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The sympathoadrenal medullary system and the hypothalamic-pituitary-

adrenal axis are both activated upon stressful events. The release of

catecholamines, such as dopamine, norepinephrine (NE), and epinephrine

(EPI), from sympathetic autonomic nerves participate in the adaptive

responses to acute stress. Most theories suggest that activation of

peripheral β-adrenoceptors (β-ARs) mediates catecholamines-induced memory

enhancement. These include direct activation of β-ARs in the vagus

nerve, as well as indirect responses to catecholamine-induced glucose

changes in the brain. Excessive sympathetic activity is deeply associated

with memories experienced during strong emotional stressful conditions,

with catecholamines playing relevant roles in fear and traumatic memories

consolidation. Recent findings suggest that EPI is implicated in fear

and traumatic contextual memories associated with post-traumatic stress

disorder (PTSD) by increasing hippocampal gene transcription (e.g., Nr4a)

downstream to cAMP response-element protein activation (CREB). Herein, we

reviewed the literature focusing on the molecular mechanisms underlying the

pathophysiology of memories associated with fear and traumatic experiences

to pave new avenues for the treatment of stress and anxiety conditions,

such as PTSD.
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1 Introduction

Homeostasis comprises a set of coordinated physiological
processes to sustain the steady state of an organism. Regulation of
involuntary physiologic processes by the autonomic nervous
system is a typical example of such processes (Walter,
1934). The "freeze, fight or flight" response, often referred
to as the acute stress reaction, is an animal’s reaction to
threats. This response is believed to prepare the organism
to become capable of dealing with a stressor (Bracha,
2004; Lipov, 2014). The sympathoadrenal medullary system
and the hypothalamic-pituitary-adrenocortical system have
emerged as crucial pathways to stress responses in mammals
(Selye, 1946; McEwen et al., 1974; Schommer et al., 2003).
Consolidation of emotional memories is enhanced by
neurotransmitters generated and released in response to
stress (Matthews et al., 2012; McLaughlin et al., 2015). While
these systems are adaptive in the context of acute stressful
events, ongoing stress can produce chronic overactivation
of the sympathoadrenal medullary system and of the
hypothalamic-pituitary-adrenocortical axis. This prolonged
activation is associated with the development and progression
of anxiety, depression, and/or post-traumatic stress disorder
(PTSD) (VanItallie, 2002).

The risk of suicide death is twice as high for people with
PTSD compared to those without the condition (Fox et al.,
2021). When people have symptoms of additional conditions
like anxiety and depression, this association is stronger
(Bantjes et al., 2016). Therefore, investigation of the variables
involved in the resolution of stressful responses is deeply
needed (Buckner et al., 2017; Brådvik, 2018; Twenge et al.,
2018). This review provides an overview of the literature
about the molecular mechanisms underlying fear memory
physiology and traumatic memory pathophysiology. The
involvement of catecholamines, namely norepinephrine
(NE) and epinephrine (EPI), and adrenoceptors (ARs) in
the development of stress and anxiety disorders will be
detailed here, given that our hypothesis is that a thorough
understanding of this interplay may pave the way for
novel therapies to address stress and anxiety diseases, such
as PTSD.

2 Hypothalamus-pituitary-
adrenocortical system and the
sympathoadrenal medullary system

The hypothalamic-pituitary-adrenocortical system and the
sympathoadrenal medullary system are both activated during a
stressful scenario and work together to regulate the "freeze, fight,
or flight" response (Bracha, 2004) by releasing stress hormones
(corticosteroids and catecholamines) into the bloodstream
(Figure 1; Timio et al., 1979; Floriou-Servou et al., 2021). According
to preclinical research, hypothalamic-pituitary-adrenocortical and
sympathoadrenal medullary systems cooperate to regulate the
consolidation and retrieval of fear memories (Eiden, 2013;
Hauer et al., 2014).

Upon a stressful event, the limbic system in the midbrain
becomes active. The hypothalamus is activated by various systems,
including immune, hormonal, and neural systems. Amygdala
stimulation is a possible way of activating the hypothalamus and,
consequently, two pathways may concur (Figure 1; Matheson
et al., 1971; Beaulieu et al., 1988). The amygdala stimulates
the hypothalamus and the anterior hypothalamus releases
corticotropin-releasing factor (CRF), inducing the production
of adrenocorticotropic hormone (ACTH) by the pituitary gland
(Antoni et al., 1983; Gibbs et al., 1983). ACTH is released into
the bloodstream and acts on the adrenal gland triggering the
cortical region of the gland to produce corticosteroids, which
then allows the organism to boost its metabolism in response to
freeze, fight, or flight responses (Selye, 1956; Seaward, 2011). The
hypothalamus also participates in intermediate and prolonged
responses to aversive events by triggering the release of NE and
EPI from the adrenal medulla into the bloodstream, therefore
regulating the physiologic response to stressors (Smith and
Vale, 2006; Tank and Lee Wong, 2015). The immune system is
another mechanism of activation of the hypothalamus, through
cytokines, such as IL-10, resulting in altered levels of ACTH
and glucocorticoids (Petrowski et al., 2018). Therefore, the
hypothalamus is a crucial part of the stress system, collaborating
with other important brain regions and peripheral tissues and
organs to mobilize an effective adaptive response against stressors
(Li et al., 2021).

