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Alzheimer’s disease (AD) is a heterogeneous age-dependent neurodegenerative

disorder. Its hallmarks involve abnormal proteostasis, which triggers

proteotoxicity and induces neuronal dysfunction. The 26S proteasome is

an ATP-dependent proteolytic nanomachine of the ubiquitin-proteasome

system (UPS) and contributes to eliminating these abnormal proteins. This

study focused on the relationship between proteasome and AD, the hub genes

of proteasome, PSMC6, and 7 genes of α-ring, are selected as targets to

study. The following three characteristics were observed: 1. The total number

of proteasomes decreased with AD progression because the proteotoxicity

damaged the expression of proteasome proteins, as evidenced by the

downregulation of hub genes. 2. The existing proteasomes exhibit increased

activity and efficiency to counterbalance the decline in total proteasome

numbers, as evidenced by enhanced global coordination and reduced systemic

disorder of proteasomal subunits as AD advances. 3. The synergy of PSMC6 and

α-ring subunits is associated with AD. Synergistic downregulation of PSMC6

and α-ring subunits reflects a high probability of AD risk. Regarding the above

discovery, the following hypothesis is proposed: The aggregation of pathogenic

proteins intensifies with AD progression, then proteasome becomes more

active and facilitates the UPS selectively targets the degradation of abnormal

proteins to maintain CNS proteostasis. In this paper, bioinformatics and support

vector machine learning methods are applied and combined with multivariate

statistical analysis of microarray data. Additionally, the concept of entropy

was used to detect the disorder of proteasome system, it was discovered that

entropy is down-regulated continually with AD progression against system

chaos caused by AD. Another conception of the matrix determinant was used

to detect the global coordination of proteasome, it was discovered that the

coordination is enhanced to maintain the efficiency of degradation. The features

of entropy and determinant suggest that active proteasomes resist the attack

caused by AD like defenders, on the one hand, to protect themselves (entropy

reduces), and on the other hand, to fight the enemy (determinant reduces). It is

noted that these are results from biocomputing and need to be supported by

further biological experiments.
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1 Introduction

As the most prominent form of dementia, Alzheimer’s disease
(AD) is a chronic neurodegenerative disorder seen in age-
dependent (De-Paula et al., 2012; Guo et al., 2020; Zhang et al.,
2022a; Ashleigh et al., 2023). Typical clinical manifestations of
AD characterized by progressive impairment of episodic memory
and cognitive function, eventually evolve into disruption of
fundamental functions (Long and Holtzman, 2019; Silva et al.,
2019; Penney et al., 2020). Since the pathobiology of the disease is
heterogeneous, clear pathogenesis remains elusive (Scheltens et al.,
2021; Zhang et al., 2022b; Wenbo, 2023; Yang L. et al., 2023).

Anatomically, the insoluble amyloid-beta peptides (Aβ)
in extracellular neuritic plaques and the hyperphosphorylated
microtubule-associated Tau protein in intraneuronal
neurofibrillary tangles (NFT) are the two neuropathological
hallmarks in AD (Busche and Hyman, 2020; Yang X. et al., 2023).
At the molecular level, this pathological process begins with the
self-assembly of abnormal soluble oligomers (Cataldi et al., 2021).
When the rate of aggregation of these misfolded proteins exceeds
the rate of metabolic transformation in the organism, intracellular
protein homeostasis is damaged. This causes an accumulative
toxicity effect, thereby forming toxic substances and causing
neurocytotoxicity (Ait-Bouziad et al., 2017; Lee et al., 2020; Liang
et al., 2022). Multiple studies have corroborated a clear association
of neurotoxicants with AD pathogenicity (Nisa et al., 2021). They
induce the dysfunction of many cellular processes involved in the
pathogenesis of AD (Schmidt et al., 2021). Thus, Inhibiting the
toxicity of these oligomers is an effective strategy to slow disease
progression (Tolar et al., 2021; Colom-Cadena et al., 2023).

These abnormal proteins are usually characterized by ubiquitin
positivity (Callis, 2014). A major purpose of ubiquitin signaling is to
target aberrant proteins to the clearance system for degradation (Le
Guerroué and Youle, 2021). The human clearance system mainly
consists of the ubiquitin (Ub)-proteasome system (UPS) and
the autophagy-lysosomal pathway (ALP). They maintain protein
quality control. Among them, the UPS is a highly sophisticated
supramolecular complex shaped like a barrel containment (Snyder
et al., 2005). It is responsible for degrading short-lived, damaged,
and misfolded proteins located in the nucleus and cytoplasm
(Livneh et al., 2016; Murata et al., 2018). And that most
cellular proteins in eukaryotes target the ATP-dependent 26S
proteasome (Finley, 2009; Zhang et al., 2022c). Numerous studies
have shown that the proteasome is implicated in neuroplasticity
and neurodegeneration (Küry et al., 2017; Fernández-Cruz and
Reynaud, 2021). Because it can be recruited to the synapse to
regulate the localized turnover of pre- and post-synaptic proteins
(Livneh et al., 2016). In addition, cytotoxic tau proteins in AD
inclusion bodies are particularly sensitive to proteolytic by the
ubiquitin-proteasome (Babu et al., 2005; Tai et al., 2012; Myeku
et al., 2016; Ukmar-Godec et al., 2020; Horie et al., 2021) system.
Experiments have proved that enhancing proteasome can improve
AD-like pathology (Chocron et al., 2022). At the same time, the
proteasome can be affected by abnormal proteins. On the one
hand, aberrant proteins can directly allosteric 20S and inhibit 20S
proteasome (Thibaudeau et al., 2018). On the other hand, toxicity
causes synaptic degeneration (Tzioras et al., 2023), indirectly
impedes interneuronal proteasome communication and transport,

disrupts protein homeostasis, and leads to the disintegration of the
ubiquitin-proteasome system (Liu et al., 2019). Therefore, it would
be interesting to explore how the over-accumulation of toxicants in
the AD process damages the proteasome and what the proteasome
does in response to maintain homeostatic function.

This paper is dedicated to identifying the functional
mechanisms of the proteasome in relationship to the AD process.
PSMC6 and the α-ring (PSMA1-PSMA7) were used as the research
targets. In this study, we observed that the decreased expression
and increased correlation of proteasomal subunits were strongly
associated with AD. Therefore, we tried to investigate the effect of
over-accumulated toxic proteins on the 26S proteasome and the
feedback of the proteasome on proteostasis in the AD process. It is
hoped to provide a valuable reference for AD diagnosis.

2 Materials and methods

The flowchart of the bioinformatics analyses combined with
machine learning and innovation strategies is shown in Figure 1.

