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Unraveling the complex
relationship between prenatal
alcohol exposure, hippocampal
LTP, and learning and memory
Monica Goncalves-Garcia* and Derek Alexander Hamilton

Department of Psychology, University of New Mexico, Albuquerque, NM, United States

Prenatal alcohol exposure (PAE) has been extensively studied for its

profound impact on neurodevelopment, synaptic plasticity, and cognitive

outcomes. While PAE, particularly at moderate levels, has long-lasting cognitive

implications for the exposed individuals, there remains a substantial gap in our

understanding of the precise mechanisms underlying these deficits. This review

provides a framework for comprehending the neurobiological basis of learning

and memory processes that are negatively impacted by PAE. Sex differences,

diverse PAE protocols, and the timing of exposure are explored as potential

variables influencing the diverse outcomes of PAE on long-term potentiation

(LTP). Additionally, potential interventions, both pharmacological and non-

pharmacological, are reviewed, offering promising avenues for mitigating the

detrimental effects of PAE on cognitive processes. While significant progress has

been made, further research is required to enhance our understanding of how

prenatal alcohol exposure affects neural plasticity and cognitive functions and to

develop effective therapeutic interventions for those impacted. Ultimately, this

work aims to advance the comprehension of the consequences of PAE on the

brain and cognitive functions.
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Introduction

Deficits following prenatal alcohol exposure (PAE) have been extensively investigated
for decades. It is widely accepted that binge drinking results in a series of deficits, including
morphological and cognitive alterations. However, less is known about impairments
associated with moderate PAE. Over the years, significant progress has been made
in understanding the neurobiological mechanisms underlying and contributing to the
expressions of behaviors that are impaired following PAE. Given the similarities across the
mammalian brain (Gil-Mohapel et al., 2010; Patten et al., 2014), rat models of PAE are
essential and valid for elucidating the effects of PAE on the mechanisms involved in the
brain plasticity (Fontaine et al., 2016). Furthermore, this research may contribute valuable
insights for the development of interventions for the clinical population.

The overarching goal of this review is to offer a comprehensive exploration of the
current research on the impacts of PAE, with a particular focus on moderate levels
of exposure when data is available. This review aims to delve into the neurobiological
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basis of learning and memory processes affected by PAE.
The objective is to establish a coherent understanding across
different domains. It is evident that even low levels of prenatal
alcohol exposure can lead to enduring effects on exposed
individuals. While it is widely recognized that the hippocampal
formation is particularly sensitive to developmental alcohol
exposure, there are significant gaps remaining in understanding
impairments of neurobiological mechanisms and subsequent
cognitive manifestations. This review seeks to provide a
foundational framework for further investigation, with the
goal of comprehending the underlying mechanisms behind the
negative impacts of PAE on learning and memory, enabling early
diagnosis and therapeutic interventions for affected individuals.

Neural bases of learning and
memory

The ability of the brain to adapt to experience and the
mechanisms involved in the strengthening - or weakening–of
neural connections has been investigated for over 100 years (Bliss
and Collingridge, 1993; Nicoll, 2017). Synaptic plasticity can be
defined as an activity-dependent alteration of the strength of
synapses. The long-lasting forms of synaptic plasticity include long-
term potentiation (LTP) – persistent strengthening of synapses
- and long-term depression (LTD, for review see Fontaine et al.,
2016) – persisting decreasing in the strength of synapses. In the
early 70s, there was a breakthrough in understanding the neural
mechanisms underlying synaptic plasticity with the discovery of
LTP in the granule cells of the dentate gyrus following high-
frequency stimulation (HFS) to the rabbit perforant pathway
(Bliss and Lømo, 1973). Following the publication of that study,
significant progress has been made in the advancement of
the understanding of the cellular and molecular mechanisms
underlying synaptic plasticity. The phenomenon of LTP has been
identified at synapses across the brain (Lynch, 2004), however, it
is mostly studied in the hippocampus as the area plays a major
role in spatial navigation, learning, and memory (Bonthius et al.,
2001). Investigations of LTP have been extensively conducted at
the hippocampal formation as the discoveries associated with LTP
provide evidence for the cellular basis of learning and memory
(Larson and Lynch, 1986; McNaughton et al., 1986; Bashir et al.,
1993; Sutherland et al., 1997; Lynch, 2004; Nicoll, 2017).

