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Editorial on the Research Topic

New insights into investigating schizophrenia as a disorder of

molecular pathways

Schizophrenia (SZ) is a complex disorder with ∼1% incidence world-wide involving

multiple risk factors such as chemical imbalance (e.g., neurotransmitters), infection (e.g.,

Toxoplasmosis), genetic susceptibility (e.g., three-fold familial risk with a first-degree

relative) and epigenetic factors (e.g., high discordance rates in monozygotic twins) (Saxena

et al., 2021). Many genetic and animal model studies have been carried out to date, but we

are far from a complete understanding of the molecular/physiological basis for the onset

and progression of SZ (e.g., Winship et al., 2019; Trubetskoy et al., 2022). Considerable

efforts were also directed for targeting molecules suspected to be involved in positive and

negative symptoms to develop antipsychotic drugs [reviewed in Corell (2020)]. However,

these efforts have not yet provided completely curable or long-term solutions, mainly

because of the lack of comprehensive understanding of the basic mechanisms, processes

involving relapse, heterogeneity in the molecular abnormalities in patients, etc. (e.g., Farsi

and Sheng, 2023).

Among the different lines of research involved in studying the basic mechanisms, the

present article collection focuses on molecular pathways involved in SZ. In general, diverse

sets of molecular pathways, broadly belong to four main categories of cellular signaling

that are essential for various neurodevelopmental processes such as neuron cell survival,

growth, death, neuron-to-neuron signaling, etc. (Table 1). Many of these pathways have

been used to study the effects of some commonly used antipsychotic drugs, development

of new generation of drugs and understand the basis of non-responsiveness in some cases.

Nevertheless, as mentioned above, both basic and applied research are needed for better

diagnosis and management of SZ.

Among the collection of articles under the Research Topic, one investigation involved

the programmed cell death—associated genes dysregulated in SZ patients (Feng and

Shen) who used transcriptome data from dorsolateral prefrontal cortex from the publicly

available database containing 58 SZ patients and 175 controls as discovery group. The

choice of cell death—related genes was also important because of the observations that the

SZ patients showed accelerated aging effects with loss of gray and white matter (Cropley

et al., 2017). Out of the 2,684 differentially expressed genes (DEGs) identified, 263 were

among the genes linked to programmed cell death. Following extensive bioinformatic
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TABLE 1 Selected pathways among the four broad categories of signaling processes and their relevance to schizophrenia.