2.1 Data sources and organization

The relevant genes used in this study were collected from the
National Center for Biotechnology Information (NCBI) database.
The Gene Expression Omnibus (GEO) public database1 was
used to download human gene expression profiles GSE5281,
GSE48350, GSE28146, and GSE1297 data. GSE5281, GSE28146,
and GSE48350 are brain tissue section data constructed on the
Affymetrix Microarrays GPL570 platform. The dataset GSE5281
covers six brain tissue regions. It includes 74 control samples and 87
samples from AD patients. GSE48350 collected 253 samples from
four different regions, including 80 samples from the AD group.
GSE28146 contains 30 samples from the hippocampus containing
8 normal and 22 with different disease severity. GSE1297 was
constructed based on the GPL96 platform. It analyses gene
expression in the hippocampus of 9 control subjects and 22 subjects
with AD of varying severity on 31 separate microarrays. This
dataset also includes clinical information such as the Minimal State
Examination (MMSE) and neurofibrillary tangles (NFT) and other
clinical information. For detailed information, refer to Table 1. For
a group with a given sample size n, if the number of genes is m, it
can be represented by a gene expression matrix G that:

G = (gij)m × n

where gij denotes the expression of the ith gene in the jth sample,
namely, each row in the matrix represents a gene and each column
represents a sample.

2.2 Data pre-processing

Given the different conditions of the microarray experiments,
the expression range of the data varied greatly. Before statistical

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flowchart of the analysis process. Different colors represent different types of analysis. Where input and output data are represented in gray,
descriptive analysis is shown in light green, comparative analysis to validate known results is represented in orange, and the blue modules are used
to represent the search for unknown results, indicating exploratory analysis.

analysis, all gene expression profiles were logarithmically processed
with a base of 2 (denoted by the matrix X). Then, a normalized
output (notated as the matrix Z) was made for each sample
sequence in the GSE1297 dataset using the Z-score. For expression
profiles GSE5281 and GSE48350, the expression intensities were
normalized using the "normalizeBetweenArrays" function in the
"limma" package of the R (version 4.2.1) software (denoted
by the matrix Q). Final filtering and annotation of gene
expression profiles.

2.3 Statistical analysis

The proteasome expression pattern in the AD process was
determined by analyzing the differences in 41 proteasomal
assembly subunits between the case (QAD) and control (QCON )
groups in GSE5281 and GSE48350. To further identify hub genes
of the proteasome, Pearson’s Difference Correlation Coefficient
Matrix was analyzed for each group of the GSE1297 dataset with
the T-test.

2.3.1 T-test
T-test, also called Student’s t-test, the premise is that the

sample is required to follow a normal distribution or near normal
distribution. According to the research design, the One-sample

t-test was chosen, based on the difference between the sample
mean and the overall mean to construct the t-statistic to assess the
significance of the difference. The algorithm flow for one-sample
t-test is shown as Algorithm 2-1:

Inputs: The set of observed samples 8n, the set of aggregate
data 8m, and the significance level α, where n and m are the
number of samples
Outputs: Acceptance or rejection of the original hypothesis
Steps:
1 Calculate the sample mean and the overall mean:
x = 1

n
∑n

i = 1 xi, µ = 1
m
∑m

i = 1 xi

2 Calculate the variance of the samples:
s =

√
1

n−1
∑n

i = 1 (xi−x)2

3 Construct the t-statistics: t = x−µ

s/
√

n
4 Locate the critical value and calculate the p-value according
to the degrees of freedom df = n−1
5 Comparison of p-value and significance level α

ALGORITHM 2-1 One-sample T-test.

Given significance level α, also known as the probability of
Type I error. In this study, the predetermined significance level
α = 0.05.
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TABLE 1 Detailed characteristics of the datasets.

Dataset Platform Tissue Clinical indicators Platform Samples

GSE5281 GPL570 6 brain regions No GPL570 161

GSE48350 GPL570 4 brain regions No GPL570 253

GSE28146 GPL570 CA1 hippocampal gray No GPL570 30

GSE1297 GPL96 Hippocampus MMSE and NFT scores GPL96 31

2.3.2 Pearson correlation coefficient matrix
For the sets of correlation coefficient matrices, we extracted the

raw matrices of the four stages of the 41 proteasomal subunits as
inputs, denoted as GCON , GINC, GMOD and GSEV . The algorithm for
Pearson’s correlation coefficient matrix is as follows:

Inputs: Gene expression matrix Gm × n, where each row i
represents a gene and each column j represents a sample
Outputs: Gene correlation coefficient matrix Rm × m

Steps:
1 Calculate the mean Xi and overall standard deviation σi

for each row (each gene) across all samples: for each gene i,

Xi =
1
n
∑n

j = 1 Gij, σi =
√

1
n
∑n

j = 1
(
Gij−Xi

)2

2 Iterate through any two rows (gene i and gene j), calculate the
covariance: covij =

1
n
∑n

k = 1
(
Gik−Xi

) (
Gjk−Xj

)
3 Calculate the overall correlation coefficient for gene i and
gene j: ρij =

covij
σiσj

4 Construct the final Pearson correlation coefficient matrix
R = (ρij)m × m

ALGORITHM 2-2 Pearson correlation coefficient matrix.

The four correlation coefficient matrices, denoted RCON , RINC,
RMOD and RSEV , were derived separately from Algorithm 2-2.
All four matrices are 41 × 41 symmetric square matrices, and
each element represents the linear correlation coefficient of two
proteasome subunits. Given the symmetry of the correlation
coefficient matrix, the statistical histograms of the upper triangular
elements of the correlation coefficient matrices (Ru

CON , Ru
INC, Ru

MOD,
and Ru

SEV ) for each period were plotted separately by using the
SPSS software (version 26.0.0.0) and observed the variability of the
disease periods.

2.3.3 T-test of the correlation coefficient
difference matrix

The formula for the difference matrix is as follows:

4R = Rstage−RCON ,stage = INC,MOD,SEV

The final set of differences obtained are denoted as4RINC−CON ,
4RINC−CON , and 4RINC−CON , respectively. And the statistical
histograms of the respective upper triangular matrix elements are
again described.

It is further found that the histogram matches the
characteristics of the T-distribution with a probability density
function of:

f (t) =
0((v + 1))/2
√

vπ0(v/2)
(1 + t2/v)−(v + 1)/2

where v is called the degree of freedom and 0 is the gamma
function. The t-value corresponds to the value of the horizontal
coordinate, and assuming that the t-value is a, then the area under
the curve after t = a is actually the p-value. The larger the degree
of freedom, the closer f (t) is to the standard normal distribution.
The normal distribution is:

X ∼ N(µ,σ2)

where u is the mean and σ is the standard deviation. In a
normal distribution, the probability that a value is distributed in
(µ−σ, µ + σ) is 0.6826; the probability that a value is distributed
in (µ−2σ, µ + 2σ) is 0.9544; and in (µ−3σ, µ + 3σ) is 0.9974.
The 3σ principle can be simply described as follows: if the data
follow a normal distribution, an outlier is defined as a value in a set
of resultant values that deviates from the mean by more than three
times the standard deviation. The principle is specified as follows:

P(|x−µ| > σ) ≤ 0.318

P(|x−µ| > 2σ) ≤ 0.046

P(|x−µ| > 3σ) ≤ 0.003

values exceeding 2 times the standard deviation screened
according to 3σ were considered significant (p < 0.05). Therefore,
for each of the three sets (4RINC−CON , 4RMOD−CON , and
4RSEV−CON ), a subset of each set beyond 2σ was extracted and
denoted as 1SINC−CON , 1SMOD−CON , and 1SSEV−CON . Take the
intersection of these three sets:

� = 1SINC−CON
⋂

1SMOD−CON
⋂

1SSEV−CON

four proteasome hyperactive genes were eventually available:
PSMA2, PSMA4, PSMC6, and PSME1.

