in 
Glu cells, was associated with synapse organization, axonogenesis and 
dendrite development, while GM8, enriched in GABA cells, was 
related to GABA differentiation and regulation of synaptic 
transmission (Figure 5F). Similarly, GO function enriched in Non-neu 
was also consistent with their cell identity. For instance, GM16 (Endo) 
was correlated with protein localization to cell–cell junction and 
wound healing and GM17 (Micro-PVM) was correlated with the 
regulation of myeloid leukocyte-mediated immunity (Figure 5F).

To explore potential connections between ncRNAs and pcGs 
within individual GM, we constructed a gene interaction network by 
calculating the strength of co-expression relationships. In GM8, 
enriched in GABA cells (Figure 5D), the network consisted of 14 
pcGs, 12 lncRNAs and 5 pseudogenes (Figure 5G). Notably, 3 ncRNAs 
(Gm14202, Dlx1as and Dlx6os1) exhibited higher number of 
connections with genes in the module (Figure  5G). Two of these 
ncRNAs (Dlx1as and Dlx6os1) had a counterpart (Dlx1 and Dlx6) in 
sense-antisense RNA pair. Additionally, another pair of sense-
antisense genes (Gad1os and Gad1) was also included in the network. 
The strength of connections between each pair of the sense-antisense 
genes was relatively strong (Figure 5G). All three pairs of genes were 

expression in different layers. (E) UMAP visualization of DE pcGs and ncRNAs specifically expressed in Layer (L) 2/3, L4/5 and L6. (F) Bubble plot 
showing layer-specific expression of pcGs (left) and ncRNAs (right) in different layers of 10x Visium ST data from adult mouse brain. The color of each 
bubble indicates the average expression level, and the size indicates the proportion of expressing cells. (G) Spatial visualization of the layer-specific 
pcGs and ncRNAs shown in F expressed in adult mouse cerebral cortex of 10x Visium ST data. Scale bar, 1  mm.
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FIGURE 4

ncRNAs specifically expressed in different cortical areas. (A) UMAP visualization of all cells clustered using pcG (top) and ncRNA (bottom), colored by 
area (left) and cell type (right). (B) Stacked bar plots showing the proportion of different cell type in different areas. (C) Stacked bar plots showing the 
proportion of DE gene type in different areas. Top, pcG and ncRNA. Bottom, ncRNA type including lncRNA, sncRNA and pseudogenes. (D) Line plot 
showing area-specifically expressed pcGs and ncRNAs. Gray lines represent the expression dynamics of individual genes and the red line represents 
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exclusively expressed in GABA cells, as expected (Figure  5H). 
However, the expression patterns of each pair GABA cell subtypes 
varied (Figure 5H). Dlx6 was a slightly higher in MGE-derived GABA 
(Pvalb and Sst GABA), while Dlx6os1 was significantly higher in 
non-MGE-derived GABA (Sncg, Lamp5 and Vip GABA). Among 
subtypes of non-MGE derived GABA, Dlx1 was more abundant in Vip 
while Dlx1as was relatively higher in Lamp5. For the last pair of the 
genes, Gad1 and Gad1os demonstrated the highest expression level in 
Lamp5 and the lowest in Sst, although there was a significant 
difference in expression levels between the gene pair, which may 
be due to shared promoter of these two genes.

In summary, we  utilized co-expression and GO enrichment 
analysis to predict the function of ncRNAs. This approach provides a 
valuable data resource for further understanding the function of 
ncRNAs in cortical cells.