As mentioned, catecholamines, in particular EPI and NE,
are two of the most important stress hormones (Romero and
Butler, 2007), which together with glucocorticoids, are the
main mediators of “freeze, fight or flight” responses (Bracha,
2004). Synergy between β2-ARs and glucocorticoid receptors
has been reported. For instance, the β2-AR signaling pathway
regulates the glucocorticoid receptor nuclear translocation and
increases their affinity to steroids, as shown by the in vivo
interaction of corticosteroids and inhaled long-acting β2-agonists
on nuclear translocation of glucocorticoid receptors in human
airway cells using immunocytochemistry (Usmani et al., 2005).
This is also true in the opposite direction, since corticosteroids
upregulate β2-AR transcription and regulate both their number
and binding to adenylate cyclase (Yates et al., 1996; Roth
et al., 2002). Furthermore, adrenal glucocorticoids directly
stimulate phenylethanolamine-N-methyltransferase (Pnmt),
the enzyme that catalyzes the conversion of NE to EPI in the
adrenal medulla among other tissues of the body. Sharara-
Chami et al. (2010) demonstrated that high dosages of an
exogenous corticosteroid increase Pnmt and catecholamine
synthesis in the absence of stress when adrenocorticotropic
hormone is low, probably independently of adrenal corticosterone
concentration.

Adrenomedullary responses are extremely rapid because the
sympathetic nervous system (SNS) directly innervates the adrenal
medulla. Adrenomedullary responses can occur before the onset
of actual stress, due to the involvement of several central nervous
system (CNS) regions, specifically the hippocampus (Cattane et al.,
2022). NE is released from postganglionic sympathetic neurons:
the second neurons in the sympathetic pathway that are part
of the autonomic nervous system. Through this release, the
adrenomedullary output (80% EPI and 20% NE) is followed in a
coordinated manner by SNS (White and Porterfield, 2012).
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FIGURE 1

Activation of the hypothalamic-pituitary-adrenal system and the sympathoadrenal medullary system. Stress activates the limbic system in the
midbrain. The amygdala stimulates the hypothalamus to release the corticotropin-releasing factor (CRF), thus inducing the production of
adrenocorticotropic hormone (ACTH) by the pituitary gland. ACTH is released into the bloodstream and can act on the adrenal gland, triggering the
cortical area of the gland to produce corticosteroids (Smith and Vale, 2006; Tank and Lee Wong, 2015). On the other hand, the hypothalamus also
activates the Sympathetic Nervous System and through autonomic nerves triggers the release of norepinephrine and epinephrine from the adrenal
medulla into the bloodstream (Smith and Vale, 2006; Tank and Lee Wong, 2015).

3 Theories about the role of
peripheral catecholamines in
memory formation and
consolidation

Catecholamines are hydrophilic and do not cross the blood-
brain barrier (BBB) which prevents it from acting directly in
the CNS (Weil-Malherbe et al., 1959). Catecholamines may
indirectly act on brain areas responsible for learning and memory.
Mounting evidence suggests the effects of stress hormones and,
consequently peripheral and central β-AR activation, in memory
consolidation and reconsolidation (Akirav and Maroun, 2013). The
resulting effects of β-blockage with propranolol suggest a role of
catecholamines in the consolidation of emotional memories (Cahill
et al., 1994). This and other studies (van Stegeren et al., 1998)
indicate that β-ARs activation influences long-term declarative
memory consolidation for stressful emotional events triggering the
release of adrenergic hormones.

Most theories on how catecholamines strengthen emotional
memory have been focusing on the activation of peripheral β-ARs.
One such hypothesis implicates the activation of β-ARs present

in the vagus nerve (Miyashita and Williams, 2006; Figure 2A).
As a matter of fact, EPI intraperitoneal injections increase vagal
nerve firing, an effect that may be blocked by β-AR antagonists,
such as sotalol or propranolol (Sternberg et al., 1985; Miyashita
and Williams, 2006). The peripheral administration of β2-AR
antagonist, ICI 118,551, induces amnesia in passive avoidance
memory (Davies and Payne, 1989), as well as impairment of
the contextual fear memory (Oliveira et al., 2018). In addition,
ICI 118,551 along with the β1-AR antagonist, betaxolol, reduced
the facilitation of field excitatory synaptic potentials induced
by AR agonists in the basolateral amygdala (Abraham et al.,
2008). Likewise, increases in endogenous amounts of NE in
the basolateral amygdala improved memory formation after
emotionally arousing experiences (Chen and Williams, 2012;
Rudy, 2020).