2.4 The system determinant

The determinant is an important linear algebra concept that has
a wide range of applications in both mathematics and engineering.
At the level of linear algebra, if the determinant of a matrix is zero,
it means that the matrix is singular and its column vectors are
linearly related. From a vector spaces perspective, if the rows (or
columns) of a matrix are the basis of a vector space, then the value
of the determinant indicates the volume or extent of the vector
space into which these vectors are ten sored. The plus or minus sign
indicates direction.

Specifically, suppose a second-order matrix A consisting of
⇀
x

and
⇀
y column vectors:

A =

[
a11 a12

a21 a22

]
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FIGURE 2

The geometric interpretation of determinant: (A) The area of the quadrilateral formed by the two column vectors of a 2 × 2 matrix; (B) The volume
of a 3 × 3 matrix where column vectors are orthogonal and lie on coordinate axes.

as shown in Figure 2A. We designate one side as the base and draw
a perpendicular line from another side to this base. The formula for
calculating the area of the parallelogram is as follows:

SA = |
⇀
x ||

⇀
y |sinθ = |

⇀
x ||

⇀
y |

√√√√√1−

 ⇀
x ·

⇀
y

|
⇀
x ||

⇀
y |

2

= |a11a22−a12a21|

hence, the area of the parallelogram formed by the column
vectors of A is precisely equal to the determinant of A. If the
determinant of a 2 × 2 matrix is smaller, it signifies that the angle
between the two column vectors is smaller, indicating a stronger
correlation between the two vectors. Subsequently, extending the
derivation to a 3 × 3 matrix B:

B =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 = [
⇀
x

⇀
y ⇀

z
]

if the column vectors in matrix B are orthogonal and each
column vector lies along a coordinate axis, in this particular
scenario, the volume enclosed by the column vectors forms a
rectangular parallelepiped, the volume of which is equivalent to the
scalar triple product of the three column vectors (Figure 2B):

VB =
⇀
x ·
(⇀

y ×
⇀
z
)

When one vector, says
⇀
z , projects onto the plane formed by the

other two vectors (
⇀
x and

⇀
y ) with a longer projection or. In other

words, a smaller angle between the vector and the plane indicates
a higher degree of correlation among the three vectors. So, the
value of the determinant represents the area of a parallelogram (in
the two-dimensional case) or the volume of a parallel hexahedron
(in the three-dimensional case). The notion of determinant can
also be generalized to the higher-dimensional case, representing the
hypervolume into which these vectors are tensioned.

The Pearson correlation coefficient matrices for each stage
of the significant gene networks PSMA2, PSMA4, and PSMC6

were analyzed to extract valuable information for the determinant
of the network system at each stage. For instance, for the
normal phase, the matrix of correlation coefficients for the hub
gene network (PSMA2, PSMA4, PSMC6) is denoted as Rhub

CON .
Then the det(Rhub

CON) is the volume of the parallel hexahedron
enclosed by the three-dimensional column vectors of PSMA2,
PSMA4, and PSMC6.

2.5 Entropy

Entropy involves a wide range of fields such as information
theory, thermodynamics, statistical physics, information science,
and ecology. It explains uncertainty, chaos, and diversity from
different perspectives. Specifically, in information theory, entropy
indicates the uncertainty or the amount of information in a
random variable. The greater the entropy, the more uncertain
the random variable, and vice versa. In thermodynamics, entropy
is a state function of a system that is used to describe the
degree of chaos or disorder of the system. The more disordered
the system, the greater its entropy value. In statistical physics,
entropy is related to the number of microstates, and the principle
of entropy increase states that entropy does not decrease in
isolated systems. In ecology, entropy is often used to describe
the diversity and stability of ecosystems. A low entropy system
has higher stability and adaptability. In information theory,
normalized mutual information is first calculated as follows. Let
X be a discrete random variable with the following distribution
function:

X x1 x2 · · · xn

Q p1 p2 · · · pn

X is an assessment parameter, n is the number of categories for
that assessment parameter, and pi denotes the frequency of category
xi. The entropy of the random variable X is determined by the
following equation:

H(X) = −

n∑
i = 1

P(xi)log2P(xi)
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The spectral theorem for real symmetric matrices states that
the eigenvalues are necessarily real numbers. Therefore, the system
entropy of the hub gene network is calculated as shown in
Algorithm 2-3:

Inputs: Correlation coefficient matrix for hub gene networks
Rn × n

Outputs: The entropy H(P) of the matrix R
Steps:
1 Eigenvalue decomposition of R: R = Q3Q−1, where 3 is
a diagonal matrix whose elements on the diagonal λ are the
eigenvalues of R, and Q is an eigenvector matrix with each
column corresponding to an eigenvector, then obtain ordered
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

2 Get the eigenvalue percent occupancy vector

P = {p1, p2, . . . , pn}: Pi =

√
λ2

i√∑n
i = 1 λ2

i
3 Calculating discrete forms of system entropy:
H (P) = −

∑n
i = 1 P(xi)log2P(xi)

ALGORITHM 2-3 System entropy.

In terms of statistics, the sampled distribution of data points
exhibits a certain degree of correlation, aligning successively
along distinct feature axes. λ1 represents the longest principal
axis, λ2 denotes the secondary semiaxis orthogonal to it within
the same plane, and λ3 constitutes the third orthogonal feature
axis perpendicular to this plane, and so forth. When entropy
increases, the principal eigenvalues lack significant differences.
This emphasizes the independence of the range of data point
distributions. Conversely, as the eigenvalue λ1 grows larger,
the matrix exhibits pronounced dominance or significance in
the primary direction of variation. This results in a denser
concentration of data points near the principal axis, indicating a
more organized data arrangement. Correspondingly, the entropy
diminishes (Figures 3A, B).