Properties of LTP

Long-term potentiation requires simultaneous depolarization
of the pre-and post-synaptic terminals. The basic properties of
LTP are cooperativity (co-activation of multiple excitatory synapses
simultaneously or in close temporal proximity), associativity
(weak stimulation of a single pathway can induce LTP if strong
stimulation of another pathway is delivered simultaneously), and
input specificity (occurrence of LTP at a single synapse without
spreading to others). Together these properties ensure the accuracy
of memory storage and maintenance (Abraham et al., 2019).

Briefly, the mechanisms underlying LTP are mediated by the
release of the excitatory neurotransmitter glutamate – which plays

a crucial role in the mammalian brain by facilitating most excitatory
transmission and by its involvement in cognition, learning, and
memory – and the activation of the glutamate receptors NMDA
(Collingridge et al., 1983) and AMPA in the postsynaptic cell
(Bordi, 1996; Bliss et al., 2018). During low-frequency stimulation,
glutamate from the presynaptic terminal binds to NMDAR and
AMPAR channels in the postsynaptic terminal (Figure 1). The
AMPAR channel is open and allows for the flow of Na + and
K+ . The NMDAR channel is blocked by Mg2+ which is removed
following HFS allowing, then, for Ca2+ to flow through the channel
(Nicoll, 2017). However, NMDAR activation is not necessary for
the induction of all forms of LTP (Bashir et al., 1993; Lynch, 2004)
in the CA1 region. Unlike NMDA receptor-dependent LTP, mossy
fiber LTP can occur independently of NMDA receptors. Notably,
inducing LTP in CA1 without NMDA receptors is possible, but
generally, Schaffer-commissural LTP requires NMDAR (Lynch,
2004). Ongoing research explores mossy fiber LTP’s mechanisms,
enduring changes, and diverse roles across brain regions (Malenka
and Bear, 2004; Nicoll and Schmitz, 2005).

In addition, other features of synaptic transmission are NMDA-
receptor independent, such as paired-pulse facilitation (PPF) - an
enhanced response to two closely spaced stimuli; provides insights
into short-term synaptic plasticity and the interplay between
presynaptic and postsynaptic mechanisms in neurotransmission
studies - and post-tetanic potentiation (PTP) - a short-term
enhancement of synaptic transmission observed after a brief period
of high-frequency stimulation, reflecting the heightened release of
neurotransmitters at the synapse (Bliss and Collingridge, 1993).
To investigate the involvement of the neurotransmitter glutamate
in the induction of LTP, studies investigated hippocampal LTP
in mice lacking mGlu1 – a glutamate receptor subtype. The
results suggest a reduction in LTP compared with control animals
which supports the implication of glutamate receptors in the LTP
induction (Bashir et al., 1993; Bordi, 1996). NMDAR is referred
to as a “coincidence detector” because of the necessity to activate
both presynaptic glutamate release and postsynaptic depolarization

