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Background: Epilepsy stands as an intricate disorder of the central nervous

system, subject to the influence of diverse risk factors and a significant genetic

predisposition. Within the pathogenesis of temporal lobe epilepsy (TLE), the

apoptosis of neurons and glial cells in the brain assumes pivotal importance.

The identification of differentially expressed apoptosis-related genes (DEARGs)

emerges as a critical imperative, providing essential guidance for informed

treatment decisions.

Methods: We obtained datasets related to epilepsy, specifically GSE168375

and GSE186334. Utilizing differential expression analysis, we identified a

set of 249 genes exhibiting significant variations. Subsequently, through an

intersection with apoptosis-related genes, we pinpointed 16 genes designated

as differentially expressed apoptosis-related genes (DEARGs). These DEARGs

underwent a comprehensive array of analyses, including enrichment analyses,

biomarker selection, disease classification modeling, immune infiltration

analysis, prediction of miRNA and transcription factors, and molecular

docking analysis.

Results: In the epilepsy datasets examined, we successfully identified

16 differentially expressed apoptosis-related genes (DEARGs). Subsequent

validation in the external dataset GSE140393 revealed the diagnostic potential of

five biomarkers (CD38, FAIM2, IL1B, PAWR, S100A8) with remarkable accuracy,

exhibiting an impressive area under curve (AUC) (The overall AUC of the model

constructed by the five key genes was 0.916, and the validation set was 0.722).

Furthermore, a statistically significant variance (p < 0.05) was observed in T cell

CD4 naive and eosinophil cells across different diagnostic groups. Exploring

interaction networks uncovered intricate connections, including gene-miRNA

interactions (164 interactions involving 148 miRNAs), gene-transcription factor

(TF) interactions (22 interactions with 20 TFs), and gene-drug small molecule

interactions (15 interactions involving 15 drugs). Notably, IL1B and S100A8

demonstrated interactions with specific drugs.
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Conclusion: In the realm of TLE, we have successfully pinpointed noteworthy

differentially expressed apoptosis-related genes (DEARGs), including CD38,

FAIM2, IL1B, PAWR, and S100A8. A comprehensive understanding of the

implications associated with these identified genes not only opens avenues for

advancing our comprehension of the underlying pathophysiology but also bears

considerable potential in guiding the development of innovative diagnostic

methodologies and therapeutic interventions for the effective management of

epilepsy in the future.
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Introduction

Epilepsy, a chronic disorder of the central nervous system
characterized by recurrent seizures without an apparent trigger
and abnormal neuronal network activity, poses a significant clinical
challenge (Thijs et al., 2019). While the etiology of epilepsy in many
cases remains elusive, it is noteworthy that disruptions of normal
brain function, stemming from various factors such as traumatic
brain injury, infectious diseases, autoimmune disorders, and
genetic mutations, can precipitate seizures (Pitkänen et al., 2016;
Devinsky et al., 2018). With approximately 1,000 genes associated
with epilepsy, mutations in these genes manifest primarily as
conditions characterized by seizures (Rana and Musto, 2018).

MicroRNAs (miRNAs), as regulators of gene expression,
exert multifaceted effects on epilepsy, with modulation of the
inflammatory response and regulation of apoptosis identified as key
mechanisms (Xie et al., 2023).

Extensive research has delved into the intricate involvement
of numerous genes and signaling pathways in the development
of epilepsy (Perucca et al., 2020). Recognizing the pivotal role
of genetic factors in epilepsy and its treatment, ongoing efforts
utilize various genetic and genomic technologies to analyze the
disorder’s genetic foundations (Shevlyakov et al., 2023). High-
throughput sequencing analysis of gene expression, complemented
by advanced bioinformatics tools, has emerged as a cutting-edge
approach for investigating disease onset and progression, offering
insights into the underlying mechanisms of epilepsy.

Within the domain of challenging epileptic conditions, TLE
stands out as a formidable subtype, necessitating immediate
attention for comprehensive genetic diagnosis and therapeutic
interventions. There exists an urgent need to refine our
understanding and approach to the genetic underpinnings of TLE,
with the goal of optimizing epilepsy management through non-
surgical treatment modalities.

In this study, we employed bioinformatics methodologies
to identify differentially expressed apoptosis-related genes
(DEARGs) in patients with TLE compared to normal individuals.
Our investigation encompassed the exploration of prospective
biomarker candidates and the development of disease diagnostic
models. Furthermore, we conducted enrichment analyses and
constructed gene networks based on the finalized DEARGs. To

unveil potential options for epilepsy treatment, we enhanced
drug molecular docking, contributing to the advancement of
therapeutic possibilities.

Materials and methods

Data source

As depicted in Figure 1, the comprehensive workflow adopted
in this study is outlined. We downloaded epilepsy data from
the gene expression omnibus (GEO) (Barrett et al., 2012)
(Supplementary Table 1). GSE168375 includes 31 epilepsy patient
brain tissue samples and 12 normal brain tissue samples as controls
(Krawczyk et al., 2022). GSE186334 includes 24 epilepsy patient
cortical samples and 12 healthy control cortical samples (Gomes-
Duarte et al., 2022). GSE140393 validation set consists of 12
epilepsy patient cortical samples and 9 healthy control cortical
samples (Pai et al., 2022). Additionally, we downloaded a set of 580
genes associated with apoptosis from PMID36341760 (Zou et al.,
2022) (Supplementary Table 2).