For the information entropy of the determinant, enumerated
all combinations of the specified dimension (number of samples,

denoted as dim, dim = 3, 4, 5). For a matrix with n samples,
there are a total of Cdim

n combinations, and then the matrix
of correlation coefficients for each combination is computed
using algorithm 2-2. This resulted in four groups of determinant
sets, denoted �(det(Rhub

con )), �(det(Rhub
inc )), �(det(Rhub

mod)), and
�(det(Rhub

sev )). Then, we plotted a statistical histogram for each
group of determinant sets based on the minimum value, maximum
value, and the partition interval constant a for each group. To
ensure objectivity, we set the interval to:

a = σ
(
�
(

det(Rhub
con )

)
⊕�

(
det(Rhub

inc )
)
⊕�

(
det(Rhub

mod)
)

⊕�(det
(

Rhub
sev )

))
/10

where ⊕ denotes the union of two sets and the same elements can
be repeated. σ is the standard deviation, taken as one-tenth of the
standard deviation of the multiset.

For each group, excluding intervals with a frequency of 0, each
interval is set to a random variable xi, the frequency corresponding
to the valid interval is the probability of the random variable pi.
The Shannon entropy was then used to quantify the orderliness
of the groups. We observed that both the entropy of the system
and the entropy of the determinant decreased consistently with the
development of the disease, and the more samples were taken, the
more pronounced the characteristics were.

2.6 Weighted gene co-expression
network analysis

We employed weighted gene co-expression network analysis
(WGCNA) to elucidate important gene expression modules. Using
the dataset GSE1297, the absolute median MAD of each gene
was first calculated separately. Then we excluded the top 50%
of genes with the smallest MAD. The outliers and samples were
removed by utilizing the “goodSamplesGenes" function. Then the
minimum number of genes in a module was set to 20, and finally,
a collection of genes with 16 co-expression modules was obtained

FIGURE 3

The relationship between eigenvalues and entropy. (A) Constructing a new coordinate system from the first two eigenvalues, λ1 and λ2, if the
difference between λ1 and λ2 is relatively small, the data points are uniformly distributed in both directions of the new coordinates without evident
major or minor axes. (B) When the eigenvalue λ1 greatly exceeds eigenvalue λ2, the matrix predominantly exhibits significance or dominance in the
principal direction of major variation (long axis λ1), leading to substantial variations in data along this particular direction.
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to analyze the relationship between each module and the clinical
features MMSE, NFT, and Braak and visualize the clustering by
the Sangerbox platform2 to visualize the clustering analysis results
(Shen et al., 2022).

2.7 Principal component analysis

Principal component analysis (PCA) can reduce the feature
dimension of high-dimensional data while retaining the main
information of the data. All logarithmized sample data sets
consisting of the α-ring (PSMA1-PSMA7) and PSMC6 in GSE1297
were analyzed by principal component analysis using the "prcomp"
function of R software, and after obtaining the transformed
new coordinate system. The first principal component with the
largest eigenvalue was taken to be the first principal component
of the PC1 vector.

2.8 Support vector machine

The support vector machine (SVM) is a machine learning
algorithm for binary and multi-classification problems. In this
study, we used the svm.SVC class from the Scikit-learn library in
Python (version 3.8.5) to construct an SVM classifier with a linear
kernel by setting the parameter kernel = "linear." We used the
GSE5281 dataset with the expression of PSMC6 and the mean α

ring as inputs to distinguish normal cases from AD. To evaluate
the performance of the classifier, the StratifiedKFold ten-fold cross-
validation method was used to assess the classifier performance.
The tools for model quality and performance evaluation are the
Receiver Operating Characteristic Curve (ROC) and the Area
Under the Curve (AUC). The experimental results show that our
constructed SVM classifier showed good performance in this task.

3 Results

3.1 The structure of the proteasome

As a kind of garbage collector within the cell, the proteasome
is tightly regulated by numerous subunits, which share a common
proteolytic core, the 20S proteasome (Figure 4). The 20S is
composed of a cylindrical axially stacked of four hetero-oligomeric
rings (Li et al., 2015). The outer α-ring contains seven similar,
yet distinct α-subunits (α1-α7). It forms a tightly regulated
entrance gate of substrates. Similarly, the inner constitutive
β-ring consists of seven distinct β-subunits (β1-β7). The β-ring
contains 6 hydrolysis sites to shear incoming substrates. There
are other subunits (PSMA8, PSMB8-PSMB10) that are expressed
as tissue-specific (Wang et al., 2020). It showed that elevated
20S proteasome levels facilitate survival under proteotoxic stress
(Sahu et al., 2021). And its activation promotes longevity
extension and resistance to proteotoxicity in Caenorhabditis
elegans (Chondrogianni et al., 2015).

2 http://sangerbox.com/

FIGURE 4

Building block concept of the proteasome system. The 20S
proteasome is symmetrically built of two outer rings consisting of
alpha subunits and two inner rings built from beta subunits. Via its
α-ring surface, it binds proteasome activators such as the PA700,
PA28αβγ, or PA200. PA700, also termed 19S RP, has a lid region that
recognizes and binds to polyubiquitin substrate proteins, thereby
allowing the substrate proteins to unfold and be transported
through the base region with ATPase activity.

The mechanism of the CP-gate opening and proteasome
activity is regulated by the attached docking station (19S RP,
PA28αβ, PA28γ, and PA200). 19S, as a canonical proteasome-
activated cap, is further divided into two additional subcomplexes,
the "base" and "lid." The base consists of heterohexameric motor
AAA ATPase particles (PSMC1-PSMC6) and four regulatory
particle non-ATPase subunits (PSMD1, PSMD2, and PSMD4).
Among them, six AAA ATPase particles are organized into a
spiral-stepped RPT ring that delivers high-energy nucleotides
(Livneh et al., 2016). The lid which serves to recognize and
remove ubiquitin, is composed of nine different PSMD subunits
(PSMD3, PSMD6-8, PSMD11-15) in a horseshoe-shaped structure.
Particularly, PSMD5, PSMD9, PSMD10, and PSMD14 serve as
activating assembly factors. Tsvetkov noted that inhibition of the
19S regulatory complex increases cell survival when the proteasome
is inhibited to toxic levels (Tsvetkov et al., 2015). The PA28αβγ

activator is formed by seven alpha (PSME1), beta (PSME2), or
gamma (PSME3) subunits, respectively, or a mixture of both,
while PA200 (PSME4) is a highly conserved monomeric activator
(Wang et al., 2020).

The protein encoded by PSMC6 is one of the 19S RPT subunits
of the proteasome, and the yeast homolog is RPT4. Structurally,
the RPT ring anchors the 19S to the 20S to form the 26S
proteasome. It is the intermediary bridge between the substrate
from recognition to entry into the hydrolysis chamber (Dong et al.,
2019; Zhang et al., 2022c). More strategically, as a proteasomal
AAA+ ATPase molecular motor, the RPT ring releases energy and
exerts mechanical tension through ATP hydrolysis. This process
is used to stimulate the activity of deubiquitinase (DUB) Rpn11
(Lipson et al., 2008; Matyskiela et al., 2013), drives the unfolding
and translocation of substrate protein (Bard et al., 2018; Dong
et al., 2019), and direct its terminal conformational changes to open
the α-ring gated channel (Smith et al., 2007; Lasker et al., 2012;
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Finley et al., 2016). As the only RPT subunit without CP insertion
(Zhu et al., 2018), PSMC6 may be a pivotal anchor for the flexible
bolstering of the two interfaces in the highly dynamic mechanism of
26S. Recent studies have demonstrated that PSMC6 overexpression
could impair cell cycle progression and cell proliferation. However,
the Silence of PSMC6 Inhibits Cell Growth and Metastasis in Lung
Adenocarcinoma (Zhang et al., 2021). α-ring is composed of the
PSMA family, which is the first step of 20S assembly and provides a
structural template, but the whole assembly process is still unclear
(Schnell et al., 2021, 2022). Numerous studies have been conducted
on PSMA as bait proteins of neurotoxic ligands of ataxic proteins
(Lim et al., 2006; Hosp et al., 2015; Ulbrich et al., 2018).