The association between ncRNA and 
neurological disorders

Increasing evidence suggests a strong association between 
neurodegenerative diseases and the dysfunction or mutations of 
ncRNAs (Nie et al., 2019; Slack and Chinnaiyan, 2019). In order to 
evaluate the potential impact of genetic variant loci associated with 
neurological disorders in specific cell types, we applied GWAS by 
using 14 human brain disease single nucleotide polymorphism 
(SNP) loci obtained from the UK Biobank5 to calculate the 
enrichment of selected traits in total RNA, pcG and ncRNA with 
human homologous coordinates (Supplementary Table S7). By 
comparing the enrichment of SNP loci in each cell type with total 
RNA, we observed that most neurological disorders were closely 
associated with Glu, including schizophrenia (SCZ), sleep-
associated disorders, bipolar disorder, neuroticism, dementia, ASD, 
attention-deficient hyperactivity disorder (ADHD), major 
depressive disease (MDD) and huntington’s disease (HD) owing to 
linked SNPs of these disorders were enriched in Glu, while 
Alzheimer’s disease (AD) and motor neuron disease both showed 
an association with immune cells (Figure 6). This finding suggests 
that Glu are more vulnerable to SCZ, sleep-associated disorders, 
bipolar disorder, neuroticism, dementia, ASD, ADHD, MDD and 
HD compared to Non-neu, whereas immune cell are more 
susceptible to AD and motor neuron disease, which is consistent 
with previous reports (Campisi et  al., 2022; Han et  al., 2022). 
Notably, we observed a similar enrichment pattern of neurological 

5 https://nealelab.github.io/UKBB_ldsc/downloads.html

diseases across cell types comparing total RNA and pcG (Figure 6). 
However, when analyzing ncRNAs, we  identified a distinct 
enrichment pattern of these diseases in different cell types, and 
certain disorders were exclusively linked to ncRNAs, such as 
dementia with Lamp5, ASD with Sncg, ADHD with Sst and Pvalb, 
and MDD with L2/3 IT PPP and L6 IT ENTI (Figure 6).

Furthermore, we found that the level of enrichment in certain cell 
types was higher in total RNA and ncRNAs than in pcGs. For example, 
bipolar disorder showed higher enrichment of SNPs in total RNA and 
ncRNA within L5 IT. Dementia exhibited this kind of enrichment 
pattern in L3 RSP-ACA, L4/5 IT CTX and Astro. ADHD and HD 
displayed this kind of enrichment pattern in L6 IT ENTI and L6 IT 
CTX, respectively. This finding suggested that neurological disease 
associated variants that located in ncRNAs may be a co-factor to cause 
dysfunction of brain cells.

In summary, when investigating the pathogenesis and treatment 
of neurodegenerative diseases, particular attention should be given to 
ncRNAs and the specific cell types in which they are specifically 
expressed. Our study provides additional insights into the role of 
ncRNAs in pathogenesis of neurological diseases.

Discussion

A comprehensive understanding of the expression characteristics 
of ncRNAs is crucial for elucidating their role in maintaining normal 
brain activity and uncovering the pathogenesis of various 
neurological disorders. scRNA-seq techniques greatly expanded our 
knowledge of gene expression at single cell resolution. Existing 
databases of ncRNA expression patterns in the mouse brain primarily 
rely on in situ hybridization staining from results of Allen brain atlas 
(Mercer et al., 2008), which has limitations in capturing a wide range 
of ncRNAs due to probe design strategies. To address this, 
we conducted a systematic analysis of ncRNA expression patterns at 
single-cell resolution using SMART-Seq v4 data from 18 mouse 
cortical regions. We analyzed a total of 11,596 ncRNAs, including 
3,865 lncRNAs, 6,706 pseudogenes and 1,025 sncRNAs. It is worth 
noting that SMART-Seq v4 cannot capture non-polyadenylated 
RNAs, such as transfer RNA and circular RNA, so our analysis is 
limited to transcribed ncRNAs. Future advancements in single-cell 
sequencing technologies are needed to explore the full spectrum of 
ncRNAs at single cell level.

