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Introduction: Circulating cell-free RNA (cfRNA) is a potential hallmark for early
diagnosis of Alzheimer’s Disease (AD) as it construes the genetic expression level,
giving insights into the pathological progress from the outset. Profiles of cfRNA in
Caucasian AD patients have been investigated thoroughly, yet there was no report
exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to
support the development of point-of-care AD diagnosis.

Methods: cfRNA profiles were characterized from 20 Vietnamese plasma samples
(10 probable AD and 10 age-matched controls). RNA reads were subjected to
di�erential expression (DE) analysis. Weighted gene correlation network analysis
(WGCNA) was performed to identify gene modules that were significantly
co-expressed. These modules’ expression profiles were then correlated with
AD status to identify relevant modules. Genes with the highest intramodular
connectivity (module membership) were selected as hub genes. Transcript counts
of di�erentially expressed genes were correlated with key AD measures—MMSE
and MTA scores—to identify potential biomarkers.

Results: 136 genes were identified as significant AD hallmarks (p < 0.05), with 52
downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are
highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably,
all markers related to chronic inflammation were upregulated, and there was
a significant shift in all apoptotic markers. Three co-expressed modules were
found to be significantly correlated with Alzheimer’s status (p < 0.05; R2 > 0.5).
Functional enrichment analysis on these modules reveals an association with
focal adhesion, nucleocytoplasmic transport, and metal ion response leading
to apoptosis, suggesting the potential participation of these pathways in AD
pathology. 47 significant hub genes were found to be di�erentially expressed
genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1,
IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated
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with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1,
THBS1, S100A9) were found to be involved in inflammation and neuronal death.
Overall, we have identified candidate transcripts in plasma cf-RNA that are
di�erentially expressed and are implicated in inflammation and apoptosis, which
can jumpstart further investigations into applying cf-RNA as an AD biomarker in
Vietnam and ASEAN countries.

KEYWORDS

Alzheimer’s disease, cell-free biomarkers, RNA-sequencing, di�erential expression, co-

expression, immune responses

1 Introduction

Alzheimer’s disease (AD) is the most common type of
dementia—accounting for 60–80% of dementia cases (Prince,
2015). Alzheimer’s and other dementia-related disorders are
recognized by cognitive impairment, and with its steady growth
in the number of cases, it has become one of the greatest health
concerns in the 21st century (Rasmussen and Langerman, 2019;
Porsteinsson et al., 2021). In brief, AD is a progressive, irreversible
disease accompanied by genetic anomalies and manifested in the
stage of aging, which targets speech, cognitive processing, and
predominantly, memory, jeopardizing the wellbeing and the quality
of life of the patients (Hampel et al., 2017; Knopman et al., 2021).
A 305-billion-dollar annual expense was recorded in the USA for
AD and dementia-related disorders, and such cost was predicted to
triple by 2050 (Porsteinsson et al., 2021). The presented statistics
accentuate the current substantial economic stress on many parties
(e.g., patients, families, or government) and highlight the massive
medical burden in every nation. Until today, there have been
no effective treatments for AD when it has exceeded the Mild
Cognitive Impairment (MCI) stage. All ongoing efforts concentrate
on improving early diagnostic methods for AD to impede the
progression of the disease from an early stage (Rasmussen and
Langerman, 2019).

However, diagnosing Alzheimer’s disease (AD) remains a
challenge thus far. Clinical symptoms include impairments in
episodic memory, linguistic, executive, and visuospatial functions
that overlap those of other dementia, which require advocacy from
neuropsychiatric, imaging, and biological tests (Beach et al., 2012;
Porsteinsson et al., 2021). Extensive assessments like magnetic
resonance imaging (MRI) and positron emission tomography
scans (PET) are labeled as expensive means, yet necessary for
a probable diagnosis of AD (Houmani et al., 2018; Kim K.
et al., 2020). These assessments, however, can be either incapable
of detecting the presymptomatic stage of AD, which can occur
decades ahead of the brain atrophy and disease onset, or
overpriced. On the other hand, underlying AD pathology is
associated with the accumulation of Amyloid-beta (Aβ) plaques
and tau tangles. They are built up gradually through the AD
continuum starting from the presymptomatic stage (Reitz et al.,
2020; Surguchov et al., 2023). The premise has deviated the
focus of academia to biomarkers residing in cerebrospinal fluid
(CSF) and biofluids since there were strong correlations found
between the markers and the etiology of AD (Suárez-Calvet

et al., 2018; Twohig et al., 2018; Pais et al., 2020; Reitz et al.,
2020). Presently, CSF Aβ42 and the Aβ42/40 ratio, CSF total tau,
and phosphorylated tau are widely recognized as extensive tests
for clinical AD diagnosis (Kerwin et al., 2022). However, this
approach is costly and carries great health risks from the lumbar
puncture procedure, which can not be applied as a screening
routine for cognitive health and a means for early diagnosis. The
current situation calls for an accurate, robust, and less invasive
novel approach.