3.2 The downregulation characteristic of
proteasome subunits in AD

To measure aberrations of the proteasome in AD, the
expression of all proteasome subunits in two different datasets
(GSE48350 and GSE5281) was visualized using heat maps. Then,
two independent sets of expression heat maps were obtained
(Figures 5A, B). The majority of proteasome subunits were
down-expression in the AD patient group compared to normal
brains. As AD progresses, abnormal proteins accumulate, and
excessive accumulation leads to proteotoxicity. The Proteotoxicity
results in damage to the proteasome, which leads to aberrant
expression of proteasomal subunits. As a result, the subunits
hold the characteristic of significant downregulation. That is,
the total number of proteasomes is insufficient to degrade
abnormal proteins. This reduction in degradation leads to
over-accumulation of abnormal proteins and damages cellular
proteostasis. Thus, AD exacerbates.

3.3 Increased proteasome intersubunit
correlation in AD

The Pearson correlation coefficients of intersubunit of the
proteasome were calculated in 9 controls and 22 AD subjects
of varying severity using the GSE1297 dataset. The heat maps
of the correlation coefficient matrix were drawn, respectively
(Figures 6A, B). Interestingly, we observed the distribution of
correlation coefficients between proteasome subunits was relatively
uniform in the control group (Figure 6A). In contrast, the overall
correlation coefficient of the proteasome in the AD group was
significantly enhanced. Half of the subunits were coaggregated
to integrate highly positively correlated clusters (Figure 6B).
In addition, we used GSE28146 as an independent validation
(Figures 6A’, B’). It suggests that existing proteasomes become
more active to counterbalance the reduction in the total number
of proteasomes. This activity is manifested as increased correlation
coefficients between subunits within each proteasome. That is,
the coaggregation interactions of existing proteasome subunits
became stronger, thus improving coordination. Therefore, the
degradation efficiency of the existing proteasome became higher.
This counteracted the abnormal accumulation of toxic proteins
caused by decreased total proteasome number.

3.4 Candidate proteasome dysregulated
subunits significantly correlation with AD

3.4.1 Identification of AD-associated proteasomal
genes by correlation coefficient T-test

To filter out significantly hyperactive proteasome genes,
a T-test of correlation coefficients was utilized. Firstly, the
correlation coefficient matrices of the whole proteasome subunits
were calculated for the four groups in the GSE1297 dataset
separately. Statistical histograms were then constructed based on
these four multisets individually (Figures 7A–D). Statistically, we
found that there were intergroup differences among the four
groups. Compared to the Control, the correlation coefficients
between genes in the AD groups were enriched toward a
highly positive correlation. This again validated the enhanced
coordination between proteasome subunits. Next, we counted the
multiset of difference matrices of gene correlation coefficients,
respectively. Three statistical histograms were constructed based on
the minimum and maximum of the multiset (Figures 7E–G). All
histograms approximately conform to the T-distribution.

To further discover the hub subunits, significant subsets of
genes in each of the three difference matrices were extracted based
on the three-sigma rule of thumb. As shown in the dark blue
areas of Figures 7E–G. The difference correlation coefficients of the
genes in these subsets all exceeded more than a twofold standard
deviation (2σ). Then overlapped three subsets, the four crossover
genes, PSMA2, PSMA4, PSMC6, and PSME1, were eventually
identified (Figure 7H). The variation in the correlation coefficients
of these four genes with disease progression was then analyzed
(Figures 8A–D). These four genes showed statistically significant
intercorrelation compared to the other genes.

3.4.2 Identification of PSMC6 as a critical
activator of proteasome in AD

To identify important activators, weighted gene co-expression
network analysis (WGNCA) was used. The top 50% of genes of
standard deviation of the GSE1297 gene expression profile were
used as input and 16 gene expression modules were obtained
(Figures 9A, B). Among them, only the light green module was
significantly associated with the AD clinical features MMSE, NFT,
and Braak. We then set the module membership (MM) threshold
to 0.9 and the gene significance correlation (GS) threshold to 0.3.
The results still contained PSMC6. This suggests that PSMC6 is
not only significantly associated with other genes, but also strongly
associated with clinical features. Therefore, we further explored
the expression pattern of PSMC6 with AD by multiple datasets.
The results showed that the expression of PSMC6 decreased
monotonically with disease severity (Figures 10A, B, D). In
addition, it revealed that PSMC6 was downregulated in all brain
regions involved compared to the Control (Figures 10C, E).
PSMC6, as the number of the ATP energy ring, provides energy
for unfolding and straightening abnormal substrates on the one
hand, and on the other hand, regulates the opening of the CP gate.
Thus, a decrease in PSMC6 indicates a decrease in the efficiency of
ATP-dependent 26S proteasomal degradation. Moreover, PSMC6
is more closely associated with AD than PSME1. This implies that
activator 19S is more relevant to the pathologic of AD. So, we
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FIGURE 5

Heat map of differential expression of proteasome subunits. (A,B) From left to right, heatmaps of the differential expression of 41 proteasome
subunits in the datasets GSE5281 and GSE48350. Respectively, arranged from top to bottom by gene order of α-ring, β-ring, base, lid, assembly
factors, and other activators. Compared to the CON, the expression of the AD group was generally downregulated.

constructed a proteasome hub gene network with PSMA2, PSMA4,
and PSMC6 as nodes.