GSE168375 Dataset: Control Group: 12 samples, average age
35.25 (3 males, 9 females). Epilepsy Group: 31 samples (1 missing
gender/age), average age 6.7 (13 males, 17 females).

GSE186334 Dataset: Epilepsy Group: 10 samples with available
clinical information. Average age for patients E5, E6, E7: 56.667 (2
females, 1 male).

GSE140393 Dataset: Control Group: 9 samples from 3 patients,
average age 35.3 (2 males, 1 female). Epilepsy Group: 21 samples
from 5 patients, average age 24.8 (4 males, 1 female).

Differential expression analysis

We used the “sva” package (v3.40.0) in R to perform batch
correction on the GSE168375 and GSE186334 datasets (Leek et al.,
2012). Subsequently, principal component analysis (PCA) was
conducted. Differential analysis was performed on the integrated
epilepsy dataset using the “limma” package (v3.48.3) to identify
DEGs between the epilepsy and control groups (Ritchie et al., 2015).
Genes with logFC (fold change, FC) > 0.58 and p-value < 0.05 were
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FIGURE 1

Workflow. DEGs, differential expressed genes; ARGs, apoptosis-related genes; DEARGs, differential expressed apoptosis-related genes; SVM-RFE,
support vector machine-recursive feature elimination; TF, transcription factor; ROC, receiver operating curve; DCA, decision curve analysis.

considered upregulated DEGs, while genes with logFC < −0.58
and p-value < 0.05 were considered downregulated DEGs. The
correlation analysis of DEARGs was performed using the “psych”
package (v2.3.6) in R to calculate the Spearman correlation between
gene expressions. Gene positions on chromosomes were obtained
using the “biomaRt” package (v2.54.1) and visualized using the
genes package (v0.5.0) (Kasprzyk, 2011).

Enrichment analysis

The “clusterProfiler” package (v4.7.1.3) is used for performing
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses (Yu et al., 2012).

The enrichment results are visualized using the “GOplot” package
(v1.0.2) and “enrichplot” package (v1.18.4) (Walter et al., 2015;
Wu et al., 2021). The “pathview” package (v1.40.0) in R is used
for visualizing the KEGG pathways (Luo and Brouwer, 2013).
Gene set enrichment analysis (GSEA) is a computational method
used to determine whether a predefined set of genes shows
statistically significant differences between two biological states
(Subramanian et al., 2005). We downloaded the reference gene set
“c2.cp.kegg.v7.4.entrez.gmt” from the MSigDB database (Liberzon
et al., 2015). The “clusterProfiler” package (v4.0.5) includes GSEA
methods for conducting enrichment analysis and visualization of
the dataset (Wu et al., 2021). Gene set variation analysis (GSVA) is
used to analyze the variation of gene sets (Subramanian et al., 2005).
We obtained the reference gene set “h.all.v7.4.symbols.gmt” from
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the MSigDB database to perform GSVA analysis on different groups
of the integrated GEO dataset. The “GSVA” package (Hanzelmann
et al., 2013) (v1.40.0) converts the expression matrix into a pathway
enrichment score matrix and uses the “lmFit” function from
the “limma” package (v3.48.0) to identify different pathways and
calculate p-values (Ritchie et al., 2015).

Identification of optimal diagnostic gene
biomarkers for epilepsy

We used the Lasso regression method with the glmnet R
package (v4.1-2) to screen all DEARGs (Friedman et al., 2010).
Then, we employed the SVM-RFE algorithm with the caret R
package (v6.0.94) to further select features associated with epilepsy-
related apoptosis genes. The intersection of the features selected
by Lasso and SVM-RFE was considered as the set of genes
for constructing the diagnostic model. We performed a Friends
analysis using the R package GOSemSim (v2.24.0) (Yu, 2020).
Using logistic regression based on the selected feature genes,
we constructed the diagnostic model. The diagnostic score was
calculated using the gene expression levels and the coefficients
obtained from the multiple regression model as follows:

diagnosis Score =
∑

i Coefficient
(
hub genei

)
∗

mRNA Expression
(
hub genei

)
Furthermore, we divided the combined epilepsy dataset into a

high-score diagnostic group and a low-score diagnostic group. We
used the “pROC” R package (v1.18.0) to plot the ROC curve for
the diagnostic model and epilepsy status (Robin et al., 2011). The
calibration plot was generated using the rms R package (v6.2-0)
to assess the accuracy and discriminative ability of the diagnostic
model. Finally, the decision curve analysis (DCA) plot was created
using the “ggDCA” R package (v1.1) to evaluate the accuracy and
discriminative ability of the logistic regression model (Vickers and
Elkin, 2006).