FIGURE 1

Schematic diagram illustrating an entorhinal perforant path nerve
terminal and postsynaptic dentate granule cell dendrite. Presynaptic
histamine H3 receptors mediate inhibition of glutamate release. In
PAE animals the inhibitory mechanism is elevated.
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(Citri and Malenka, 2008). LTP is comprised of early (e-LTP)
and late (l-LTP) phases. The former is independent of protein
synthesis and lasts for about 1 h, while the latter requires de novo
protein synthesis for the maintenance of the LTP. Briefly, e-LTP
is frequently understood as being the outcome of a single HFS
episode and of shorter duration (∼1 h). During the induction
phase, increased synaptic input triggers the activation of various
signaling pathways. Calcium influx into the postsynaptic neuron
activates Ca2+ /calmodulin-dependent protein kinase II (CaMKII)
and other calcium-dependent kinases. These kinases, in turn,
phosphorylate AMPA receptors, facilitating their trafficking to the
postsynaptic membrane. Additionally, protein kinase C (PKC) is
activated, contributing to the modulation of synaptic efficacy. These
phosphorylation events play a crucial role in the expression of LTP,
where the strengthened synaptic connections are maintained (Citri
and Malenka, 2008; Fontaine et al., 2016; Herring and Nicoll, 2016;
Tao et al., 2021). The early phase sets the stage for the subsequent
molecular and structural changes that underlie the long-lasting
modifications associated with LTP, ultimately contributing to the
cellular basis of learning and memory. l-LTP requires multiple
episodes of HFS and is dependent upon the activation of protein
kinase A (PKA) and CaMKII, which develops over time and
could last for several hours. Gene transcription and protein
synthesis (Malenka and Bear, 2004) contribute to the synthesis
of new proteins necessary for maintaining the strengthening of
the synapses. PKMzeta has been linked to memory (Pastalkova
et al., 2006) and maintenance of LTP through trafficking and
expression of AMPARs (Yao et al., 2008; Bingor et al., 2020) and
NMDARs (Shema et al., 2007; Yao et al., 2008). Other potential
processes that contribute to induction and maintenance of LTP
include retrograde signaling of Nitric Oxide (NO) (Bon et al., 1992;
Mizutani et al., 1993), extra synaptic AMPARs and spillover of
glutamate (Kullmann and Asztely, 1998), and modified sensitivity
of metabotropic glutamate receptors (Aronica et al., 1991). The
reader is referred to the reviews of Herring and Nicoll (2016) and
Hayashi (2022) for broader treatment of LTP mechanisms.

Late-long-term potentiation requires multiple episodes of HFS
and is dependent upon the activation of protein kinase A (PKA)
and CaMKII, which develops over time and could last for several
hours. Gene transcription and protein synthesis (Malenka and
Bear, 2004) contribute to the synthesis of new proteins necessary
for maintaining the strengthening of the synapses. Some studies of
in vivo LTP showed evidence for the induction of LTP that lasted
for several hours following a single instance of HFS (McNaughton
et al., 1986; also see Park et al., 2014 for additional details on
different forms of LTP that are dependent on the timing of the
stimuli and are pharmacologically distinct).

Given that multiple actions of distinct nature and location
must take place for potentiation to occur, identification of
those poses a challenge when attempting to understand possible
alterations following developmental insults. The first conclusions
about LTP were that it was purely a postsynaptic mechanism.
However, with the emergence of more research in the matter
of nature and loci of expression, the conclusions gravitated
between pre- or post-, to a mix of both, to both pre-and
postsynaptic mechanisms (Bliss and Collingridge, 1993) that
characterize different types of LTP. Presynaptic mechanisms like
H3 receptors and mGluRs (metabotropic glutamate receptors)
participate in regulating neurotransmitter release and represent

promising targets for manipulation and interventions aimed at
modulating long-term potentiation. Additionally, PAE can lead to
different long-lasting alterations in synaptic plasticity mechanisms
that includes reduced neurogenesis and cell loss (Choi et al.,
2005; Gil-Mohapel et al., 2010; Yang et al., 2017; Bird et al.,
2018), neuronal morphology and spine architecture (Berman and
Hannigan, 2000; Hamilton et al., 2010; Mira et al., 2020), and
NMDAR level alterations (Hughes et al., 1998; Samudio-Ruiz
et al., 2010; Bird et al., 2020; Plaza-Briceño et al., 2020). These
are some of the mechanisms that could be altered by PAE and
have a negative impact on synaptic plasticity. Understanding the
deficits and mechanisms interactions are key to develop potential
interventions that could mitigate those long-lasting impairments.

LTP and prenatal alcohol exposure

Animal models of PAE using in vitro or in vivo
electrophysiology to investigate LTP in the hippocampal formation
suggest that there are fundamental alterations in the neural
mechanisms when compared to non-exposed animals. Even
though lower levels of PAE do not result in physical deficiencies,
studies on the neurobiology of learning and memory processes
have identified cognitive impairments following moderate PAE
(Sutherland et al., 1997). Significant decreases in LTP have been
observed in the dentate granule cells following high-frequency
stimulation [HFS – trains, or tetanus, of stimulation, or theta burst
stimulation (TBS)] in the perforant pathway (Sutherland et al.,
1997; Varaschin et al., 2010; Brady et al., 2013; Harvey et al., 2020).
While CA1 LTP has been extensively studied, the dentate gyrus
(DG) is of particular interest as the primary region within the
hippocampal formation to receive input from the entorhinal cortex
via the Perforant pathway (PP). Furthermore, studies on DG LTP
have consistently reported alterations following prenatal alcohol
exposure (Sutherland et al., 1997; Varaschin et al., 2010; Titterness
and Christie, 2012; Brady et al., 2013).