Another theory considers that increased glucose release by the
liver could be a mediator of catecholamine effects in the brain
(Gold, 2014; Figure 2B). According to this theory, glucose may
potentiate the synthesis of neuroactive mediators participating in
the process of memory formation and/or consolidation (Durkin
et al., 1992). Behavioral tests performed in food-deprived rats show
that these animals have difficulties in memory retention contrary
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FIGURE 2

The vagus nerve and glucose as mediators of catecholamine effects in strengthening emotional memories. Stress activates the limbic system, and
amygdala stimulates the hypothalamus which activates the Sympathetic Nervous System and thus triggers catecholamines release in the adrenal
gland and may follow one or both of the following pathways. (A) Catecholamines may activate the β-adrenoceptors present in peripheral vagus
nerve afferents (Schreurs et al., 1986; Gordan et al., 2015). The nucleus tractus solitarius receives the afferent vagal input (Sumal et al., 1983) and its
neurons may release norepinephrine (NE) onto the locus coeruleus, which in turn may release NE in the basolateral amygdala and hippocampus
(Clark et al., 1999; Miyashita and Williams, 2004, 2006; Chen and Williams, 2012). On the other hand, catecholamines released in the adrenal gland
(B) may activate the hepatic β-adrenoceptors, causing a release of glucose into the bloodstream (John et al., 1990). Blood glucose, through glucose
transporters, can cross the blood-brain barrier and potentiate the synthesis of neuromodulators that will activate signaling pathways in the
basolateral amygdala and hippocampus (McNay and Gold, 2002). Both paths activate signaling mechanisms that may affect the process of
consolidation of fear and traumatic memory formation.

to the rats that had normal access to food exhibiting high glucose
reserves (Talley et al., 2000).

4 Effect of epinephrine in fear
contextual memory

The effect of catecholamines was initially evaluated in
adrenal medullectomy studies (Kvetnansky et al., 1979). Adrenal
medullectomy involves surgically removing the medullar zone of
the adrenal gland. Putative damage of the cortex and modification
of corticosteroid, NE, chromogranin A, and neuropeptide Y
release are limitations of this technique (Harrison and Seaton,
1966). By using this approach, it is also left unclear whether
the reported effects are caused by EPI alone or by EPI plus NE
combined. Therefore, we should investigate whether EPI and NE
play different roles regarding the influence of catecholamines on
emotional memory. This can be achieved using inhibitors of the
Pnmt enzyme, thus preventing EPI formation from NE (Bondinell
et al., 1983). Notwithstanding this, usage of Pnmt inhibitors

still has disadvantages due to inhibition of α-ARs (Feder et al.,
1989) and monoamine oxidase (Mefford et al., 1981), resulting
in the disruption of normal physiological responses. This can be
overcome by decreasing the expression of the enzyme. The EPI-
deficient mouse model developed by Ebert et al. (2004) and Bao
et al. (2007) is unable to convert NE to EPI since Pnmt is not
expressed. These EPI-deficient mice are viable, fertile, and have
no gross developmental impairments (Ebert et al., 2004), thus
offering greater advantages over other methodological approaches
to investigate the physiological influence of EPI among other
catecholamines (Ebert et al., 2004; Bao et al., 2007; Sun et al., 2008).

Fear conditioning is a behavioral paradigm by which animals
acquire abilities to predict aversive events by associating the
stimulus to a specific context or tone (Curzon et al., 2009). Toth
et al. (2013) were the first to use mice lacking Pnmt to evaluate
EPI deficiency in contextual fear memory. Toth et al. (2013) and
Alves et al. (2016) concluded that EPI-deficient mice exhibited
reduced contextual memory after fear conditioning compared
with wild-type mice, thus suggesting that contextual fear memory
requires EPI synthesis. Data from these experimental studies also
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showed that EPI deficiency affects both fear memory retrieval
and consolidation, but was devoid of effect on fear memory
acquisition (Toth et al., 2013; Alves et al., 2016). Even though
EPI strengthens fear contextual memory when the animals are
in an aversive context, no differences were observed when the
context was changed but the same auditory cue was present. Indeed,
it is believed that hippocampus is not implicated in auditory
fear conditioning memory, but it is involved in contextual fear
conditioning (Rudy et al., 2004). Although auditory and contextual
fear memories involve some common brain regions, such as
amygdala (Goosens and Maren, 2001), these findings suggest that
strengthening of contextual fear memory by EPI is hippocampal-
dependent (Toth et al., 2013; Alves et al., 2016).

Deficits in contextual fear memory observed in EPI-deficient
mice were restored by treating the animals with EPI, isoprenaline
(a non-selective β-AR agonist), or fenoterol (a selective β2-AR
agonist) (Alves et al., 2016). Interestingly, EPI strengthening
of fear contextual memory was long-lasting, as it was still
observed 1 month after the training of control mice compared
to EPI-deficient mice (Oliveira et al., 2018). This effect seems
to be mediated by peripheral β2-AR activation considering that
intraperitoneal administration of sotalol (non-selective β-AR
antagonist) and ICI 118,551 (selective β2-AR antagonist) reversed
the EPI memory strengthening effect (Alves et al., 2016; Oliveira
et al., 2018). Neither NE nor the selective β1-AR agonist,
dobutamine, restored the contextual fear memory deficits observed
in EPI-deficient mice (Alves et al., 2016).