Immune infiltration analysis

We uploaded the expression profile data of the epilepsy
dataset to the CIBERSORTx website and used the provided
LM22 gene set to calculate the abundance of 22 immune
cell types in each patient (Wu et al., 2021). The correlation
between genes related to epilepsy in different groups of immune
cells was calculated using the Spearman algorithm, and the
correlation heatmap was generated using the R package ggplot2
(v3.3.6).

Gene network construction

We conducted further predictive research on the diagnostic
model genes using the miRNet database (Chang et al., 2020).
We downloaded information on small-molecule drug targets from
DrugBank and used this information to predict small-molecule
drugs that could interact with the diagnostic model genes (Wishart

et al., 2008). We utilized Cytoscape (v3.8.2) for visualization and
network analysis (Shannon et al., 2003).

Molecular docking analysis

We downloaded the 2D or 3D structures of small molecule
drugs from the PubChem database and used Chem3D software
to convert the 2D structures into 3D structures (Kim et al., 2021;
Bateman et al., 2023). Next, we searched the UniProt and PDB
databases for human receptor protein structures corresponding to
the genes of interest (Burley et al., 2017). With PyMOL software,
we visualized the protein structures (Seeliger and de Groot, 2010).
Finally, we used Autodock Vina software to identify the active
binding sites involved in the interaction between the ligands and
receptors (Seeliger and de Groot, 2010).

Statistical analysis

All data calculations and statistical analyses were conducted
utilizing the R programming language (version 4.2.3). For multiple
testing corrections, we utilized the Benjamini–Hochberg method
with false discovery rate adjustment. For comparisons between
two groups of continuous variables, we estimated the statistical
significance of normally distributed variables using an independent
Student’s t-test. Differences in non-normally distributed variables
were analyzed with the Wilcoxon test. We used Spearman
correlation analysis to calculate correlation coefficients between
different molecules. All p-values were two-sided, and statistical
significance was defined as p < 0.05.

Results

Batch correction and DEARG analysis in
epilepsy vs. control groups

GSE168375 and GSE186334 underwent batch correction, and
the pre- and post-batch effect removal data sets were compared
using a distribution boxplot and PCA plot (Figure 2).

We intersected the DEGs between the epilepsy and control
groups with apoptosis-related genes, resulting in 16 DEARGs, 10
of which were upregulated and 6 were downregulated. Figure 3A
displays a volcano plot of the DEGs, Figure 3B depicts a
heatmap of the DEGs, and Figure 3C shows boxplots of the
DEARGs. The volcano plot, heatmap, and boxplots illustrate the
expression patterns of genes, including S100A8 and S100A9, which
experienced downregulation in the epilepsy group, whereas PAWR,
AR, CD38, and others were upregulated. The Spearman correlation
coefficients were calculated amongst the DEARGs (Figure 3D).
It was discovered that the expression of HSPA1B and HSPA1A
exhibited the highest correlation (r = 0.85, p < 2e-16), while the
expression of IL1B and TNF showed positive correlation (r = 0.82,
p < 2e-16). Figure 3E illustrates the chromosomal positions of
the 16 DEARGs. The figure indicates that AR is situated on
the X chromosome whereas S100A8 and S100A9 are located on
chromosome 1.
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FIGURE 2

Batch effect analysis of the integrated epilepsy dataset. Box plots depicting combined epilepsy data pre- (A) and post- (B) batch correction. Batch
analysis of combined epilepsy data pre- (C) and post- (D) batch correction employing PCA. Employment of PCA for differential analysis of epilepsy
and control groups pre- (E) and post- (F) batch correction in the integrated epilepsy dataset.

Functional pathway analysis and
enrichment in epilepsy group

The results (Supplementary Table 3) revealed that in the
epilepsy group, the enriched GO pathways were primarily

associated with BP, including GO:2001233 (regulation of apoptotic
signaling pathway), GO:0051092 (positive regulation of NF-
kappaB transcription factor activity), GO:2001237 (negative
regulation of extrinsic apoptotic signaling pathway), among
others (Figure 4A). In terms of CC, the enriched GO terms
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FIGURE 3

Differential expression analysis of the integrated dataset between the epilepsy group and the control group. (A) Volcano plot of the DEGs.
(B) Heatmap of the DEGs. (C) Box plot showing the expression of apoptotic genes that are differentially expressed. (D) Spearman correlation
heatmap showing the correlation of DEARGs. (E) Diagram showing the positions of DEARGs on the chromosomes. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. UP, up-regulated; DN, down-regulated; NS, not significant.

included GO:0016235 (aggresome), GO:0016234 (inclusion
body), GO:0030667 (secretory granule membrane), and others
(Figure 4B). For MF, the enriched GO terms included GO:0050786
(RAGE receptor binding), GO:0035325 (Toll-like receptor
binding), GO:0140776 (protein-containing complex destabilizing
activity), and others (Figure 4C). Figure 4D illustrated the
enriched KEGG pathways, mainly involving the IL-17 signaling
pathway, Antigen processing and presentation, and others.

Figure 4E presented a heat map of the enriched KEGG pathways,
providing a visual representation of the pathway-gene associations
(Supplementary Table 4).