One of the first studies reporting electrophysiological
impairment following PAE used paired-pulse facilitation in
hippocampal slices, specifically in the CA1 region, with interpulse
intervals varying from 5 to 400 µs (Hablitz, 1986). The results
showed diminished paired-pulse response inhibition at shorter
inter-pulse intervals (5–100 µs) – which involves activation of
recurrent inhibitory pathways – in the PAE group compared to
controls, but similar potentiation at longer intervals (200–400 µs)
(Hablitz, 1986). Similar results were reported in a replication study
expanding to two levels of ethanol exposure. One group of animals
received a high dose of ethanol [35% ethanol-derived calories
(EDC)], while the other received a low dose (17.5% EDC) group.
The results were similar to the first study but only in the 35% EDC
group at lower PP intervals. The 35% EDC group also showed
little evidence of LTP compared to the other diet conditions (Tan
et al., 1990). In contrast, another study, using a different method
of alcohol administration (intragastric gavage – GD8-21–0, 4,
or 6 g/kg/day) and brain slices from two age groups (PN25-32
and PN63-77), reported no difference in input/output profiles
or paired-pulse responses at any group. There was a significant
reduction in the amplitude of the maximal evoked population
spike (PS) in the higher dose in the younger group compared to the
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other two groups (Krahl et al., 1999; Berman and Hannigan, 2000).
This result is similar to the results reported by Sutherland et al.
(1997) using a 5% ethanol liquid diet, investigating in vivo DG LTP
in 5-month-old rats. In terms of timing, a study showed that the
effects of developmental alcohol exposure yield different outcomes
in DG LTP. PAE during GD10-21 (2nd trimester-equivalent) only
resulted in less potentiation while exposure during GD1-9 and
PN1-9 (1st and 3rd trimester-equivalent) did not have a significant
effect (Helfer et al., 2012). While these results support timing as a
factor, there is still a need for clarification on the teratogenic effects
of alcohol. During the 2nd trimester equivalent, the DG granule
cells and interneurons undergo neurogenesis. Exposure during
the early stages of development may alter cell migration, neuron
and glial proliferation, and the formation of neural networks. In
addition to the timing of exposure, the pattern/route of ethanol
administration, as well as age during the assessment, are important
factors to consider when interpreting the results from different
studies of similar investigations as those may lead to diverse
outcomes (Table 1).

Histaminergic and glutamatergic
transmissions

Over the years, since the discovery of LTP, significant progress
has been made in understanding the components of the complex
neurobiological network supporting synaptic plasticity. As a result,
a better understanding of what may be altered by prenatal
insults has emerged offering potential avenues for interventions.
Research in this field suggests that there is a disruption in a
presynaptic component of LTP involved in the glutamate release
(Varaschin et al., 2010, 2014, 2018) mediated by H3 receptors
(H3R). These receptors are autoreceptors – modulating histamine
release – that also acts as heteroreceptors modulating release of
other neurotransmitters, including glutamate. Passani et al. (2004),
reviewed the role of the histamine H3R as a possible target for
pharmacological interventions to enhance cognition and treat
possible disorders associated with sleep, stress, and anxiety. The
researchers highlight the possible association of the histaminergic
system in cognitive processes and describe results from studies
using H3R antagonists and inverse agonists that improved cognitive
performances in cognitively impaired animals. Together, these
suggest that neurotransmitters modulated by H3R are involved
in cognition and that H3R antagonists or inverse agonists could
potentially reverse cognitive deficits (Passani et al., 2004). In the
dentate gyrus, H3Rs are located on the perforant pathway and
have been demonstrated to inhibit glutamate release via histamine-
mediated depression in calcium influx during the presynaptic
action potential (Brown and Haas, 1999; Figure 1).