We identified numerous ncRNAs with cell type, cortical layer and 
cortical region specificity. Some of those findings were validated using 
published single cell / singe-nucleus RNA-seq data and 10x visium ST 
data. We also identified ncRNAs that are specific to cortical regions 
within the same cell type, such as 5033430l15Rik in MOp for L4/5 IT 
CTX, Gm14015 in SSp and Gm5 in VISp. Our study expanded the 

the average expression in different areas. (E) Heatmap showing the top DE pcGs and ncRNAs of each area. Genes shown in panel (F) and 
Supplementary Figure S4C are marked in red. (F) Spatial visualization of the area-specific pcGs and ncRNAs expressed in adult mouse cerebral cortex 
of 10x Visium ST data. Scale bar, 1  mm. (G–J) The ncRNA expression of L4/5 IT CTX is differently expressed in each area. (G) UMAP visualization of 
global clustering of L4/5 IT CTX, colored by area (SSp, MOp and VISp). (H) Stacked bar plots showing the proportion of DE ncRNA type in each area. 
(I) Heatmap showing the top DE ncRNAs in each area. (J) DE ncRNAs in each area of L4/5 IT CTX. Top, UMAP visualization of ncRNA specifically 
expressed in MOp, SSp and VISp. Bottom, Spatial visualization of the area -specific ncRNA expressed in adult mouse cerebral cortex of L6. Scale bar, 
1  mm.
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FIGURE 5

Co-expression networks analysis of mouse cerebral cortex. (A) Hierarchical cluster tree showing modules of co-expressed genes identified by 
hdWGCNA. A total of 18 co-expressed gene modules (GMs) were found and were represented by branches and labeled by different colors to the 
bottom of the tree. The height (y-axis) indicates levels of correlation. (B) Bubble plot showing the expression ratio and average expression value of 
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current database of ncRNAs by identifying ncRNAs with high specificity 
in cell type, cortical layer and cortical region, which expanded the 
current ncRNA resource database. In our study, ncRNAs specifically 
expressed in three cortical regions (MOp, SSp and VISp) along the 
cortical A-P axis have been depicted and more efforts are needed to 
investigate more brain regions and discover new region-specific ncRNAs.

Given the complexity of ncRNA regulatory mechanisms (Statello 
et al., 2021), our current understanding of their functions in the cerebral 
cortex is limited. In our study, we identified a total of 18 GMs through 
hdWGCNA and then inferred the functions of ncRNA by utilizing pcGs 
as a bridge. Previous studies had demonstrated that sense–antisense pairs 
can form intricate reciprocal regulatory circuits to modulate gene 
expression (Song et al., 2020). Interestingly, we identified three sense-
antisense relationships in GM8, among which the Dlx1 and Dlx1as pair 
was confirmed to involved in the synthesis of GABA, synaptogenesis, 
and dendritic development of GABAergic neurons (Kraus et al., 2013), 
supporting the reliability of this approach to predict the potential 
function of ncRNAs. However, it is indeed necessary to add functional 

validation experiments via specific transgenic mouse or CRISPR 
interference for those ncRNA in the future to show clear physiological 
function of these cell type specific ncRNA.

ncRNAs have been implicated in the development of neurological 
diseases including ASD, AD and others (Nie et al., 2019; Ma et al., 
2020; Ghafouri-Fard et al., 2022). These studies establish a connection 
between ncRNAs and complex mental diseases. In our study, 
we  integrated GWAS data to identify vulnerable cortical cells 
associated with multiple neurological disorders by calculating SNP 
enrichment in total RNA, pcG and ncRNA, respectively. The distinct 
enrichment pattern of ncRNAs in cortical cells suggests an intricate 
pathogenesis underlying these diseases. While our analysis was 
conducted exclusively on mouse data, future investigations should 
incorporate data from the human cerebral cortex for a more accurate 
interpretation of the results. The ncRNAs and cell types associated 
with these diseases may serve as candidates for pre-diagnosis and 
treatment, offering a new direction for exploring brain diseases that 
requires further in-depth exploration.