Supplementary Figure 1A illustrated the role of genes in the
TNF signaling pathway. In this pathway, the inflammatory factors
TNF and IL1B activate TNFR1 and TNFR2, respectively, leading
to the activation of downstream pathways that can induce cell
apoptosis or perform other functions. Supplementary Figure 1B
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FIGURE 4

GO and KEGG enrichment results of DEARGs between the epilepsy group and the control group. (A–C) Enriched GO pathways associated with
Biological Process (A), Cell Component (B) and Molecular Function (C). LogFC represents the log2 (fold change) of gene expression between
epilepsy group and control group. (D) Enriched KEGG pathways. Dot size represents the number of genes in the pathway. (E) Heat map of enriched
KEGG pathways.

depicted the specific details of the Antigen processing and
presentation pathway. TNF activation triggered a series of
subsequent reactions, including the involvement of PA28, which
assisted in the functioning of CD8 T cells, NK cells, CD4 T cells,
and other immune cells.

Due to the subjective nature of selecting threshold values for
DEGs, we also performed GSEA based on gene expression fold
changes (Supplementary Table 5). Figure 5A represented the TGF
BETA SIGNALING PATHWAY, Figure 5B showed CYTOKINE
CYTOKINE RECEPTOR INTERACTION, Figure 5C displayed
COMPLEMENT AND COAGULATION CASCADES, Figure 5D
illustrated ECM RECEPTOR INTERACTION, Figure 5E depicted
HEMATOPOIETIC CELL LINEAGE, and Figure 5F represented
RIBOSOME. All of these pathways were enriched in the epilepsy
group.

We conducted GSVA based on gene expression
profiles (Supplementary Table 6). Supplementary
Figure 2A displayed stronger functional enrichment of
TGF_BETA_SIGNALING, KRAS_SIGNALING_UP, and
EPITHELIAL_MESENCHYMAL_TRANSITION in the epilepsy
group, while REACTIVE_OXYGEN_SPECIES_PATHWAY,
KRAS_SIGNALING_DN, and HEME_METABOLISM showed
weaker functional enrichment in the epilepsy group. We
examined the Spearman correlation between the gene with

the highest absolute fold change in expression between the
two groups (S100A9) and functional pathways. Supplementary
Figure 2B presented a scatter plot showing the correlation
between the GSVA score of TGF_BETA_SIGNALING
and S100A9 gene expression, which exhibited a negative
correlation (r = −0.36, p = 0.0013). Supplementary Figure 2C
demonstrated a positive correlation between the GSVA score
of REACTIVE_OXYGEN_SPECIES_PATHWAY and S100A9
gene expression (r = 0.35, p = 0.0016). Finally, Supplementary
Figure 2D showed a negative correlation between the GSVA score
of EPITHELIAL_MESENCHYMAL_TRANSITION and S100A9
gene expression (r =−0.32, p = 0.0041).

Diagnostic model and validation analysis

We employed the Lasso algorithm to select twelve feature genes
from sixteen DEARGs (Figures 6A, B). Furthermore, we used the
SVM-RFE algorithm to select five genes from the sixteen DEARGs
(Figure 6C). Combining the results of both algorithms, we
identified five feature genes (CD38, FAIM2, IL1B, PAWR, S100A8)
as diagnostic biomarkers for epilepsy grouping (Figure 6D). Using
logistic regression, a diagnostic model for epilepsy grouping was
constructed with these five key genes. The risk score was calculated
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FIGURE 5

GSEA results of epilepsy group and the control group. (A) TGF beta signaling pathway. (B) Cytokine cytokine receptor interaction. (C) Complement
and coagulation cascades. (D) ECM receptor interaction. (E) Hematopoietic cell lineage. (F) Ribosome. NES, Normalized Enrichment Score.
Pathways with FDR (False Discovery Rate) < 0.05 are generally considered to be statistically significant.

as: risk score = 0.596134∗exp(CD38)–1.312078∗exp(FAIM2)
+ 0.612583∗exp(IL1B) + 1.568740∗exp(PAWR)–
0.687394∗exp(S100A8). The constructed diagnostic model
demonstrated high accuracy in diagnosing epilepsy, with an area
under curve (AUC) value of 0.916 as shown in Figure 6E.

We used GSE140393 as a validation set and calculated the
ROC curve accordingly (Figure 6F). The results showed that
the diagnostic model had high accuracy in diagnosing epilepsy
in the external validation dataset GSE140393, with an AUC of
0.722. Furthermore, individual ROC curves were generated for
each gene separately (Figure 6G). The AUC values ranged from

0.66 to 0.82, indicating that the diagnostic capacity of models
based on individual genes was lower than that of the overall
5-gene model. Lastly, we conducted GO analysis to assess the
functional importance of the 5 diagnostic genes using Friends
analysis (Figure 6H). The results showed that the gene FAIM2
played an important functional role and might be a crucial gene
in the context of epilepsy.