On the other hand, the glucose effect in improving memory
was characterized by an inverted U-dose response becoming
detrimental above a given hyperglycemic threshold in humans
[50 g, PO (Parsons and Gold, 1992)], mice [5 g/kg, PO (Messier
and Destrade, 1988)], and rats [500 mg/kg, SC injection (Gold,
1986)], which is similar to EPI. The rise in glucose levels
in the bloodstream during a stressful event may foster the
production/release of certain neuromodulators affecting memory
formation and consolidation in the inhibitory passive avoidance
task (Sandusky et al., 2013). However, passive avoidance task does
not allow for an accurate investigation of fear associative memory,
contrary to fear conditioning (Ögren and Stiedl, 2010).

Interestingly, wild-type mice experienced higher range of
glycemic variations following fear conditioning in comparison
to that observed in EPI-deficient mice, which might presumably
be caused by EPI release (Alves et al., 2016; Oliveira et al.,
2018). The fact that glucose contributes to glycogen storage in
astrocytes might explain its action as a mediator of contextual fear
memory strengthening. Increased glycogen stores may contribute
to sustain glucose supply to the brain and facilitate the synthesis
of pyruvate or lactate (Newman et al., 2011). Pyruvate, lactate, and
glucose may provide the necessary energy for processes triggered
during fear memory formation (Brown et al., 2004). Glucose
availability may also directly affect the membrane potential of
glucose-sensing neurons in the hippocampus (de Araujo, 2014).
In a more recent study, contextual fear memory in EPI-deficient
mice was enhanced after glucose (30 mg/kg) administration,
suggesting that moderate blood glucose levels during contextual
fear memory acquisition and retrieval are necessary. Along
with these findings, simultaneous administration of sub-effective
doses of EPI (0.01 mg/kg) and glucose (10 mg/kg) enhanced
contextual fear memory in EPI-deficient mice, whereas separate

administration of these sub-effective doses was insufficient to
enhance contextual fear memory, suggesting that Ad and glucose
may act in synergy to strengthen contextual fear memory. These
findings may reinforce the theory that glucose may be an important
part of the peripheral to central pathway of contextual fear
memory strengthening by EPI (Oliveira et al., 2023a). In this
sense, peripheral EPI and subsequent glucose supply to the brain
may promote hippocampal-dependent contextual fear memory
(Alves et al., 2016; Oliveira et al., 2018, 2023a). In addition,
it was observed enhanced contextual fear memory after insulin
treatment, even in adrenaline absence, which may indicate a
key role of insulin in contextual fear memory, possibly by
increasing local cerebral energy use (Oliveira et al., 2023b).
Insulin may facilitate glucose entry in neurons and astrocytes
through insulin receptors activation and promotion of Glut-4
translocation to the hippocampus cell membrane (Pearson-
Leary and McNay, 2016). In addition, in insulin administration
group there was an increase in plasma catecholamines and a
possible increase in the uptake of dopamine to hippocampus
cells (Oliveira et al., 2023b). The influence of glucose and insulin
in fear memory modulation may be important in diabetes. In
fact, insulin plays a role in the regulation of the oxidative
state and neuronal apoptosis in the CNS. These mechanisms
might be responsible for the association between insulin activity
changes and neuronal degeneration in the diabetic brain. In
this context, it was observed resistance to fear extinction,
increased fear generalization, along with increases in anxiety-like
behaviors in a type 1 diabetes animal model (Lin et al., 2018;
de Souza et al., 2019).

5 Molecular mechanisms underlying
epinephrine effect in contextual fear
memory

Long-term memory (LTM) consolidation and persistence
involves synaptic remodeling as a consequence of long-lasting
changes in gene expression (Josselyn et al., 2001; Dudai, 2002)
and protein synthesis (Schafe and LeDoux, 2000; Kim et al., 2022).
Glucose consumption increases contextual fear memory and results
from a hippocampal-dependent associative learning mechanisms
(Glenn et al., 2014), which may be mediated by phosphorylation
(activation) of the cAMP response-element protein (CREB) (Impey
et al., 1998). Because CREB is a transcription factor linked to
LTM formation in various systems (Alberini, 2009), studying
CREB-mediated signaling pathways in the hippocampus may be
useful to understand the mechanisms underlying fear memory
formation. The role of CREB in fear memory consolidation
has been demonstrated in genetically altered mice (Kida et al.,
2002). Phosphorylated CREB (pCREB) promotes the synthesis
of immediate-early genes, like the nuclear receptor 4A (NR4A)
transcription factor family (Darragh et al., 2005). The CREB
interaction domain of the histone acetyltransferase CREB-binding
protein with pCREB is needed for Nr4a gene expression after
learning (Bridi et al., 2017). Learning-induced Nr4a expression
is upregulated by histone deacetylase (HDAC) inhibition, which
seems crucial for LTM improvement (Bridi and Abel, 2013).
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The Nr4a gene family seems to be important for contextual
fear memory formation and consolidation (Malkani and Rosen,
2000; von Hertzen and Giese, 2005; Hawk et al., 2012). The
three members of Nr4a transcription factors gene family, namely
Nr4a1 (NGF-B/Nur77), Nr4a2 (NURR1), and Nr4a3 (NOR1),
belong to the immediate-early genes category (Milbrandt, 1988;
Law et al., 1992; Ohkura et al., 1994). Interestingly, the deficits
in contextual fear memory observed in EPI-deficient mice occur
along with decreases in Nr4a1, Nr4a2, and Nr4a3 mRNA
gene transcripts in the hippocampus compared to the levels
observed in wild-type mice. At the mRNA level, the Nr4a2 gene
transcription increased significantly in the hippocampus after
administration of EPI to EPI-deficient mice (Oliveira et al., 2018).
In addition, glucose administration in EPI-deficient mice increased
hippocampus Nr4a3 gene transcription after contextual fear
conditioning (Oliveira et al., 2023a). These findings strengthen our
conclusion that the EPI-glucose pathway fosters the transcription of
immediate-early genes in the hippocampus to promote contextual
fear memory consolidation (Oliveira et al., 2018, 2023a).