genes in different GMs in each cell type. The color of each bubble indicates the average expression level, and the size indicates the proportion of 
expressing cells. (C) Top, stacked bar plots showing the proportion of gene type in each module. Bottom, line plot showing the number of different 
types of ncRNA in each module. (D) Left, UMAP visualization of average expression level of genes in GM3, GM8, GM16 and GM17. Right: At most top 5 
pcGs (red) and ncRNAs (green) in GM3, GM8, GM16 and GM17, ranked by eigengene-based connectivity (kME). (E) UMAP visualization of representative 
pcG and ncRNA in GM3, GM8, GM16 and GM17. (F) The bar plot showing the representative gene-ontology (GO) pathways enriched with genes from 
GM3, GM8, GM16 and GM17, with the color intensity representing the magnitude of the p.adjust value. The x-axis represents the number of genes 
enriched in the pathway, and the y-axis represents the name of the enriched pathway. (G) The co-expression network showing the interactions 
between genes in GM8. Nodes represent genes, and edges represent co-expression links. The width of the edges represents the magnitude of the 
correlation between genes. The size of the nodes represents the number of genes that are mutually associated with that gene. The color of the nodes 
represents different gene types (pcG: red, lncRNA: yellow, sncRNA: blue, Pseudogenes: gray). The green line represents the connection between 
sense-antisense gene pairs. (H) UMAP visualization of representative pcGs and ncRNAs in GM8.

FIGURE 5 (Continued)

FIGURE 6

Association of mouse cortex cell transcriptomic profiles with human neurological disorders. The heatmap shows the association of selected human 
neurological disorders (indicated at the bottom) with the mouse cortex cell types (indicated at the right) annotated in our dataset by total RNA (black), 
pcG (red) and ncRNA (blue).
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In summary, this atlas of ncRNA expression in the mouse brain 
provides valuable insights into the role of ncRNAs and serves as a 
powerful resource for both fundamental and clinical research in the 
field of ncRNAs.
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SUPPLEMENTARY FIGURE S1

Overview of single-cell transcriptome data in mouse cerebral cortex. (A) Pie 
chart showing the proportion of gene type in single-cell transcriptome data 
in mouse cerebral cortex. (B) Boxplot showing the count number of genes 
for all cells at the total RNA, pcG, and ncRNA level. (C) Boxplot showing the 
count number of genes in each cell type at the total RNA, pcG, and ncRNA 
level. (D) UMAP visualization of all cells clustered using pcG (top, res = 2.0) 
and ncRNA (bottom, res = 2.0) respectively, colored by cluster. (E) Heatmap 
showing the top DE pcGs (left) and ncRNAs (right) of each cell type. Genes 
shown in Figure 1E are marked in red.

SUPPLEMENTARY FIGURE S2

Specifically expressed ncRNA in cell types of Glu/GABA/Non-neu. (A) Pie 
chart showing the proportion of class including Glu, GABA and Non-neu. 
(B) Histogram showing the number of differentially expressed (DE) genes 
per class with pcG (red) and ncRNA (blue). DE genes were defined as 
genes with log2 (fold change) ≥ 0.25 (light color bars) or > 0.75 (dark 
color bars) and FDR-adjusted p-value < 0.05. (C) UMAP visualization of 
ncRNAs specifically expressed in Glu, GABA and Non-neu. (D) UMAP 
visualization of all Non-neu clustered using ncRNA, colored by cluster 
(res = 0.5) (left) and UMAP visualization of all cells clustered using pcG, 
colored by same cluster from left. Cells cycled in left panel were 
projected to the right UMAP plot. (E) UMAP visualization of known 
markers expressed in Micro and PVM. (F) UMAP visualization of ncRNAs 
specifically expressed in Micro and PVM. (G) UMAP visualization of all 
cluster of adult mouse MOp 10x cell V2 (left) / V3 (right) single-cell data, 
colored by cell types. (H) UMAP visualization of ncRNAs specifically 
expressed in Glu cell types, GABA cell types, and Non-neu cell types in 
10x single cell RNA-seq (scRNA-seq) data. (I) UMAP visualization of 
ncRNA specifically expressed in Glu cell types, GABA cell types, and Non-
neu cell types between SMART-Seq v4 (top) and 10x scRNA-seq data 
(bottom).