By providing an objective and quantitative measure of the
progressing pathophysiology, biomarkers are considered a reliable
criterion for AD. Through rapid advances in ultra-sensitive
assays, AD-related markers can be detected in blood samples
and contribute to developing less-invasive AD diagnoses. Previous
studies have shown that blood-based immunoassays yield notable
AUC: plasma Aβ42/Aβ40 (AUC = 0.8) (Palmqvist et al., 2019);
Aβ42/Aβ40 combined with APOE genotyping or Nfl (∼0.85–0.87)
(Schindler et al., 2019); Plasma p-tau231 (AUC = 0.93) (Ashton
et al., 2021). Compared to proteomic biomarkers, nucleic acid
biomarkers possess several advantages. Apolipoprotein E (APOE)

gene is one of the precedent nucleic acid hallmarks for AD, which
expresses the APOE protein that maintains lipid homeostasis via
lipid transport throughout the body (Liu et al., 2013; Raulin et al.,
2022). In the central nervous system (CNS), cholesterol is delivered
to neurons via communication between the APOE predominantly
secreted by astrocytes and the APOE receptors—LDL receptors
(Herz, 2009; Lane-Donovan and Herz, 2017). Notably, it has been
well-established that the APOE gene is an important genetic risk
factor for the pathology of AD (Raulin et al., 2022), and its
polymorphism is the grave threat determinant of late-onset AD
(Yamazaki et al., 2019). There are three polymorphic alleles of
the APOE gene, including ε2, ε3, ε4, and their corresponding
worldwide distributions are 8.4, 77.9, and 13.7% (Liu et al., 2013).
From that, the ε4 carriers face a higher threat of AD than the
homogeneous ε3 carriers. Particularly, AD risk increases 3–4 fold
if carriers possess one ε4 allele and 9–15 folded-increased threat
in two-ε4-allele carriers (Yamazaki et al., 2019). In addition to
APOE, cell-free RNAs (cfRNA or extracellular RNAs) are promising
biomarkers that can unravel the underlying etiology, pathology,
and AD progression. CfRNAs are defined as RNA existing outside
cells, bounded by exosomes, micro-vesicles, oncosomes, or similar
lipid/protein complexes. Originating from different types of cells
via either secretion or apoptosis, thanks to the extracellular vesicle
encapsulation, cfRNA can be circulated in biofluids (plasma,
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urine, saliva, and cerebrospinal fluid) without being degraded by
ribonucleases (Sadik et al., 2018; Gruner and McManus, 2021;
Dellar et al., 2022; Le and Huong, 2022). CfRNAs can differentiate
the control group from the disease-carrier group, as well as inform
clinicians of the disease progress from the early stage, aiding
disease screening and monitoring (Schwarzenbach et al., 2011;
Bhatnagar et al., 2014; Burgos et al., 2014; Yan et al., 2020). Recent
studies suggested multiple candidates, including the transcripts of
EEF2 and RPL7 (AUC = 0.878), PROK2, SLU7, LRRK2 (AUC
= 0.83), ABCA7 and AKAP9 (AUC = 0.77) that are associated
with the downregulation of multiple neurogenesis pathways such
as GABA signaling and neurotransmission (Shigemizu et al.,
2020; Toden et al., 2020). Analysis of RNA-biomarkers is also
more feasible compared to proteomic biomarkers as they need
to include post-translation in the picture. Due to these notable
benefits, they are receiving attention as prominent biomarkers
for AD.