Expression of Nr4a immediate early genes increases after a
few hours of the stimulus and may influence other target genes
such as brain-derived neurotrophic factor (Bdnf ) gene. The BDNF
peptide is also mainly generated in areas associated with learning
and memory, as is the case of the hippocampal formation (Dugich-
Djordjevic et al., 1995; Kawamoto et al., 1996). Overexpression of
this neurotrophin participates in contextual fear conditioning (Hall
et al., 2000; Mizuno et al., 2012). Hippocampal mRNA expression
of Bdnf was increased in glucose-treated or insulin-treated EPI-
deficient mice compared to vehicle-treated mice, thus suggesting
that up-regulation of this gene associated with exogenous glucose
or insulin results in increased contextual fear memory (Oliveira
et al., 2023a,b). This situation may be due to insulin’s action on
cerebral energy expenditure since it is known that insulin promotes
glucose transporter Glut-4 translocation to the plasma membrane
of hippocampus cells which increases glucose availability inside the
cell (Pearson-Leary and McNay, 2016; Oliveira et al., 2023b).

6 Effect of catecholamines in
traumatic contextual memory
focusing on patients and animal
models

Emotions can affect memory under certain circumstances,
such as during acute or prolonged extreme stressful conditions
(LaBar, 2007). Indeed, stress responses are crucial for preserving
homeostasis when threatening situations occur (Cannon, 1939;
McEwen, 1998). Nevertheless, serious anxiety and stress disorders
can emerge whenever stress responses are inadequately triggered
or become dysregulated. Severe dreadful experiences, such as
death threats, violent crimes, warfare experience, sexual assault,
especially if causing acute or chronic pain may predispose some
individuals to psychiatric stress-related disorders, such as PTSD
(North et al., 2012). In addition, adverse experiences may affect
the maturation of the brain (van der Bij et al., 2020). PTSD
affects nearly 6.8% of adults in the USA, with a significant
women vs. men predisposition (Gradus, 2007). In fact, women are

more predisposed to symptoms of several psychological diseases
including stress, anxiety, depression, and PTSD (Gao et al., 2020;
Xiong et al., 2020). The risk rate of lifetime PTSD could rise
to 30% in populations that are highly exposed to stress, namely
during armed conflicts and natural disasters (Breslau et al., 1998;
Grinage, 2003).

Post-traumatic stress disorder patients suffer from three main
conditions leading to specific symptomatology: re-experiencing,
avoidance, and hyperarousal (North et al., 2012). Patients with
PTSD constantly avoid any social environment or circumstance
that may trigger memories of the event. Moreover, the hyperarousal
state affects the ability to concentrate and sleep and causes a
heightened startle response. Furthermore, hyperactivation of the
SNS is a characteristic of PTSD patients (Shalev et al., 1992;
Sherin and Nemeroff, 2011). In fact, increased stress hormones
in plasma and urine, namely NE and EPI, have been observed
in PTSD patients (Yehuda et al., 1992, 1998; Lemieux and Coe,
1995; Delahanty et al., 2005); this was also observed in a systematic
meta-analysis (Pan et al., 2018).