We analyzed the impact of each gene on the disease and
visualized it as a forest plot (Figure 7A). The results showed
that IL1B and PAWR were risk factors. On the other hand,
FAIM2 and S100A8 were protective factors. The diagnostic
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FIGURE 6

Construction of a diagnostic model for an integrated epilepsy dataset. (A,B) Selection of twelve feature genes from sixteen DEARGs using Lasso
algorithm. (C) Selection of five feature genes from sixteen DEARGs using SVM-RFE algorithm. SVM-RFE: Support Vector Machine - Recursive Feature
Elimination. (D) Five feature genes determined by the combined results of both algorithms. (E) Diagnostic model performance with identified
biomarkers. (F) External validation using GSE140393 dataset. (G) Individual gene ROC curves. ROC, Receiver Operating Characteristic Curve. (H)
Functional importance of diagnostic genes. The horizontal coordinate (score) represents similarity score of a gene with other genes based on
semantic similarity. The higher the score, the higher the correlation with other genes, and the more important the gene.
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FIGURE 7

Evaluation of diagnostic models for integrated epilepsy datasets. (A) Impact analysis of genes on disease. OR: Odds Ratio. OR < 1 means that the
gene is a protective factor, OR > 1 means that the gene is a risk factor. CI, confidence interval. (B) Nomogram analysis of diagnostic model. (C)
Calibration curve for diagnostic model accuracy. (D) Decision curve for clinical effectiveness.

capability of the diagnostic model was assessed using Nomogram
analysis (Figure 7B). It was found that PAWR made a significant
contribution to the diagnosis of epilepsy. The calibration curve
(Figure 7C) is primarily used to assess the accuracy of the
diagnostic model. The fitted curve showed a high degree of
overlap with the reference curve (dashed line), indicating good
predictive performance of the diagnostic model. The decision
curve (Figure 7D) represented the net benefit against threshold
probabilities. This indicates that the clinical effectiveness of the
model was better within this range. Upon observation, it can
be concluded that the diagnostic model showed good clinical
effectiveness.

We divided the samples into a high-risk diagnostic group and a
low-risk diagnostic group based on the median risk score from the
diagnostic model and calculated the expression differences between
the two groups. Then, we performed GSEA analysis on the high-
risk and low-risk diagnostic groups based on the fold changes in
gene expression.

Figure 8A showed the GSEA analysis results for the
TGF BETA SIGNALING PATHWAY, Figure 8B displayed the
GSEA analysis results for ECM RECEPTOR INTERACTION,
Figure 8C presented the GSEA analysis results for CYTOKINE
CYTOKINE RECEPTOR INTERACTION, Figure 8D illustrated
the GSEA analysis results for NOD LIKE RECEPTOR SIGNALING
PATHWAY, and Figure 8E represented the GSEA analysis results

for FOCAL ADHESION. All five pathways were found to be more
enriched in the high-risk diagnostic group. Figure 8F showed the
GSEA analysis results for OXIDATIVE PHOSPHORYLATION,
which was more enriched in the low-risk diagnostic group.

We performed GSVA analysis on the gene expression profiles.
Supplementary Figure 3A presented the results of the functional
enrichment analysis, which showed that UV_RESPONSE_DN,
TGF_BETA_SIGNALING, KRAS_SIGNALING_UP, and
EPITHELIAL_MESENCHYMAL_TRANSITION were
functionally enriched to a greater extent in the high-risk diagnostic
group, while REACTIVE_OXYGEN_SPECIES_PATHWAY,
MYC_TARGETS_V2, KRAS_SIGNALING_DN, and
GLYCOLYSIS were more functionally enriched in the low-risk
diagnostic group.

Subsequently, we examined the Spearman correlation
between the risk diagnostic score and functional pathways.
Supplementary Figure 3B showed the scatter plot of the
correlation between the GSVA score of GLYCOLYSIS and
the risk diagnostic score, revealing a negative correlation
(r = −0.3, p = 8.1e-03). Supplementary Figure 3C
displayed the negative correlation between the GSVA
score of MYC_TARGETS_V2 and the risk diagnostic
score (r = −0.39, p = 4.5e-04). Supplementary Figure 3D
demonstrated the negative correlation between the GSVA score
of REACTIVE_OXYGEN_SPECIES_PATHWAY and the risk
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FIGURE 8

GSEA results for high and low-risk diagnostic groups. (A) GSEA analysis results for the TGF beta signaling pathway. (B) GSEA analysis results for ECM
receptor interaction. (C) GSEA analysis results for cytokine cytokine receptor interaction. (D) GSEA analysis results for NOD like receptor signaling
pathway. (E) GSEA analysis results for focal adhesion. (F) GSEA analysis results for oxidative phosphorylation. NES, normalized enrichment score.
Pathways with FDR (False Discovery Rate) < 0.05 are generally considered to be statistically significant.

diagnostic score (r = −0.45, p = 4.2e-05). Supplementary
Figure 3E represented the positive correlation between the
GSVA score of TGF_BETA_SIGNALING and the risk diagnostic
score (r = −0.41, p = 2.1e-04). Supplementary Figure 3F
illustrated the negative correlation between the GSVA score of
EPITHELIAL_MESENCHYMAL_TRANSITION and the risk
diagnostic score (r = 0.35, p = 1.6e-03).