3.5 The determinant and entropy of Hub
gene network consistently declined with
AD progression

To characterize the relationship between the hub gene network
and the pathological process of AD, determinant and entropy

metrics were introduced. The determinant reflects the degree
of correlation between dimensions. Entropy is used to measure
the degree of disorder in a biological system. The expression of
the hub gene network (PSMA2, PSMA4, PSMC6) of GSE1297
and GSE28146 were extracted. And constructed the Pearson
correlation coefficient matrices of each of the four groups. Then
the eigenvalues of the correlation coefficient matrix were obtained
by matrix decomposition. And further calculated the determinants
of the matrices and the systematic entropy and visualized them
with a histogram (Figures 11A, B). The results showed that
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FIGURE 6

Heatmap of correlation coefficient matrices of proteasome subunits. (A,A’) Pearson correlation coefficient matrix between proteasome subunits in
the control group, with a relatively uniform distribution. (B,B’) Pearson correlation coefficient between proteasome subunits in the AD group, with
most subunits clustered into highly positively correlated clusters. The subplots (A,B) are from GSE1297, and subplots (A’,B’) are from GSE28146.

both network system determinant and system entropy decreased
continuously and significantly. Increased proteotoxicity of AD
exacerbates proteasome impairment. Consequently, the existing
proteasomes enhance intersubunit coordination to offset the
reduction in the total number of proteasomes. This enhancement
is particularly reflected in the hub gene network. Specifically,
there is enhanced intercorrelation among PSMA2, PSMA4, and
PSMC6. Taken as a whole, the intercorrelation among these
three genes can be quantified by the determinant of the system.
Thus, as AD progresses, the system determinant of this hub gene
network continuously decreases indicating a gradual increased
global coordination of the proteasome. From another perspective,
toxic proteins exert great influence on the hub genes of damaged
proteasomes. This implies that genes of the hub network are
less susceptible to external random perturbations. That is, these
genes have less independence and degree of freedom. As a
result, the systematic disorder degree of 26S proteasome with

PSMA2, PSMA4, and PSMC6 as the core subunits was reduced.
This also suggests that the proteasome has strong resistance
to protein damage from AD, and makes feedback to improve
degradation efficiency. This partly counteracted the deficiency of
total proteasome, contributing to resisting proteotoxicity-induced
cellular apoptosis. Therefore, the system entropy continued to
decrease with the AD process.

3.6 The entropy of the determinant of
the hub gene network consistently
declined with AD progression

Additionally, the entropy of determinants was introduced to
explore the consistency of the entropy of determinants of hub
network molecules with the AD process. To avoid individual
samples affecting the overall deviation, we sampled the same
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FIGURE 7

Identification of proteasomal hub subunits in AD. (A–D) The statistical histograms of the correlation coefficient matrix among proteasomal subunits
in the four groups of "Control," "Incipient AD," "Moderate AD," and "Severe AD," respectively. The horizontal axis represents the magnitude of the
correlation coefficient, ranging from −1 to 1, and the vertical axis represents the frequency of each interval element. The black curve corresponds to
the normal distribution curve. The correlation coefficient distribution frequency can be observed to the right skewed from the three AD groups,
indicating an increase in the number of positively correlated genes; (E–G) Histograms of the difference matrices statistics for the Incipient,
Moderate, and Severe groups minus the Control group, respectively. The horizontal axis represents the magnitude of the difference in correlation
coefficients, ranging from the minimum value to the maximum value. Three sets conform to the T-distribution. The dark blue areas on the right side
indicate subsets of this set beyond 2 standard deviations from the mean, respectively; (H) Venn diagram showed the four crossover genes shared by
the set 1SINC−CON, 1SMOD−CON and 1SSEV−CON.

number of samples [denoted as n (n = 3, 4, 5)] from each group
in GSE1297. Then constructed the correlation coefficient matrices
based on the sample results for each group (“Control” = Cn

9 ,
“Incipient AD” = Cn

7 , “Moderate AD” = Cn
8 and “Severe AD”’ = Cn

7 ).
And then statistically derived the determinants distributions

and the information entropy of determinants for each group
(Figures 12A, B). With the aggravation of AD, the MMSE,
which measures cognitive ability, declined. Meanwhile, the value
of the determinant transformed from being highly dispersed to
being gradually clustered at the zero point (Figure 12A). The
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FIGURE 8

Variation of correlation of four hub genes in AD. (A–D) Heatmap of correlation coefficient matrices of four significant genes of proteasome in AD.
From left to right, the matrix of correlation coefficients for the four genes in Control, Incipient, Moderate, and Severe, respectively.

results are more significant and objective in data characterization
with increasing sample size n (Supplementary Figure 2). In
other words, the volume of the matrix gradually decreased, and
the coordination of the three hub genes was getting stronger.
This is consistent with previous results for the whole system
determinant. Furthermore, we calculated the information entropy
of the determinants for each group by using statistical histograms
for each set. This study showed that the entropy of the determinants
continued to decrease as the disease progressed (Figure 12B). This
reveals that with the development of AD, the disorder degree of the
determinant of the central gene network becomes weaker gradually.
In other words, the diversity of determinants continues to decrease.
Therefore, the 26S proteasome becomes more coordinated to focus
on the degradation of abnormal proteins.

3.7 Composite candidate marker of
PSMC6 and α-ring correlated with
clinical indicator of AD

The relationship between gene expression and clinical
indicators was fitted by linear regression. Concretely, PSMC6 and
the whole α-ring (PSMA1-PSMA7) of GSE1297 were extracted as

a composite marker. An outlier sample due to a large postmortem
interval (PMI) was excluded. Then we selected the first principal
component PC1, which contained the largest feature, as a novel
composite indicator. The results of the linear fit of PC1 and clinical
indicators are shown in Figures 13A–D. The results showed that
the correlation between PC1 and the clinical features is more
significant than the individual with clinical without considering
normal samples. Moreover, this correlation tends to be not linear
as shown by the blue curve in the Figure 13D. The first principal
component indicates the correlation between PSMC6 and α-ring.
The higher the correlation, the greater the PC1 and the higher
the severity of AD. In other words, clinically and pathologically,
the first principal component values are available to preliminarily
evaluate MMSE and NFT. This implies that, compared with a
single gene, it is better to diagnose AD by extracting the hub
proteasome genes PSMC6 and α-ring as quantifiable composite
candidate markers.

3.8 The coherent effects on AD between
PSMC6 and α-ring

To further explore the synergistic roles of PSMC6 and α-ring
in AD, the expression of PSMC6 and mean α-ring were extracted
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FIGURE 9

Co-expression network of significant genes in AD. (A) Clustering tree dendrogram of co-expression modules. Different colors represent similarity
clustering at varying degrees. (B) Correlation analysis of light green modules with clinical status, each row represents a module and each column
represents clinical status.

from GSE5281 as inputs to construct a support vector machine
diagnostic model. As shown in Figure 14A, two characteristics were
observed. Firstly, AD could be distinguished from normal brain
samples quite intuitively with a hyperplane by the combination of
PSMC6 and mean α-ring. Secondly, in AD progression, PSMC6
and α-ring synergize to form a threshold point (denoted as O).
Individuals have little risk of developing AD when expression levels
are above the threshold point. It suggested that the synergistic effect
of PSMC6 and α-ring can be used to diagnose AD.