Notwithstanding, the aforementioned considerations, PTSD
is not a homogeneous disorder. The dissociative PTSD subtype
has been associated with clinical severity, early life trauma
and comorbid psychiatric disorders. This subtype exhibits the
opposite pattern of the conventional amygdala hyperactivity
with low prefrontal cortex (PFC) activation which is defined
by low amygdala activation with a hyperactive prefrontal area
(Lanius et al., 2010). In dissociative PTSD, the relationship
between hyperactive prefrontal areas and reduced amygdala
activation is complicated and requires further elucidation. The
hypoactivity of the amygdala may contribute to emotional
detachment and to reduce the capacity to understand and
integrate emotional experiences in these patients (Forster et al.,
2017). A negative correlation between EPI and NE levels and
symptoms of peritraumatic dissociation exists (Delahanty et al.,
2003). This suggests that highly dissociative individuals may
not react physiologically to the initial traumatic event, thus
dissociating and distancing themselves from trauma. On the
other hand, activation of the prefrontal cortex may function as
a compensatory mechanism. Individuals afflicted by dissociative
PTSD may undertake excessive cognitive control processes as a
coping mechanism for intense emotions or traumatic experiences.
The PFC, particularly the medial PFC, has a role in executive tasks,
such as emotional regulation and cognitive control (Waugh et al.,
2014; Alexandra Kredlow et al., 2022). Therefore, a dissociative
state may occasionally be exacerbated by increased PFC activity
as a protective mechanism to suppress or control trauma. This
polarity between hyper- and hypo-arousal may be just one of many
facets of emotion-regulation mechanisms. However, there are many
exceptions to what is considered the general rule and the clinical
reality scenarios may be even more complex. Certain patients have
unpredictable and unstable responses, meaning that their subjective
emotions and physiological parameters do not correspond with
each other (Kozlowska, 2007; González et al., 2017). Together, these
findings suggest that the unique symptomatology of PTSD might
be derived from hyper- and hypo-arousal of the amygdala and the
PFC, which may explain the putative differences in catecholamines
levels in these patients.

The simultaneous occurrence of PTSD with various mental
disorders, such as depression and anxiety, is relatively common.
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This gives rise to comorbid PTSD conditions associated to a wide
anxiety/depression spectrum (Koenig et al., 2018; Malgaroli et al.,
2018), which may be correlated to disturbances in the functioning
of hypothalamic-pituitary-adrenal axis (Pan et al., 2018).

To overcome environmental and inter-individual variability,
animal models of PTSD have been instrumental to understand
the neurobiological aspects of PTSD in terms of individual
susceptibility, clinical response to stress, and prediction of
therapeutic outcomes. Previous reviews have corroborated several
animal models for stress paradigms, including physical stress,
predator stress, and social defeat stress (Verbitsky et al., 2020).
Since the traumatic experience necessary for the onset of PTSD
can be considered an unconditioned stimulus associated with a
conditioned stimulus (the context), variations of contextual fear
conditioning are described as PTSD animal models (VanElzakker
et al., 2014). One of these models uses multiple electric shocks as
the unconditioned stimulus to simulate the unpleasant traumatic
event that might trigger PTSD (Verma et al., 2016). This model
combines prolonged exposure time with high-intensity currents,
to produce long-lasting symptoms. Animals normally exhibit
increased respiratory rate and freezing, as well as anxiety-like
behaviors in response to foot shocks. This is also consistent with
the pathological nature of PTSD and its symptoms (Li et al., 2006;
Zhang et al., 2012). Moreover, animals exposed to repeated foot
shocks may acquire phobia as a result of the traumatic experience
(Delahanty et al., 2005), which fits the phobia occurrence in PTSD
patients (Orsillo et al., 1996). The fear contextual memory that
arises from the training days might be a representation of trauma
reminders in PTSD patients (Li et al., 2006). The electric shock
model may be explored to develop in-context treatments since
repeated exposure to the environments and cues associated with
stressors is the clinical counterpart of exposure therapies (Verbitsky
et al., 2020). Thus, a physical stressor, such as electric foot shocks,
might be a valuable resource to access the full range of signs (and
symptoms) presented in this disorder.

Using the latter animal model, Martinho et al. (2020)
investigated the role of catecholamines in PTSD (Moreira-
Rodrigues and Grubisha, 2022; Abumaria et al., 2023); data indicate
that mice with PTSD display higher contextual traumatic memory,
along with increased levels of NE and EPI in adrenal glands and
higher levels of EPI in the plasma compared to controls. The
persistence of contextual traumatic memories led to an anxiety-
like behavior and resistance to traumatic memory extinction with
a possible involvement of hippocampal Nr4a2 and Nr4a3 genes
(Martinho et al., 2020; Moreira-Rodrigues and Grubisha, 2022;
Abumaria et al., 2023).

7 Putative therapeutic approaches
to traumatic contextual memory
formation and reconsolidation in
PTSD

Selective serotonin reuptake inhibitors (SSRIs), like paroxetine
and sertraline, are the only drugs approved by FDA and EMA
for treating PTSD in human patients (Davidson et al., 2001;
McRae and Brady, 2001; Friedman et al., 2007). SSRIs have only

marginal effects on the severity and progression of PTSD symptoms
compared to a control group (Bowers and Ressler, 2015; Hoskins
et al., 2015). A meta-analysis of 55 studies found a 29% average
dropout rate, thus indicating that most individuals do not tolerate
or respond to existing PTSD treatments, including SSRIs (Lee
et al., 2016). The fact that the majority of these drugs either fail
to reach their maximal effect or cause severe adverse side effects
agrees with the view that there is still an unmet clinical need in
the treatment of PTSD. There is a potential suitability of molecules
involved in inflammatory, immune, and hypothalamic-pituitary-
adrenal axis responses to diagnose and treat PTSD. One studied
molecule was matrix metalloproteinase 9 (MMP9), an extracellular
matrix-degrading enzyme (Chevalier et al., 2021).