In Vietnam and other neighboring low-middle-income
countries (LMICs), diagnosing Alzheimer’s disease, in general,
remains an unsolved dilemma. In addition to the discussed
shortcomings of current diagnostic means such as MRI, PET,
and CSF-test, diagnosing AD in LMICs has to overcome two
obstacles: limited medical resources and illiteracy (Hoi et al.,
2010; Nguyen and Wilson, 2017). With the limited diagnostic
capacity of primary care facilities, especially in rural areas, the
role of medical questionnaires became vital for AD screening.
However, results from questionnaires like MMSE and MoCA can
be influenced by the patient’s literacy (Nguyen et al., 2023). With
the illiteracy rate of the Vietnamese population in rural areas
reaching 18%, neuropsychiatric tests are no longer the appropriate
resolution (Hoi et al., 2010). Therefore, it is essential to develop
an alternative diagnostic approach that is both affordable and
feasible for patients located in rural areas. One of the prominent
resolutions is a blood test that targets circulating cfRNA, which
has been extensively studied in previous works discussed above.
By integrating novel blood-based cfRNA biomarkers, the cost
of routine clinical assessments for AD can be reduced, and
the test can be widely conducted. This is fundamental for
LMICs, especially in rural areas where the medical facilities
are scant and the illiteracy rate among elders is highly noted.
In addition, these blood tests can precede conventional PET
and MRI scans by reducing false negative results in the early
stage, as well as providing insights into the disease’s heterogenic
pathology during the progression, which can consequently save
patient’s time and money (Cummings et al., 2019; Wang et al.,
2023).

This study focuses on conducting a preliminary investigation
of the differences in cfRNA transcriptomic profiles between
Alzheimer’s and cognitive normal cohorts in Vietnam. Through
a combination of differential expression and co-expression
analysis, we sought to identify which genes are key drivers
of expression changes between the two groups, which are
potentially relevant to the development and progression of
Alzheimer’s disease. We then examined whether the cfRNA
transcripts significantly correlate with conventional measures of
Alzheimer’s disease severity (MRI and MMSE-score) to identify
candidate cfRNA markers for the future development of a clinical
blood-based test.

2 Materials and methods

2.1 Study design, participants, and IRB
approval

This study was approved by the Institutional Review Board
(IRB) of University Medical Center, Ho Chi Minh City (UMC-
HCMC). A total of 20 subjects aged above 55 years old were
recruited into two cohorts: Alzheimer-diagnosed cohort—AD (n
= 10) and cognitive normal control cohort—CNC (n = 10).
All subjects were thoroughly explained the terms and conditions
of the experiment before signing a consent form. The AD
subjects were chosen from the diagnosed AD patients at the
UMC-HCMC without accompanying cerebrovascular and other
neurodegenerative diseases. The CNC subjects were selected based
on (1) MMSE score ≥ 27 (Folstein et al., 1975; He et al., 2022); (2)
absence of memory complaints or any other cognitive symptoms;
(3) no sign of neurological or psychiatric dysfunctions; (4) Clinical
Dementia Rating (CDR) = 0 (Morris, 1993; Galvin, 2015). MRI
images were captured for CNC subjects and used to select subjects
without cerebrovascular diseases and neurodegeneration. Blood
samples were then collected from the subjects and proceeded
with plasma cfRNA sequencing and follow-up analyses that are
described in Figure 1. Differential expression (DE) analysis was
conducted between two cohorts to identify potential cfRNA
diagnostic markers while prognostic markers were retrieved from
the correlation between the testing cohort’s transcriptomic counts
and other medical records (MMSE and MRI MTA-score). Genetic
co-expression and APOE traits were also included in this report.

2.2 Sample collection and RNA sequencing

Ten mL of blood was drawn from each subject into the
Norgen cf-DNA/cf-RNAPreservative tube (#63950, Norgen Biotek,
Canada) and centrifuged at 430 relative centrifugal force (rcf)
for 20min. The supernatant was collected, giving 6mL plasma
per subject. Both plasma samples and residual blood cells were
then stored separately at −80◦C for cfRNA sequencing and APOE

genotyping. RNA sequencing was conducted by BGI Hongkong
Tech Solution NGS Lab (BGI Genomics, Hong Kong) using
the Nugene low-input RNA sequencing protocol and the DNA
Ball Sequencing (DNBSEQ) platform. Poly-A enrichment depletes
undesired ribosomal RNA (rRNA), leaving purified circulating
messenger RNA (mRNA). After sequencing, the data were filtered
by removing the adaptor sequences, contamination (polyX; N
content ≥ 1%; read length < 100 bp), and low-quality raw reads.

2.3 APOE genotyping

According to manufacturer instructions, DNA extraction
was performed on the remaining blood pellet using the Blood
DNA Isolation Mini Kit (#46300, Norgen Biotek, Canada). The
concentration and purity of the extracted DNA were assessed using
a Nanodrop machine. APOE genotypes (ApoE3 and ApoE4) were
identified through allele-specific PCR. The primer sequences used
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FIGURE 1

Schematic of study design. The main analysis and results are highlighted in blue.

TABLE 1 Primer sequences.