Based on coordinate transformation, we constructed a new
coordinate system as in Figure 14B. Within this redefined
coordinate framework, the X-axis is the linear regression trendline
of PSMC6 and α-ring, while the Y-axis remains orthogonal to the
newly defined X-axis. Some features found are as follows. Firstly,
regarding the X-axis: 1. Diseased samples were predominantly
concentrated in proximity to the X-axis. When mapped back to
the original coordinate system, closer to the X-axis indicated a
stronger correlation. This suggested that better coordination of
the proteasome subunits is required to increase the efficiency
of degrading aberrant proteins. Therefore, PSMC6 and α-ring

were synergistically co-expressed at AD 2. The new coordinate
system better captured the statistical relationship between disease
probabilities. Notably, samples located to the left of the origin
of the new X-axis were associated with a higher probability of
disease, although a minor of control samples were also below
this threshold. The expression of PSMC6 and α-ring decreased
synergistically as the samples aggregated toward the negative half
of the X-axis. Biologically, decreased expression of PSMC6 and
α-ring indicated a reduction in the total number of proteasomes.
AD originated from the accumulation of toxic substances, thereby
exacerbating the condition. Secondly, concerning the features of
the Y-axis: 1. Most cases were symmetrical around the positive
and negative half-axis of the Y-axis. This pronounced symmetry
reflected the correlation between PSMC6 and α-ring. It indicated
a more coordinated interaction between hub genes pathologically.
And these genes’ primary contributions were focused along the
X-axis 2. The Y-axis also displayed the threshold characteristic.
Data points of AD patients, denoted by yellow markers, clustered
within a gray area defined by two parallel red dashed lines. This
threshold indicated the deviation of the sample from the principal
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FIGURE 10

Expression of differential genes in AD patients and controls. (A) Boxplots of differential expression of PSMC6 and PSME1 according to the GSE1297
dataset. (B,C) From left to right, respectively depict the boxplots illustrating the overall expression differences of PSMC6 between AD and Control
groups in the GSE5281 dataset, along with detailed expression variations across six distinct brain regions. These regions include the entorhinal cortex
(EC), hippocampus (HIP), middle temporal gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG), and primary visual cortex (VCX). (D,E)
Boxplots of the overall expression differences between AD and Control PSMC6 in GSE48350 with detailed descriptions of the expression changes in
four different brain regions. Notably, PCG refers to the post-central gyrus.

component, i.e., the degree of intergenic dysregulation. It signified
that PSMC6 and α-ring were considered as a marker with the
pathological progression, and their randomness and diversity are
confined within specific thresholds.

The common characteristics of this new coordinate system
underscored a pivotal observation: as AD advances, the
accumulation of toxic proteins leads to aberrant proteasome
subunit expression. It, in turn, prompted an elevated degradation
efficiency of each proteasome. Based on these observed

characteristics, the probability of AD increases when the x-axis
decreases below a certain threshold and the y-axis is within a
certain deviation threshold. On the one hand, outside the gray
area, the probability of misclassifying a patient as a normal
sample is about 5.75%. On the other hand, the probability of
misclassifying a normal sample as AD is relatively higher within
the gray area. In addition, to avoid coincidence, 10-fold cross-
validation was applied and the respective ROC curves were plotted
(Supplementary Figure 3), which ultimately summarized the
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FIGURE 11

Histogram of system disturbance state of the hub gene network. (A,B) From left to right, the system determinant and entropy of the Pearson
correlation coefficient matrices of PSMA2, PSMA4, and PSMC6 in GSE1297, respectively, and the results all continue to decrease with the AD
process. (A’,B’) verification from GSE28146.

predictive accuracy AUC values of the model that included all
genes and with the hub network (Figure 14C).

4 Discussion

The aggregation of abnormal protein inclusions such as
insoluble Aβ and tau are the major hallmarks of Alzheimer’s
disease (AD) pathogenesis. These protein aggregates produce toxic
substances that lead to neuronal degeneration (Wu et al., 2017).

The proteasome is an important cellular regulator responsible for
cellular quality control (Kim et al., 2018). It has been shown that
proteasome subunits have profound effects on the solubility and
aggregation of specific proteins in the developing brain (Kim et al.,
2018; Rashid and Niklison-Chirou, 2019; Chocron et al., 2022).
In AD, toxic protein aggregates damage intracellular proteostasis,
forcing the proteasome to respond (Chondrogianni et al., 2015;
Sahu et al., 2021). This dynamic relationship between proteasome
function and toxic protein aggregation highlights the intricate
interactions in AD pathology. By elucidating these complex
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FIGURE 12

Variation of the entropy of the determinant of the hub gene network. (A) Relationship between the determinants of sample correlation coefficient
matrices of the hub network and the average MMSE metrics for a specified sample n = 5. The larger the MMSE, the greater the randomness of the
determinants, and the higher the scatter. (B) Entropy of each set of determinants for a specified sample of n = 5. The results showed a
monotonically decreasing trend with increasing disease.

molecules, we aim to deepen the understanding of AD pathogenesis
and provide some help for potential therapeutic avenues.

In this study, we focused on the proteasome complex. Firstly,
we analyzed the differences in proteasome expression between
brain tissue from AD patients and Controls. Our observations

showed that the expression of the vast majority of proteasome
subunits was downregulated in brain tissue from AD patients
compared to controls (refer to Figure 5). Of particular note, the
expression of PSMC6 was significantly reduced and differentially
expressed in different brain regions (see Figure 10). Subsequently,
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FIGURE 13

Validation of the role of RPT ring and α-ring in AD. (A,B) From left to right, are the linear fits between PSMC6 or α-ring, respectively, and the
anatomical indicator NFT. (C,D) From left to right, linear correlations of PSMC6 and α-ring composite indexes with NFT and MMSE, respectively. R
represents the correlation coefficient and p-value is the significance level.

we performed a comparison of the correlation of all proteasome
subunits between the two groups. Our study found that the
intersubunit correlation coefficients of the entire proteasome
were significantly enhanced and most of the subunits showed
highly positive correlations (see Figure 6). Finally, through an
in-depth analysis of the proteasomal hub gene network, we
found that the determinant and entropy of the entire proteasome
system continued to decrease as the disease progressed (refer
to Figure 11).

Based on the above data characterization. We deduced that
abnormal expression of proteasomal subunits is induced with
toxicant infestation during the AD process, with the most affected
being the α-ring and PSMC6. α-ring assembly is the initiation of
proteasome synthesis and provides a structural template for the
subsequent step-by-step assembly of the β-ring (Schnell et al., 2021,
2022). The protein encoded by PSMC6 is one of the 19S RPT
rings of proteasome. It anchors the 19S to the 20S to form the 26S
proteasome (Livneh et al., 2016; Dong et al., 2019). The reduction
of these genes reveals a decrease in the total number of 26S
proteasomes. This forces each of the existing effective proteasomes
to enhance its activity and improve inter-subunit coordination for
more efficient degradation of toxic aggregates. In addition, the
disorder degree of the hub network of the whole proteasome is

also reduced, to improve the anti-toxicity of the proteasome itself
to counteract the reduction in its total number.