In the catecholamine biosynthesis pathway, dopamine-β-
hydroxylase (DBH) is responsible for the conversion of DA to NE.
Mice lacking DBH exhibit diminished contextual fear memory,
which is restored by the administration of isoprenaline (a non-
selective β-AR agonist) (Murchison et al., 2004). Nepicastat, a
highly active reversible DBH inhibitor, effectively reduces NE
in peripheral and central tissues both in rats (Bonifacio et al.,
2015; Loureiro et al., 2015) and dogs (Stanley et al., 1997). By
effectively modulating SNS hyperactivation, nepicastat may be a
useful strategy to treat PTSD. As a matter of fact, Martinho et al.
(2021) demonstrated that nepicastat significantly decreased DBH
activity in the adrenal glands, which led to a gradual decrease in
NE and EPI over 24 h (Moreira-Rodrigues and Grubisha, 2022;
Abumaria et al., 2023). Nepicastat-treated PTSD mice showed
reduced traumatic contextual memory and reduced anxiety-like
behavior compared to control litter mates (Martinho et al., 2021;
Moreira-Rodrigues and Grubisha, 2022; Abumaria et al., 2023).

Concerning the molecular pathways involved in the formation
and consolidation of contextual fear and traumatic memories,
besides Nr4a gene products, NPAS4 may also have a role. NPAS4
encodes for the activity-dependent transcription factor known as
neuronal PAS domain protein 4 expressed in the CA3 hippocampal
region and may play a role in neuronal regulation (Yun et al.,
2010; Ploski et al., 2011). In fact, Npas4 has been associated with
fear memory and contextual fear conditioning (Ramamoorthi et al.,
2011). According to some, the amount of hippocampal NPAS4
mRNA gene transcripts is positively correlated with hippocampal
activation (Drouet et al., 2018) and is implicated in the control of
a transcriptional program that includes the Bdnf gene (Hall et al.,
2000; Lin et al., 2008; Mizuno et al., 2012). Interestingly, nepicastat
increased Npas4 and Bdnf genes transcription in the hippocampus,
thus strengthening the hypothesis that these gene products
play a crucial role in the weakening of traumatic contextual
memories by replacing these with neutral contextual memories
(Martinho et al., 2021; Moreira-Rodrigues and Grubisha, 2022;
Abumaria et al., 2023). Since nepicastat application was made after
the traumatic event but before contextual tests, catecholamines
may strengthen traumatic memory at first, but afterward, this
drug decreases catecholamines and, thus, the contextual memory
may become neutral upon repetitive application of the DBH
inhibitor before contextual exposition days. This approach mimics
the combination of pharmacotherapy (DBH inhibitor) with
psychotherapy (context exposition in a safe environment) for the
treatment of PTSD, which may contribute to resilience and coping
with the trauma.
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Since no DBH inhibitor has received marketing approval due to
poor DBH selectivity, low potency, and/or significant side effects,
DBH gene silencing with small interference RNA technology may
be a potential new therapeutic alternative for PTSD, particularly
in patients with increased sympathetic activity. There are already
several FDA-approved agents for metabolic diseases that are small
interfering RNA (siRNA) based therapies and exert their effects by
RNA interference (RNAi) of their target mRNA (Padda et al., 2023).

Furthermore, the reduction of the aforementioned sympathetic
autonomic overshooting in PTSD patients may be achieved
through inhibition of β-ARs activity (Murchison et al., 2004; Ramos
et al., 2005). In fact, administration of propranolol (a peripheral
and central β-AR antagonist) actually prevents the onset and
progression of PTSD symptoms in human subjects exposed to
traumatic situations, in particular when administered prior to
trauma memory reactivation (Pitman et al., 2002; Brunet et al.,
2008; Young and Butcher, 2020). Systemic propranolol disrupts
the consolidation and reconsolidation of traumatic memories, but
these putative beneficial effects are undermined due to unwanted
side effects (e.g., gastrointestinal disturbances, bradycardia, fatigue,
and sleep disorders) (Shukla and McGowan, 2009), along with
memory deficits (e.g., decreased memory consolidation in non-
aversive tasks and impairments in memory reconsolidation in least
aversive tasks) (Villain et al., 2016).