Differential immune cell infiltration and
correlation analysis

We compared the differences in immune cell infiltration
abundance between the high and low-risk diagnostic groups for
each of the 22 immune cell types (Figure 9A). The results showed
significant differences in the infiltration abundance of T cells CD4
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naive and Eosinophils. T cells CD4 naive had higher immune
infiltration in the low-risk diagnostic group, while Eosinophils had
higher immune infiltration in the high-risk diagnostic group.

In the high-risk group (Figure 9B), FAIM2 and Monocyte
showed positive correlations (r = 0.46, p = 2.6e-02), while they
exhibited negative correlation with T cells CD4 naive (r = −0.32,
p = 4.7e-02). In the low-risk group (Figure 9C), FAIM2 showed a
negative correlation with T cells CD4 naive (r = −0.33, p = 3.8e-
02), and IL1B showed a negative correlation with T cells CD4 naive
(r =−0.36, p = 2.3e-02).

Figure 10A demonstrated that as the expression of IL1B
increased, the proportion of Eosinophils also increased. Figure 10B
illustrated that with an increase in PWAR expression, the
proportion of Eosinophils also increased. Figure 10C showed that
as S100A8 expression increased, the proportion of Eosinophils
decreased. Figure 10D displayed that as IL1B expression increased,
the proportion of T cells CD4 naive decreased.

Integrated network analysis of
gene-miRNA, gene-TFs, and gene-drug
interactions

The gene-miRNAs network consisted of 164 interaction
pairs involving 148 miRNAs (Supplementary Figure 4A and
Supplementary Table 8). The gene-TFs network consisted of 22
interaction pairs involving 20 TFs (Supplementary Figure 4B and
Supplementary Table 7). The gene-drug small molecule network
consisted of 15 interaction pairs involving 15 small molecule drugs
(Figure 11 and Supplementary Table 9).

Molecular docking analysis of IL1B with
small molecules: insights into interaction
mechanisms

According to the gene-small molecule interaction data, it
was determined that two out of the five selected feature genes,
IL1B and S100A8, interacted with the small molecules. Following
the selection criteria for protein structures (presence of at least
one ligand, lower resolution preferred), we identified the 5R8Q
structure of IL1B that met the requirements. Subsequently, we
performed molecular docking analysis between IL1B (5R8Q) and
the small molecules Andrographolide, Binimetinib, Dilmapimod,
Etiprednol Dicloacetate, and others.

Figure 12A depicted the binding scenario between IL1B and
Andrographolide, where hydrogen bonds with residues LYS-103,
MET-148, and ASN-108 were observed, and the predicted binding
affinity was −7.2. In Figure 12B, the binding interaction between
IL1B and Binimetinib was shown, with a hydrogen bond formed
with residue LEU-26, and the predicted binding affinity was −7.2.
Figure 12C illustrated the binding of IL1B and Dilmapimod, with
hydrogen bonds formed with residues LYS-74 and VAL-163, and
the predicted binding affinity was −9.0. Figure 12D displayed the
binding between IL1B and IL1B_Etiprednol Dicloacetate, forming
a hydrogen bond with residue MET-20, and the predicted binding
affinity was −6.1. Meanwhile, we also show the spatial structure of
the 5R8Q construct of IL1B (Supplementary Figure 5).

Discussion

Epilepsy stands out as a prevalent comorbidity in
neurodegenerative diseases, and alterations in neuronal proteins
present in cerebrospinal fluid and blood hold promise as
potential biomarkers for primary lesions within the central
nervous system. Investigating the mechanisms and clinical
implications of these neuronal biomarkers shared between
epilepsy and neurodegenerative diseases is crucial for advancing
diagnostic and therapeutic strategies (Negi et al., 2023). Given
the diverse nature of epilepsy, distinct biomarkers characterize
each condition. The identification of patient-specific biomarker
profiles can contribute to personalized epilepsy treatment, facilitate
the monitoring of antiepileptic interventions, and aid in the
identification of candidates suitable for surgical interventions
(Kobylarek et al., 2019).

Apoptosis of neurons and glial cells is important in the
pathogenesis of epilepsy, especially TLE. The study of the
mechanisms of apoptosis is crucial for the creation of a new
generation of neuroprotective and antiepileptic drugs that can
play an effective role, especially in the case of TLE (Teocchi
and D’Souza-Li, 2016). Ultrastructural and immunohistochemical
signs of apoptosis were found in temporal lobe neurons and
oligodendrocytes from patients with TLE. Pro-inflammatory
cytokines (TNF-α, NF-kB) associated with apoptosis were elevated.
It was shown that apoptosis of oligodendrocytes plays an
important role in the etiology of TLE (Bazhanova and Kozlov,
2022). It has been reported that neuroinflammatory processes
occur in epileptic foci and lead to apoptosis through exogenous
receptor and mitochondrial pathways, with the exogenous pathway
predominating. Expression of pro-apoptotic proteins has also been
observed in the perifocal region. Thus, active neuroinflammation
in temporal lobe epileptic foci and perifocal regions, as well
as an imbalance in the anti-apoptotic system in the perifocal
region, promotes further degradation of the hyperexcitable foci
and progression of epileptic encephalopathy (Litovchenko et al.,
2021).