Glutamatergic neurotransmission is part of the presynaptic
components of LTP and may be involved in activity-dependent
potentiation deficits following PAE (Savage et al., 1998, 2010;
Varaschin et al., 2014). Studies have investigated glutamate
receptor release by utilizing a glutamate reuptake inhibitor that
allowed for the measurement of the electrically evoked release
of [3H]-D-ASP in brain slice preparations (Savage et al., 1998,
2001). Results suggest activity-dependent potentiation of D-ASP
release following moderate PAE suggesting impairment in complex

activity-dependent modifications in the neurotransmission (Savage
et al., 1998). Even though the presynaptic neurochemical basis for
this impairment remains unclear, studies established that one of
the neurochemical mechanisms underlying deficits associated with
PAE is a reduction in glutamate receptor-mediated potentiation
of glutamate release at the synapses of the dentate granule cells
(Galindo et al., 2004; Savage et al., 2010).

Sex differences

Male animals are more commonly used in studies investigating
synaptic plasticity, with fewer studies exploring both male and
female animals or exclusively female animals (Titterness and
Christie, 2012; Sickmann et al., 2014; An and Zhang, 2015).
These studies focused on synaptic plasticity in adolescent rats
(∼PND30-35) and reported bidirectional findings. PAE animals
showed reduced LTP after HFS relative to control and pair-fed
groups, while females exhibited enhanced LTP compared to the
other groups. Titterness and Christie (2012) suggested that sex
differences could be due to sex-specific alterations to NMDAR-
dependent DG LTP. Subsequent work from the same group
expanded on the investigation in NMDAR function and expression,
but did not support sex differences. Additionally, they did not find
sexually dimorphic effects on DG LTP in adulthood (PND 55–
70) (Sickmann et al., 2014). Another study, including only female
rats, reported enhanced LTP compared to the control groups (An
and Zhang, 2015). The first two groups mentioned, used a liquid
diet (35% EDC) and Sprague-Dawley rats, while the last used oral
gavage in Wistar rats.

The limited number of studies investigating sexual dimorphism
in LTP does not provide sufficient information to (1) accept that
sex differences are significant; (2) conclude that the differences
reported in adolescence, but not in adulthood, have an impact on
plasticity and/or behavioral expression later in life; (3) understand
the source of the differences; or (4) elucidate how sex differences
may or may not be related to strain, route of ethanol administration,
and – timing. Further investigations should focus on expanding on
current plasticity models to include both sexes while decreasing
possible confounding factors related to diet, route/timing of
administration, and animal strain.

Behavioral tasks investigations show that males are more
impaired than females in the probe trials of the Morris Water
Task (MWT), but both are impaired in the acquisition phases of
the test. While other studies report the opposite effect (Berman
and Hannigan, 2000). In open-field tests, PAE male rodents are
typically more hyperactive than females (Osterlund Oltmanns
et al., 2022), show more perseveration errors during reversal
learning in the MWT (Rodriguez et al., 2016), and exhibit spatial
information retention impairment (Rodriguez et al., 2016). Studies
PAE consistently show parallels between animal and human data.
Hamilton et al. (2003) found that PAE children, like rodents, had
greater distances in a virtual Morris Water Task. Woods et al. (2018)
using a similar setup with fMRI, observed longer latencies in PAE
boys but no differences in girls. Dodge et al. (2019) found deficits
in place learning for syndromal boys and girls, and non-syndromal
girls, but not in low-to-moderate PAE. All studies note differences
in place learning, aligning with findings in animal models (Goodlett
and Johnson, 1997; Dodge et al., 2020).
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TABLE 1 LTP protocols on the DG from different studies show the variability of the alcohol exposure paradigm, stimulation protocol, and stimulation
outcomes.

Alcohol exposure paradigm/BAC Stimulation paradigm Effects References

Prenatal Alcohol Exposure and Plasticity Effects on Brain Areas

Liquid Diet; GD 1–22; 5% v/v; BAC 83.2 mg/dL Pulse frequency: 30 s Induction: 10× 400 Hz LTP M ↓ Sutherland et al., 1997

Liquid Diet; GD 1–22; 6.61% v/v; BAC 184 mg/dL Pulse frequency: 15 s Induction: 5× (10× 5 Pulses,
100 Hz)