Category Molecules Interacting
molecule

Post-synaptic
potential or
biological e�ect

E�ect of
antipsychotic
drugs

References

Neuron—neuron

signaling

GABA

Glutamate

Acetylcholine

Dopamine

Serotonin

Epinephrine

Oxytocin

GABA Receptor

mGlu Receptors

Ach Receptor

D1/D2 Receptors

Serotonin Receptor

β1/β2/β3 Receptors

Oxytocin R

Inhibitory

Excitatory or inhibitory

Excitatory

Excitatory

Inhibitory

Excitatory or inhibitory

Excitatory

No effect

Decrease

–

Decrease

Decrease

Increase

–

Yoon et al., 2020

Merritt et al., 2021

–

Kehr et al., 2018

Kehr et al., 2018

Boyda et al., 2020

–

G

protein—coupled

receptors

Dopaminergic receptor Gαq Excitatory Inhibition Servonnet and Samaha,

2020

Serotonergic receptors

5-HT1Rs

5-HT2Rs

5-HT4Rs

5-HT5A

Gαi/o

Gαq

Gαs

G αi/o

Inhibitory

Excitatory

Excitatory

Inhibitory

Activation

Both

Both

No data

Ochiai et al., 2022

Giovanni and

Deurwaerdère, 2016

Agrawal et al., 2020

–

Glutamatergic receptors

mGluR1

mGluR5

mGluR2, mGluR3

mGlu4, mGlu6, mGlu7,

& mGlu8

Gαs and Gαq

Gαs and Gαq

Gαi/o

G αi/o

Excitatory

Excitatory

Inhibitory

Inhibitory

Activation

Inhibition

Inhibition

–

Korlatowicz et al., 2021

Korlatowicz et al., 2021

Revenga et al., 2019

–

Receptor tyrosine

kinases

BDNF

EGF

FGF

WNT

BDNF receptor

EGF receptor

FGF receptor

Frizzled

Neuron survival/regeneration

Neuron

survival/differentiation

Neuron survival

Neuron survival/

differentiation

Normal levels

No effect

Increase

Pathway Activation

Noto et al., 2021

Zhang et al., 2020

Li et al., 2022

George et al., 2020

Intracellular

receptors

Retinoic acid receptor

Estrogen

Testosterone

Cortisol

Thyroid hormone

Vitamin D

Vitamin A

Estrogen receptor

Androgen receptor

Glucocorticoid receptor

T3 Receptor

Vitamin D receptor

Neuron differentiation

Neuroprotection

Neuroprotection

Neuronal death

Neuroprotection

Neurogenesis

Increase/stabilization

Decrease

Increase

Decrease

Decrease

No change

Regen et al., 2021

Piriu et al., 2015

Huang et al., 2021

Tobolska et al., 2016

Zhang and Lin, 2020

Kopecek et al., 2019

analysis including machine learning, protein-protein interactions

and consensus cluster analysis, the authors identified 10 most

differentially expressed genes (DPF2, ATG7, GSK3A, TFDP2,

ACVR1, CX3CR1, AP4M1, DEPDC5, NRFA2, and IKBKB) that

are also involved in different forms of cell death. The diagnostic

value of expression states of these genes, when assessed by

ROC curve analysis yielded an AUC of 0.91. These results were

further confirmed using a validation dataset from BA10 (anterior

prefrontal cortex) areas of 19 controls and 23 patients (AUC: 0.94).

Further, when the proportions of immune cells were estimated

using the ImmuneCellAI algorithm, the affected tissues showed

significant differences in the levels of cytotoxic and natural killer

cells. Finally, gene-drug interaction analysis identified aflatoxin

B1, valproic acid (VPA), arsenic, benzo(a)pyrine, epigallocatechin

gallate (EG) and nickel as interacting drugs. Together, the data from

Feng and Shen suggest that: (1) At least a subset of patients can be

diagnosed based on dysregulated states of the identified set of the

10 cell death—related genes and (2) Drugs such as VPA and EG

may be useful for treatment of this subset. Of these, VPA is known

to increase the levels of GABA, block voltage-gated ion channels

and inhibit histone deacetylase (HDAC) activity (Ghodke-Puranik

et al., 2013).

The second article in this Research Topic focused on

perturbation of the levels of DNA methyltransferase 1, required

for maintenance of DNA methylation an important epigenetic

modification (Mohan and Chaillet, 2013). Singh et al. based

their study on the observations that DNMT1 overexpression

is a risk factor for SZ, epilepsy and bipolar disorders (Veldic

et al., 2005; Zhu et al., 2012) and used genetically modified

mouse embryonic stem cell line that overexpresses the enzyme.

Interestingly, the same cell line can be made to turn off the

Dnmt1 expression by treatment with doxycycline. Transcriptome

analysis of the neurons produced by these cells under both

doxycycline-treated and untreated conditions identified ∼3,000

dysregulated genes for each category. Several of these genes were

involved in neurodevelopmental processes, neurotransmission,

synaptic function, extracellular signaling, cell–cell junctions,

extracellular matrix interactions, DNA replication, DNA repair,

translation machinery, etc. These genes were also subjected

to transcript level changes in patients with any of the three

disorders as well as autism spectrum disorder. This data

provided evidence in support of the hypothesis that both

loss as well as increased expression of DNMT1 as factors

influencing abnormal behavior and that DNMT1 levels need to be
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maintained within a normal range for better outcomes (Mohan,

2022).

Both studies under this Research Topic point to important

common factors that are involved in epigenetic modifications of

mammalian genomes. It is well established that DNA methylation

at promoters influences gene expression and the effects involve

cooperative action of DNMT1 and HDAC1/HDAC2 in establishing

and maintaining repressive histone modifications at their N-

terminal tails (e.g., H3-K9 Me3) at methylated promoters (Burgers

et al., 2002). The studies by Feng and Shen, and Singh et al. further

implicate the involvement of epigenetic machinery (HDAC1 and

DNMT1, respectively). It is noteworthy that a subset of SZ patients

shows increased HDAC1 levels (Sharma et al., 2008), but it is

not known whether these patients also have increased DNMT1

levels. In this context, investigations are needed to test DNMT1

overexpression effects on HDAC1 levels. Nevertheless, drug-based

modulation of DNMT1 and HDAC1 levels/activity to normal

ranges holds promise for better treatment of a subset of patients

with SZ and possibly with other mental health disorders wherein

either or both genes show dysregulation.
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