In our study, a total of 249 differentially expressed
genes (DEGs) were identified, with 163 upregulated and 86
downregulated. Further analysis focused on DEGs common to
both the epilepsy and control groups, intersecting them with
genes associated with apoptosis, leading to the discovery of
16 differentially expressed apoptosis-related genes (DEARGs).
Subsequent functional analyses, including gene ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set
enrichment analysis (GSEA), and gene set variation analysis
(GSVA), revealed enrichment in crucial biological processes and
signaling pathways, such as the regulation of apoptotic signaling,
positive regulation of NF-κB transcription factor activity, IL-
17 signaling, and antigen processing and presentation. These
pathways play pivotal roles in maintaining cellular functions and
regulatory mechanisms, with potential implications for therapeutic
interventions (Singh and Singh, 2020).

Five feature genes, namely CD38, FAIM2, IL1B, PAWR, and
S100A8, were identified as diagnostic biomarkers for epilepsy
subtyping, forming the basis for constructing a disease classification
model. Notably, CD38, a transmembrane glycoprotein, emerged
as a key player in epilepsy pathogenesis due to its involvement
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FIGURE 9

Analysis of CIBERSORTx immune infiltration. (A) The difference of immune cell infiltration with CIBERSORTx method in the high and low risk
diagnosis group. * represents p-value < 0.05, ** represents p-value < 0.01, *** represents p-value < 0.001, **** represents p-value < 0.0001, ns
represents not significant. (B) Spearman correlation between diagnostic genes and immune cell infiltration in the high-risk group. (C) Spearman
correlation between diagnostic genes and immune cell infiltration in the low-risk group. Red marks indicate p-value > 0.05.

in NAD+ degradation and intracellular calcium ion balance
(Guerreiro et al., 2020; Khodaverdian et al., 2021). Targeting CD38
presents a potential therapeutic avenue. FAIM2, a neuron-specific

protein, exhibited neuroprotective effects, making it a plausible
target for therapeutic interventions (Reich et al., 2011). IL-1β,
a potent pro-convulsant, demonstrated elevated expression in

Frontiers in Molecular Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnmol.2024.1300348
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-17-1300348 February 5, 2024 Time: 16:41 # 14

Wang et al. 10.3389/fnmol.2024.1300348

FIGURE 10

Scatter plot of the Spearman correlation between CIBERSORTx immune infiltration results and diagnostic genes. (A) Spearman correlation between
IL1B expression and eosinophil proportion. (B) Spearman correlation between PAWR expression and eosinophil proportion. (C) Spearman correlation
between S100A8 expression and eosinophil proportion. (D) Spearman correlation between IL1B expression and T cells CD4 naive proportion. The
correlation index, R2, represents the degree of fit of the regression equation, with values between [0,1].

FIGURE 11

Network of diagnostic genes and small molecule drugs.
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FIGURE 12

5R8Q configuration of IL1B and docking results of drug molecules. IL1B’s 5R8Q conformation with Andrographolide (A), Binimetinib (B), Dilmapimod
(C) and Etiprednol Dicloacetate (D).

epilepsy patients, indicating its potential as a therapeutic target
(Santos et al., 2021). One study found a decrease in IL-1β and
IL-6 levels in patients with TLE after surgical treatment, at which
point seizures disappeared in 70% of patients. Follow-up studies
confirmed that inflammatory changes disappeared 1 year after
surgery, seizures disappeared in the majority of patients, and that
the process of apoptotic death was associated with inflammation
(Lorigados Pedre et al., 2018). PAWR, implicated in various
cancers, and S100A8, a regulator of inflammatory responses,
further expanded the repertoire of potential therapeutic targets
(Rah et al., 2015; Pruenster et al., 2016; Tan et al., 2020; He et al.,
2021). Many studies have demonstrated increased expression of
the protective S100 protein and the pro-apoptotic protein caspase-
3 in brain tissue in epileptic focal regions, and these proteins are

thought to play a role in the etiology of epilepsy (Sitovskaya et al.,
2023).

Our diagnostic model, categorizing samples into high-risk and
low-risk groups, revealed distinct immune infiltrations. Notably,
the low-risk group exhibited higher levels of T cell CD4 naive
immune infiltration, while the high-risk group displayed elevated
eosinophil levels. These findings suggest the involvement of
pro-inflammatory and anti-inflammatory CD4+ T cell subsets
and implicate eosinophils in the neurotoxic effects contributing
to seizures. Collectively, the DEARGs appear to modulate
neuroinflammation and the immune microenvironment, providing
insights into potential therapeutic avenues (Durack et al., 1979;
Vannucci et al., 2001; De Francesco et al., 2021).

Exploring the interactions of genes with other biomolecules,
including miRNAs and TFs, revealed significant possibilities for
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small-molecule drug targets. Leveraging the miRNet database, we
identified miRNAs and TFs associated with the diagnostic genes.
Molecular docking analyses, considering the relationships between
diagnostic genes and small molecule drugs, highlighted the 5R8Q
conformation of IL1B as a potential target. Among the tested drugs,
Andrographolide, known for its antiepileptic activity, exhibited
promising interactions with IL1B, suggesting its potential as a
therapeutic option for epilepsy (Huang et al., 2022).