SUPPLEMENTARY FIGURE S3

Spatial visualization of layer-specifically expressed genes. (A) Heatmap 
showing the top DE pcGs and ncRNAs of each layer. Genes shown in Figure 3E 
are marked in red. (B) 10x Visium spatial transcriptome (ST) in anterior (left) and 
posterior (right) mouse brain sections, colored by BayesSpace clusters 
annotated by anatomical regions. Scale bar, 1 mm. (C) Violin plot showing the 
number of genes (left) and UMIs (right) in different layers. (D) Spatial 
visualization of the known markers used to identify L2/3, L4, L5 and L6 in the 
section shown in B. Scale bar, 1 mm. (E) Bubble plot showing layer-specific 
expression of pcGs (left) and ncRNAs (right) in different layers of 10x Genomics 
Visium data. The color of each bubble indicates the average expression level, 
and the size indicates the proportion of expressing cells. (F) Spatial visualization 
of the layer-specific pcGs and ncRNAs shown in E expressed in adult mouse 
cerebral cortex of ST. Scale bar, 1 mm.

SUPPLEMENTARY FIGURE S4

Specifically expressed ncRNAs in different cortical areas. (A) Schematic 
diagram of the anatomical structure of the Allen adult mouse brain (left) and 
cortical brain areas (right), including, MOp, SSp and VISp. (B) UMAP 
visualization of L5 PT CTX-specific ncRNAs. (C) Spatial visualization of the 
area-specific pcGs and ncRNAs expressed in adult mouse cerebral cortex. 
Scale bar, 1 mm (D–K). The ncRNAs of L5 IT (D–G) and L6 IT CTX (H–K) is 
differently expressed in each area. UMAP visualization of ncRNA global 
clustering, colored by area (SSp, MOp and VISp) (D, H). Stacked bar plots 
showing the proportion of DE ncRNA type in each area (E,I). Heatmap showing 
the top DE ncRNA in each are (F, J). Differential genes in each area of L5 IT 
(G) and L6 IT CTX (K). Top, UMAP visualization of ncRNA specifically expressed 
in MOp and VISp. Bottom, Spatial visualization of the area -specific ncRNA 
expressed in adult mouse cerebral cortex of L5 (G) and L6 (K). Scale bar, 1 mm. 
(L) UMAP visualization of ncRNA global clustering of cell types, including L5 NP 
CTX, L6b CT, Sst and Lamp5, colored by area (SSp, MOp and VISp).
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SUPPLEMENTARY FIGURE S5

Co-expression network analysis by hdWGCNA. (A) Determination of soft-
thresholding power in the hdWGCNA. Left: The plot shows the scale-free 
topology fit index (y-axis) for different soft-thresholding powers (β) (x-axis). 
Right: Analysis of the mean connectivity (degree, y-axis) for various soft-
thresholding powers (x-axis). (B) Heatmap showing the adjacencies of GM. 
Red represents high adjacency (positive correlation) and blue represents 
low adjacency (negative correlation). (C) Left, UMAP visualization of 
average expression level of genes in each module. Right: At most top 5 
pcGs (red) and ncRNAs (green) in each module, ranked by kME.

SUPPLEMENTARY TABLE S1

Differentially expressed genes between Glu/GABA/Non-neu in mouse 
cerebral cortex.

SUPPLEMENTARY TABLE S2

Differentially expressed ncRNAs among cell types of mouse cerebral cortex.

SUPPLEMENTARY TABLE S3

Differentially expressed genes among different layers in mouse 
cerebral cortex.

SUPPLEMENTARY TABLE S4

Differentially expressed genes among different mouse cortical areas.

SUPPLEMENTARY TABLE S5

Differentially expressed genes among different mouse cortical areas within 
same cell type.

SUPPLEMENTARY TABLE S6

hdWGCNA gene modules in mouse cerebral cortex.

SUPPLEMENTARY FIGURE S7

Association of GWAS human genetic diseases with mouse cortical 
cell types.
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