Considering these facts, administration of the peripheral β-AR
antagonist, sotalol, could overcome the unwanted central effects of
propranolol. In fact, PTSD animals treated with sotalol exhibited
decreased traumatic contextual memories, anxiety-like behaviors,
and plasma catecholamines compared to vehicle-treated animals
(Martinho et al., 2022). These effects of sotalol most probably result
from a reduction of catecholamine effects in peripheral β-ARs
leading to attenuation of the sympathetic autonomic overactivity,
which indirectly down-modulates traumatic contextual memories
(Martinho et al., 2022). With the data available so far, one
can only speculate about the involvement of the sympathetic-
induced vagal nerve drive and/or glucose release theories (Clark
et al., 1999; Miyashita and Williams, 2004, 2006; Chen and
Williams, 2012; Gold, 2014) to explain the results showing
decreases in Nr4a1 mRNA transcripts in the hippocampus of
sotalol-treated mice (Martinho et al., 2022). Our hypothesis is
that sotalol may be repurposed as a possible alternative to
SSIRs for PTSD treatment, especially in patients with peripheral
sympathetic hyperactivity. Sotalol is currently used in ventricular
and supra-ventricular arrhythmias, despite the associated risk of
unwanted pro-arrhythmic effects due to prolongation of the QT
interval (Somberg et al., 2010). Upon increasing the dosage of
sotalol it abruptly interrupts the response to adrenergic stimuli
by competitively blocking β-ARs. While the sotalol dosage to
treat PTSD may be lower, the reversible inhibition of DBH
may be a better option for this disease condition due to
slower installation yet a more sustained decrease of adrenergic
responses.

These data show that hippocampus genes may play a role in the
modulation of traumatic contextual memories in PTSD animals:
Nr4a family genes in sotalol treatment (Martinho et al., 2022), and
Npas4 and Bdnf genes in nepicastat treatment (Martinho et al.,
2021; Moreira-Rodrigues and Grubisha, 2022; Abumaria et al.,
2023). This difference may also be related to different treatment
regimens. Nepicastat treatment may have affected formation,

expression, retrieval, consolidation or reconsolidation processes of
contextual traumatic memory, whereas treatment with sotalol does
not affect memory formation since no treatment with sotalol was
applied in the traumatic event days, contrary to that occurring with
nepicastat.

Furthermore, data indicate that EPI may trigger persistence of
traumatic contextual memories in PTSD, possibly by increasing
the transcription of Nr4a2 and Nr4a3 genes in the hippocampus
(Martinho et al., 2020; Moreira-Rodrigues and Grubisha, 2022;
Abumaria et al., 2023). Therefore, therapeutic options aiming at
specifically blocking EPI effects could decrease unwanted side
effects compared to other broader effect options, as could be the
case for PNMT gene silencing in PTSD.

8 Conclusion

Catecholamines play a role in the consolidation of fear
memories, which are crucial for developing an adaptive defensive
mechanism and responding to adverse environmental stressors
(Romero and Butler, 2007). Catecholamines are released upon
activation of the sympathoadrenal medullary system after stressful
events, thus initiating the important homeostasis response of
“freeze, fight or flight” (Timio et al., 1979; Bracha, 2004). When fear
responses are inaccurately triggered and/or regulated, homeostasis
is compromised and traumatic memories can emerge leading to
pathological conditions, such as anxiety and PTSD. Some, but not
all, PTSD patients exhibit sympathetic autonomic overshooting
(Shalev et al., 1992; Sherin and Nemeroff, 2011) with increased
plasma and urinary levels of catecholamines (Yehuda et al., 1992;
Lemieux and Coe, 1995; Delahanty et al., 2005).

Through peripheral β2-ARs activation of vagal nerve inputs
to the CNS and/or by triggering glucose release from the liver,
EPI may play a crucial role in strengthening contextual fear
and traumatic memories (Miyashita and Williams, 2006; Chen
and Williams, 2012; Toth et al., 2013; Gold, 2014; Alves et al.,
2016; Oliveira et al., 2018, 2023a,b; Martinho et al., 2022;
Moreira-Rodrigues and Grubisha, 2022; Abumaria et al., 2023).
Subsequently, the transcription of immediate-early genes of the
Nr4a family results in specific protein synthesis in the hippocampus
to allow contextual fear and traumatic memories formation and
consolidation (Oliveira et al., 2018, 2023a,b; Martinho et al., 2020,
2022). In this sense, our hypothesis is that sotalol (a peripheral
non-selective β-ARs blocker) (Martinho et al., 2022) and nepicastat
(a DBH inhibitor) (Martinho et al., 2021; Moreira-Rodrigues and
Grubisha, 2022; Abumaria et al., 2023) might help to decrease
PTSD occurrence by weakening abnormal traumatic memories
formation and consolidation, and may support in the formation
of neutral contextual memories. From the molecular point of
view, we show that hippocampus genes may play a role in the
modulation of traumatic contextual memories in PTSD animals:
Nr4a family genes in sotalol treatment (Martinho et al., 2022),
and Npas4 and Bdnf genes in nepicastat treatment (Martinho
et al., 2021; Moreira-Rodrigues and Grubisha, 2022; Abumaria
et al., 2023). Thus, the take-home message of this review is that
PTSD patients with sympathetic autonomic overshooting may
benefit from downregulating dysregulated catecholamine effects
and DBH or PNMT gene silencing may be a therapeutic option. An
approach that mimics the combination of pharmacotherapy with
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psychotherapy may contribute to resilience and coping with the
trauma.
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