Previous studies have found that epilepsy is closely related
to apoptosis, but the mechanisms involved are not yet fully
understood (Sokolova et al., 2022). The current study speculates
that the mechanism may be closely related to the development of
neuroinflammation and the elevation of pro-inflammatory factors
(TNF-α, NF-kB, IL-1β and IL-6) (Fuller et al., 2020; Sah et al., 2021;
Yamanaka et al., 2021). Its conclusion was further confirmed in our
current bioinformatics analysis study. And, it was also confirmed
by the decrease in IL-1β and IL-6 and seizure control in TLE
patients after surgery (Lorigados Pedre et al., 2018). In addition, we
identified five genes that may serve as diagnostic and therapeutic
targets for TLE, of which IL1B and S100A8 are consistent with
previous studies (Lorigados Pedre et al., 2018; Sitovskaya et al.,
2023), and the other three genes (CD38, FAIM2 and PAWR) are
our innovative findings.

We acknowledge the possibility of false positive findings in
our study, given certain limitations in the dataset we utilized.
In addressing this concern, we conducted an extensive review
of relevant literature, as mentioned earlier, which provides some
support for our conclusions.

Considering the urgency of advancing our understanding of
epilepsy treatment, we are eager to share our findings with the
scientific community promptly. Nevertheless, we are fully aware
of the partial nature of our conclusions and the potential for false
positives. To address these limitations comprehensively, we plan
to undertake experimental validation in the future. This additional
step aims to enhance the robustness of our discoveries.

In summary, our research further confirms the association
between epilepsy and apoptosis. We have successfully identified
noteworthy differentially expressed apoptosis-related genes,
including CD38, FAIM2, IL1B, PAWR, and S100A8. These genes
exhibit diagnostic potential for TLE with a noteworthy accuracy
(AUC = 0.916). Furthermore, our findings aim to provide novel
insights into the treatment of TLE. Through drug-molecule
docking analysis, we have discovered the therapeutic potential of
Andrographolide in treating epilepsy.

The limitations of our study are primarily associated
with the data utilized. Due to the adoption of different
datasets, certain clinical information within the datasets is
not clearly defined. As a result, the research outcomes may
be influenced to some extent by factors such as age and
gender. Furthermore, there is a degree of variability in the
uniformity of sample locations and grouping information
across datasets. For instance, GSE168375 predominantly
focuses on the temporal lobe, with grouping into epilepsy
and control categories. In contrast, GSE186334 has a more detailed
categorization (cortex_cytoplasm_ctrl, cortex_nucleus_ctrl,
cortex_cytoplasm_mTLE, cortex_nucleus_mTLE). Given that our
analysis is based on the grouping of epilepsy and control, variations
in data conditions may also impact the results.

Conclusion

In conclusion, our study provides valuable insights into
TLE pathogenesis and proposes potential pharmacological
interventions based on differentially expressed apoptotic genes.
The constructed diagnostic model demonstrates high accuracy,
laying the foundation for personalized treatment strategies.
Despite limitations in sample size obtained through surgical
procedures, future experimental validation is planned to enhance
the robustness of our findings. Overall, this research contributes to
advancing diagnostic and therapeutic approaches for epilepsy.
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SUPPLEMENTARY FIGURE 1

KEGG pathways in the epilepsy group and the control group. (A) TNF
signaling pathway. (B) Antigen processing and presentation pathway.

SUPPLEMENTARY FIGURE 2

GSVA results of epilepsy group and the control group. (A) Functional
enrichment analysis in epilepsy group. (B) Spearman correlation between
TGF_BETA_SIGNALING GSVA score and S100A9 expression. (C) Spearman
correlation between REACTIVE_OXYGEN_SPECIES_PATHWAY GSVA score
and S100A9 expression. (D) Spearman correlation between
EPITHELIAL_MESENCHYMAL_TRANSITION GSVA score and S100A9
expression. “R” represents spearman correlation coefficient.

SUPPLEMENTARY FIGURE 3

GSVA analysis results for high and low-risk diagnostic groups. (A) Functional
enrichment analysis in high and low-risk diagnostic groups. (B) Spearman
correlation between GSVA score of GLYCOLYSIS pathway and risk
diagnostic score. (C) Spearman correlation between GSVA score of
MYC_TARGETS_V2 pathway and risk diagnostic score. (D) Spearman
correlation between GSVA score of
REACTIVE_OXYGEN_SPECIES_PATHWAY and risk diagnostic score. (E)
Spearman correlation between GSVA score of TGF_BETA_SIGNALING
pathway and risk diagnostic score. (F) Spearman correlation between GSVA
score of EPITHELIAL_MESENCHYMAL_TRANSITION pathway and risk
diagnostic score “R” represents spearman correlation coefficient.

SUPPLEMENTARY FIGURE 4

Diagnostic gene and miRNA and TFs network. (A) Network of diagnostic
genes and miRNAs. (B) Network of diagnostic genes and TFs. TF,
transcription factor.

SUPPLEMENTARY FIGURE 5

Spatial structure of the 5R8Q configuration of IL1B.
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