LTP M ↓ Christie et al., 2005

Liquid Diet; GD 1–22; 5% v/v; BAC 84 mg/dL Induction: 3× 400 Hz, 25 ms or 10× 400 Hz, 25 ms LTP M ↓with 3× 400 Hz
protocol

Varaschin et al., 2010

Liquid diet; GD11–21; 6.6% v/v; BAC 142 mg/dL Pulse frequency: 30 s Induction: HFS 4× 50 pulses,
100 Hz or TBS 5 x (4× 4 Pulses, 100 Hz)

LTP M ↓ Helfer et al., 2012

Drinking Water; GD 1–22; 5% v/v; BAC 84 mg/dL Induction: 4× (10× 5 Pulses, 400 Hz) LTP M↓; F- Patten et al., 2013a

Liquid Diet; GD 1–22; 6.61% v/v; BAC 101.5 mg/dL Induction: 4× (10× 5 Pulses, 400 Hz) LTP M ↓; F- Patten et al., 2013b

Liquid Diet; GD 1–22; 6.6% v/v; BAC 146.32 mg/dL Induction: 4× (10× 5 pulses, 400 Hz) LTP M↓; F- Sickmann et al., 2014

Drinking Water; GD 1–22; 5% v/v; BAC 84 mg/dL Pulse Frequency: 30 s Induction: 3× 400 Hz LTP M ↓ Varaschin et al., 2014

Liquid diet; GD1–22; 6.6%v/v; BAC 80–180 mg/dL Pulse frequency: 30 s Induction: 4 trains x 50 pulses,
100 Hz

LTP M ↓; F↓ Fontaine et al., 2019

Alcohol solution; GD1–PD7; 10% v/v; BAC: 62 mg/dL Pulse frequency: 30s Induction: HFS 8 x (3× 8 pulses,
200 Hz)

LTP M ↓ Plaza-Briceño et al., 2020

Liquid diet; GD1–22; 6.6% v/v; BAC 80–180 mg/dL Pulse frequency: 30 s Induction: HFS 4× 50 pulses,
100 Hz

LTP M ↓; F- Grafe et al., 2022

This table shows the reduced number of studies on LTP on the DG following throughout the years.

These differences can also be related to sexual dimorphisms
in neural development. A study by Hamilton et al. (2010), shows
greater PAE effects on dendritic morphology, structural plasticity,
and IEG expression in males than in females. Sexual dimorphisms
have been reported in hippocampal neurotransmissions and LTP
(Sickmann et al., 2014; Osterlund Oltmanns et al., 2022). Although
there has been numerous evidence on sexual dimorphisms and how
PAE may affect males and females differently, a thorough discussion
on sexual dimorphisms is beyond the intended scope of this review.
It is important, however, to stress that possible sex differences must
be taken into consideration as investigation on just one or the other
sex may or may not reveal subtle differences between sexes.

A recent study by Stockman et al. (2022) investigated
neurogenesis in the neonatal rat hippocampus and found evidence
for a sexually dimorphic epigenetically based regulation of
neurogenesis – specifically in the DG. Their results suggest that
there is a developmental sex difference in DG cell genesis. It
suggests that there is a modulatory DNA difference with elevated
methylation in the males and elevated histone acetylation in
females – which suppresses neurogenesis. They also state that
in adulthood the overall size of male and female hippocampus
does not differ. The early developmental differences – as female
neurons mature earlier than male neurons – evidenced in enhanced
learning and LTP in females compared to males, reverse with the
achievement of reproductivity maturity (Le et al., 2022; Stockman
et al., 2022). A potential explanation for sex differences in LTP
and behavioral task, has been linked to possible differences in
the composition of GABAa receptors before and after puberty
in females. Further investigators in the field should take this
information into account when interpreting the results of possible
sex differences, particularly if those hippocampal-dependent tests
are performed before or after adolescence. Considering the new
discoveries about neurogenesis and sex differences, researchers

should be mindful of the timing of exposure/assessment to
have a better interpretation of results showing sex differences.
Those changes could be associated with the onset of the
estrous cycle. Alternatively, late maturation of interneurons and
related connections, could be involved in the sex differences in
hippocampal LTP before and after puberty (Le et al., 2022).
Additionally, recognizing fundamental sex differences in brain
development is crucial for understanding how and when these
distinctions manifest. This knowledge is essential for informing the
development and direction of potential interventions.