Primer Direction Sequence

Allele-specific primers for APOE-E3/E4

E3 F CGGACATGGAGGACGTGT

E4 F CGGACATGGAGGACGTGC

E3m F CGGACATGGAGGACGTTT

E4m F CGGACATGGAGGACGTTC

Common reverse R GCTTCGGCGTTCAGTGATTG

Positive control primers

ACTB-F F GACGTGGACATCCGCAAAGAC

ACTB-R R CAGGTCAGCTCAGGCAGGAA

ACTB, actin beta housekeeping gene.

are described in Table 1. The APOE isoforms E3 and E4 are defined
by a single nucleotide polymorphism (T-to-C) at position 3937
(rs429358) of the APOE gene, which codes for the 112th amino
acid of the resulting APOE protein. This mutation can be detected
by PCR with APOE allele-specific primers, as described in previous
studies (Seripa et al., 2006).

We initially employed two primers (E3 and E4) that were used
for APOE genotyping in previous studies (Calero et al., 2009). To
improve the discriminating power between the E3 and E4 allele,
we designed two additional primers, E3m and E4m, which contain
an additional single nucleotide mismatch before the mutation
site (3′ end) (Bui and Liu, 2009). This increases the destabilizing

power between the primers and a non-target template (e.g., the
E3 primer with an E4 template), reducing the chance of a false
positive amplification. One microliter of each DNA sample was
added to a mixture of different primer pairs and a PCR Master
Mix (Phu Sa Genomics, Vietnam). For each PCR reaction, an
allele-specific primer was paired with the common reverse primer.
Each reaction also includes a positive control primer pair (ACTB-
F and ACTB-R), which amplifies a region in the ACTB gene.
Because of the high GC% content of the target region, 5% DMSO
was added to the PCR mixture to enhance amplification. The
resulting amplicons were visualized through standard agarose gel
electrophoresis (Supplementary Data 1).

2.4 RNA-sequencing data analysis

2.4.1 Data preprocessing
All data preprocessing was conducted using R.v.4.2.2. Firstly,

the raw sequencing data went through the “Built and align” stage.
Genome Reference Consortium Human Build 38 (GRCh38) was
downloaded from the NCBI datahub and input as the reference
genome for the library index. The Rsubread (v.2.12.3) package was
then installed to build the library index based on the reference
genome, and raw sequencing data were aligned accordingly to the
index. The feature counts function extracted raw counts data from
the aligned sequencing data and exported the results into a text
file. With each subject, the counts from two sequencing reads were
summed up to extract a file of the total raw counts. The extracted
file was then input for the sequential stage—“Preprocessing.”
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Function cpm from the EdgeR (v.3.40.2) package was used to
normalize the raw counts’ data into the counts per million reads
mapped (cpm) unit. Five hundred and eighty-one genes with a
threshold cpm > 0.5 in more than five sequenced samples of either
cohort were kept for further analysis. The R scripts used to perform
the following analyses can be found in our repository at https://
github.com/miti08/VAN-R-scripts/.

2.4.2 Di�erential expression analysis
Differential expression (DE) analyses were conducted on

581 kept genes to identify genes with significant differences
in expression levels between the two investigated cohorts. The
following packages were installed, respectively, into R to conduct
DE analysis: BiocManager (v.1.30.20), DESeq2 (v.1.38.3), ggplot2
(v.3.4.1), limma (v.3.54.1), gplots (v.3.1.3), AnnotationDbi
(v.1.60.2), org.Mm.eg.db (v.3.16.0), Glimma (v.2.8.0),
RColorBrewer (v.1.1-3), ggrepel (v.0.9.3), EnhancedVolcano
(v.1.16.0). The raw counts’ data of kept genes were input to
form a data matrix using DESeqDataSetFromMatrix. Differential
expression (DE) analysis was conducted on the data frame using
the DESeq function (Love et al., 2014). Log2foldchange (log2FC)
and the adjusted p-value (adj.p) of analyzed genes were used
to build the volcano plot using the EnhancedVolcano function.
This step was conducted to visualize the distribution of selected
genes with respect to the level of significance (adj.p) and level
of difference (log2FC). The adj.p and log2FC of 88 significantly
differential expressed genes (adj.p < 0.05) were exported into a
dataset. Due to variance posed by long-term storage degradation,
raw counts data of 136 significantly differential expressed genes
were also normalized into the median of ratios using the DESeq2’s
counts function for better comparison. The adj.p and log2FC, and
the normalized raw counts of 136 genes were used as input for
heatmap visualization in Python v.3.8, using the seaborn.heatmap
package (0.12.2). Confirmed to be circulated at a stable level
in biofluids regardless of cognitive impairments, GAPDH was
considered as the reference gene to confirm the reliability of the
DE analysis in this study (Kim K. M. et al., 2020; Guennewig et
al., 2021; Zhang et al., 2021). We hypothesized that the measured
differences are reliable if the counts of GAPDH in the two cohorts
were insignificantly different.