Based on the significant association of 26S proteasome with
pathologic NFT. We further found that after excluding normal
samples, the composite 26S proteasome marker, represented by
the first principal component of C6 and α rings, was significantly
negatively correlated with clinical MMSE. The stronger the marker
correlation, the lower the degree of dementia. Therefore, in this
paper, the synergistic effect of PSMC6 and α-ring composite
candidate marker was utilized, then then SVM was applied to
achieve the classification and prediction of AD. Referring to
Figure 14, the synergistic downregulation of PSMC6 and α-ring
leads to a significant increase in the potential risk of developing AD.

In this paper, T-tests, determinants, and entropy are
innovatively introduced into the screening and validation of
genes. Firstly, the most significant active subunit in the proteasome
complex was screened out by a T-test of the difference matrix of
the correlation coefficient. This was then used as a seed network
to validate the relationship between proteasome and AD. In the
validation process, we introduced determinants and entropy
as mathematical and physical concepts. These two are named
biological system determinant and system entropy, respectively.
And given new concepts to further characterize the global
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FIGURE 14

Alzheimer’s disease (AD) diagnostic models of PSMC6 and α-ring. (A) The horizontal coordinate is PSMC6 and the vertical coordinate is the average
expression of α-ring. Patients with AD are shown in yellow and controls in purple. The point O (10, 24) formed by the intersection of the black
dashed lines represented the threshold jointly determined by the two. There was little potential for AD to occur when the sample expression level
was higher. (B) The new axis × formed by the white line represented the linear fit of the relationship between PSMC6 and α-ring for the AD samples
remaining. It showed that the coherence between PSMC6 and α-ring is a candidate marker of AD. That is, if the expression levels of PSMC6 and
α-ring are down-regulated coherently and the deviation between them is limited in a border (red line), the patient has a significant probability of AD
risk. (C) Classification effect of the validation model. AUC indicates the area under the ROC curve, which could be used as the model classification
prediction accuracy, when 0.5 < AUC < 1, the model classification effect is better and has the prediction value. The average AUC values for 10-fold
cross-validation of the hub gene network are summarized, as well as the prediction accuracy of the microarray after principal component analysis
based on the first and second principal components.
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coordination and system disorder of life system. This may be a
new application for detecting AD disorder and measuring system
characteristics.

In sum, the metagene of the RTP energy ring, PSMC6, and
the α-ring assembled by the PSMA family play a crucial role in
the advancement and progression of AD. Our studies indicate
that under-expression of PSMC6 and α-ring stimulates the activity
of existing proteasome and its resistance to toxic substances,
to increase individual degradation efficacy. Nevertheless, it does
not fully compensate for the lack of the total proteasome, and
eventually, it still leads to inefficient degradation of the ubiquitin-
26S-proteasome system for abnormal proteins, which results in
neuronal damage.

5 Conclusion

The pathological process of Alzheimer’s disease involves the
accumulation of abnormal proteins. As a hydrolytic nanomachine
of cell regulation and waste management, the proteasome is
the endpoint for the ubiquitin-proteasome system degradation,
orchestrating the elimination of damaged or misfolded proteins.
20S proteasome is a barrel-like structure with a narrow pore that
exhibits regulated gating. It has three types of regulatory caps,
including 19S, 11S, and PA200. This is important for preserving
proteostasis relevant to brain health and disease. In this study, the
relationship between proteasome and AD was explored, and the
following five characteristics were observed.

1. The gene expression levels of proteasome subunits are
downregulated with AD progression (Figure 5). That is, the
total number of 26S proteasomes is decreased, and there are
not enough proteasomes for degradation.

2. The correlation between two subunits of proteasome is
enhanced in the process of disease progression (Figure
6). This suggests that the subunits of existing active
proteasomes cooperate more closely with AD progression.
That is, the efficiency of degradation of individual active
proteasomes is improved.

3. The determinant of the correlation matrix of subunits
decreases continuously as the disease progresses (Subfigure
11A). Where the determinant measures the global
coordination of the system consisting of subunits (Figure 2),
the smaller the determinant, the more coordinated the system.
It should be noted that determinant does not refer to the
correlation between two genes, it refers to the coordination
of the system as a whole. The enhanced global correlation
suggests that the system of subunits of active proteasome
works more efficiently to counterbalance the reduction of the
total number of proteasomes.

4. The entropy of the system of subunit expression of
proteasome decreases continuously as the disease progresses
(Subfigure 11B). Proteotoxicity causes the chaos of subunits
expression of proteasome and disrupts the degradation
function of the proteasome, entropy measures the chaos
degree. That is, entropy reflects the robustness of the system to
counter the interference caused by proteotoxicity. The smaller
the entropy, the smaller the chaos degree, and the stronger

the robustness. That is, with AD progression, the existing
active proteasome holds stronger robustness to counter the
interference caused by proteotoxicity.

5. The coherence between PSMC6 and α-ring is a candidate
marker of AD (Figure 14). If the expression levels of PSMC6
and α-ring are down-regulated coherently and the deviation
between them is limited in a border, the patient has a
significant probability of AD risk.

In summary, with AD progression, existing active proteasomes
enhance degradation efficiency significantly by improving their
coordination. Thereby compensating for the reduced degradation
ability resulting from the decline in the total number of
proteasomes, and then maintaining cellular homeostasis.

In this paper, the candidate markers were obtained using
GEO’s public dataset of AD microarray data by applying the
bioinformatics method of WGCNA and multivariate statistical
analysis of Student’s t-test, Pearson’s correlation coefficient matrix,
and t-test of correlation coefficient difference matrix, and the
machine learning was developed by support vector machine model
to further validate the finding. Additionally, the concept of entropy
was used to detect the disorder of the proteasome system, it
was discovered that entropy is down-regulated continually with
AD progression against system chaos caused by AD. Another
conception of matrix determinant was used to detect the global
coordination of proteasome in this paper, it was discovered that the
coordination is enhanced to maintain the efficiency of degradation.
The features of entropy and determinant suggest that active
proteasomes resist the attack caused by AD like defenders, on the
one hand, to protect themselves (entropy reduces), and on the
other hand, to fight the enemy (determinant reduces). The two
conceptions enrich the tools of bioinformatics.

This study has shortcomings and potential limitations known
to the author as follows:

1. There is no direct biological experiment to validate
the hypothesis. The research team in this paper focuses on
bioinformatics and does not have the ability to conduct biological
experiments. On the other hand, no suitable collaborators for
biological experiments have been encountered. To offset the lack
of biological experiments, this paper verifies the hypothesis from
multiple independent perspectives.

2. The study’s reliance on microarray data seems outdated,
as RNAseq technology provides superior sensitivity and accuracy.
This paper is a multi-view analysis of the data. Multi-view analysis
requires datasets to satisfy many conditions at the same time,
which makes it difficult to find datasets that meet the criteria.
To eliminate the influence of noise, the data are logarithmized
and only the exponentials of the data are compared, i.e., only the
magnitudes are compared.
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