Non-pharmacological interventions

A growing body of research focuses on potential therapies
following PAE and prevention of the possible outcomes by
nutraceutical interventions. Choline supplementation has been
of interest because it is also involved in the formation of
the neurotransmitter acetylcholine. Research has shown that
choline supplementation during pregnancy has positive benefits on
cognitive scores which could be a potential prenatal intervention to
minimize or prevent Fetal Alcohol Spectrum Disorders (FASDs).
Because individuals do not normally get diagnosed until later,
there are questions about the benefits of postnatal supplementation.
Animal models of PAE investigated the benefits of postnatal choline
supplementation and the results showed improvement in the MWT
(Grafe et al., 2022). In the pediatric clinical population, the results
of postnatal supplementation have been unclear as the results
seem to differ according to the age group (Wozniak et al., 2020;
Grafe et al., 2022). The data on choline supplementation is still
scarce. There is a general agreement that choline supplementation
is possibly acting on altering hippocampal cholinergic functioning.
However, choline can also influence methylation patterns and is
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linked with other signaling pathways, which are known to be altered
by alcohol exposure (Monk et al., 2012). More investigation is
needed to (1) understand the mechanisms of action of choline
supplementation, (2) determine the benefits of perinatal and
postnatal supplementation, (3) assess the long-lasting benefits of
choline, and (4) define the ideal window of possible interventions.

Other possible interventions include - but are not restricted
to - omega-3 fatty acid supplementation (Patten et al., 2013b),
vitamin E, betaine, folic acid, methionine, zinc (Sebastiani et al.,
2018; Maya-Enero et al., 2021), voluntary exercises (Christie
et al., 2005), enriched environment (animal model) (Hamilton
et al., 2014; Kajimoto et al., 2016; Gursky and Klintsova, 2017)
to diminish alcohol-induced changes to the hippocampus. In
addition, studies in epigenetics – alterations in gene expression
that can be influenced by environmental factors – suggest that
alterations in basic cellular processes following PAE may be related
to long-lasting effects that include dendritic development and
synaptic plasticity, as suggested by reports of reduced hippocampal
cell numbers in FASD models (Varadinova and Boyadjieva, 2015;
Stockman et al., 2022). These modifications in gene expression
alterations include DNA methylation, histone modification, and
non-coding RNA regulation, and can disrupt the development
of the nervous systems leading to long-lasting impairments
(Varadinova and Boyadjieva, 2015; Ehrhart et al., 2019). These
may lead to disruption in the induction and maintenance of LTP,
for example. More research is needed to understand the effects
of alcohol on gene expression alterations. These are promising
outcomes, but more research is needed to understand the possible
benefits of the mechanistic bases of those effects.

Pharmacological manipulations

Pharmacological manipulations with agents that have known
receptor interactions can provide insights into receptor-level
mechanisms and identify potential pharmacotherapeutic
interventions. “Procognitive agents” have been shown to
facilitate learning and memory (Sadek et al., 2016) and used
to examine potential developmental alterations in histaminergic
and glutamatergic neurotransmissions following PAE. Studies have
specifically investigated the effects of the histamine H3R antagonist
ABT-239 on both LTP and spatial navigation tasks in PAE animals
(Savage et al., 2010; Varaschin et al., 2010). Assessment of the
effects of the ABT-239 agent in moderate PAE animals in the
MWT showed that the escape latency differences (PAE > saline
controls) were reversed. The agent was injected 30 min prior to
the training on day 1 and PAE animals treated with ABT-239 had
performances similar to the saline-treated control animals (Savage
et al., 2010). The use of ABT-239 prior to in vivo electrophysiology
recordings demonstrated that the agent improved DG LTP in PAE
animals to levels similar to those of saline-treated control animals
(Varaschin et al., 2010).

The researchers speculated that ABT-239 facilitated glutamate
release. However, they added that there is also a possibility that
the inhibition of H3R on cholinergic nerve terminals facilitates
acetylcholine release which could facilitate glutamate release. Also,
the ABT-239 agent could be acting on the inhibition of H3
autoreceptors that promote histamine release and could facilitate

the excitation of glutamatergic neurons via H1 and H2 receptors
(Varaschin et al., 2010). None of those studies found any effect of
the agent on control animals.

A recent study using immunohistochemistry, biochemical, and
radiohistochemical approaches investigated histamine H2R density
and H2 receptor-effector coupling in several nerve terminal regions
of moderate PAE rats. The results found no significant PAE-related
differences in the density of H2R binding (Davies et al., 2019) in
contrast to alterations in the H3Rs (Varaschin et al., 2018).

Together these data provide evidence for presynaptic alteration
following PAE, specifically at moderate levels – which reinforces
the fact that there is no known safe amount of alcohol to be taken
during pregnancy. The identified presynaptic alterations in the
context of moderate PAE highlight the significance of glutamate
modulation, possibly through histamine receptor interactions. At
this level of PAE investigations, there seems not to report on sex
differences investigations.

Although there are not enough studies investigating the effects
of procognitive agents on DG LTP in PAE, this discovery not only
emphasizes the central role of glutamate in synaptic plasticity but
also opens the door to the development of novel pharmacological
interventions aimed at ameliorating the effects of PAE on cognitive
function, which could have broader implications for individuals
affected by FASD. Other research groups have investigated
different pharmacological agents to enhance PAE-related cognitive
deficits. Slice physiology studies have demonstrated reversal of
cognitive deficits via positive modulation the AMPAR following
administration of Aniracetam (allosteric modulator of AMPAR and
Piracetam analogon) (Vaglenova et al., 2008; Wijayawardhane et al.,
2008). Administration of Piracetam have demonstrated alleviation
of PAE-related deficits in CA1-LTP, showed improvement in
hippocampal cell viability and reduction of PAE-induced cell
apoptosis (Yang et al., 2017).

Summary, conclusion, and future
considerations

This review highlights the extent to which a wide range
of research has contributed to understanding some mechanisms
and impairments associated with prenatal alcohol exposure.
Various studies have consistently demonstrated alterations in
synaptic plasticity following moderate levels of prenatal alcohol
exposure, highlighting the need for ongoing investigations. Our
understanding of the underlying neurobiological mechanisms and
their impact on learning and memory processes has significantly
improved. Animal models have demonstrated altered hippocampal
neurogenesis following PAE (Berman and Hannigan, 2000; Mattson
et al., 2019). Human studies on trajectories of brain development
following PAE, have extensively investigated neuroanatomical
differences in PAE and typically developing individuals. However,
few studies have assessed brain development over time, which
leaves a gap in understanding potential alterations in patterns
of development following PAE (for review in humans and
neuroimaging techniques, see Moore and Xia, 2022). Taken
together, this information is important to provide evidence of the
relationship between time of exposure, neural development, and
behavior outcomes (Lange et al., 2019). However, many questions
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remain, particularly regarding sex differences, and more research is
needed to determine how the specific timing and dose of exposure
affect the mechanisms supporting LTP.

While it is well-accepted that the hippocampal formation
is sensitive to any amount of developmental alcohol exposure,
there is still a gap in understanding those deficits and the
related behavioral and cognitive manifestations. Over the past
few decades, technological advancement, better assessment tests,
and multi-level investigations have provided great knowledge on
the detrimental effects of PAE. Studies on LTP provide a well-
established model system for evaluating prospective treatments and
identifying potential neural bases of learning and memory deficits
observed in PAE. Unfortunately, there have been relatively few
studies in LTP conducted for a small number of laboratories in the
past few decades and the mechanisms remain to be understood. The
development of treatments clinically depends on more research in
the area, which is needed to amplify our basic understanding of how
PAE affects synaptic plasticity.

Promisingly, this review has shed light on potential
interventions, encompassing both pharmacological and non-
pharmacological approaches, offering potential information in
mitigating the enduring impacts of PAE on cognitive functions.

However, it is imperative to emphasize that this review stresses
the need for further research, in-depth investigations, and a
better comprehension of how prenatal alcohol exposure negatively
impacts synaptic plasticity and cognitive functions. The ultimate
aim persists in advancing our understanding of the intricate
consequences of PAE on the developing brain and cognitive
processes, while also paving the way for the development of
effective therapeutic interventions that can enhance the lives of
those burdened by prenatal alcohol exposure.
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