2.4.3 Weighted gene co-expression analysis
Co-expression analyses were performed using the Weighted

Gene Co-expression Network Analysis (WGCNA) package for R
(Langfelder and Horvath, 2008). The filtered expression matrix of
581 genes was used as the input. TheWGCNA package constructed
a signed adjacency matrix based on Pearson correlations. From
this matrix, hierarchical clustering and dynamic tree cutting were
performed to identify gene clusters (modules) with strong co-
expression. WGCNA then assigns arbitrary colors to each module
(e.g., blue, yellow, green, etc.) for reference purposes. To identify
modules of interest for further analysis, the module eigengenes
(a measure of overall module gene expression) were correlated
with clinical variables, including Alzheimer’s disease status, age,
and sex. Functional enrichment analysis was then performed
on the modules of interest to elucidate the overall functional

characteristics of each gene module. Intramodular analysis of the
module genes was performed to calculate two keymeasures for each
gene: module membership (MM) and gene significance (GS). MM
is defined as the correlation between the gene’s expression profile
and the module eigengene, and GS is defined as the correlation
between the gene’s expression profile and the trait of interest. Each
module’s hub genes—highly connected genes as potential drivers of
co-expression—were selected using a criterion of MM > 0.8 and
GS > 0.2, as well as considering the overlap with the previously
identified differentially expressed genes. Network visualization was
performed with the Cytoscape software (Shannon et al., 2003).

2.4.4 Functional enrichment analysis
Functional enrichment analysis using DAVID Bioinformatics

Resources (Sherman et al., 2022) and the R package clusterProfiler
was applied to annotate the functions of the genes of interest,
considering the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) databases. An adjusted P-value
(after multiple comparisons correction by the Benjamini-Hochberg
method) of <0.05 was used as the threshold, and the genes
participating in more than one pathway were noted.

2.4.5 Correlation evaluation between AD-group’s
RNA profile and clinical metrics

Spearman’s Rank Correlation was performed using R between
the normalized counts of differentially expressed genes and
two clinical metrics, MMSE and MTA scores, to elucidate the
relationship between the notable transcripts and AD pathology.
MMSE is a clinical screening questionnaire to evaluate the cognitive
performance of potent cognitive-declined subjects (Folstein et al.,
1975). Meanwhile, theMTA-score is a clinical metric that quantifies
medial temporal lobe atrophy by calculating the width of the
choroidal fissure, temporal horn, and height of the hippocampal
formation via MRI (Scheltens et al., 1992). After calculating, there
would be four levels of atrophy, ranging from 1 to 4. Due to the
loss of medical records in the AD cohort, only six MTA records and
sevenMMSE records were included in the correlation analysis with
the respective transcriptomic counts of 136 significant markers.
After running the correlation evaluation, significant correlations
were plotted and discussed (p-value < 0.05). The raw counts
of the kept genes were also subjected to the variance stabilizing
transformation (vst) to normalize the counts with a constant
variance across samples (Zwiener et al., 2014). The vst-data were
then utilized to evaluate the dependency of the examining genes on
the APOE-genotype from Section 3.

3 Results

3.1 Sample collection summary, detection
of APOE-ε4 allele

Ten plasma samples were successfully collected per cohort
together with the subjects’ medical records. The samples were
stored for 6 months prior to experiments, and the average RNA
integrity (RIN) index was 1.79 ± 2, with three samples concluded
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TABLE 2 Demographic information of collected samples.

Control
group
(n = 10)

AD group
(n = 10)

Age (years, mean± SD) 63.6± 3.98 67.6± 7.82

Sex (male/female) 6/4 3/7

MMSE (maximum score 30) ≥27 (n= 10) Moderate AD: 15–
20 (n= 2)
Moderately severe
AD: 10–14 (n= 3)
Severe AD: < 10 (n
= 2)
Undefined (n= 3)

APOE-ε3/ε4 7/3 3/7

FIGURE 2

APOE-ε3/ε4 distribution in two cohorts.

to be completely free of tissue debris (Supplementary Data 2). In
addition, three MMSE records and four MRI records of the AD
cohort were missing and henceforth excluded from the correlation
analysis. The remaining AD cohort comprised two moderate cases
(MMSE 15–20), three moderately severe cases (MMSE 10–14),
and two severe cases (MMSE below 10). As mentioned, collected
samples were also subjected to APOE-genotyping, which revealed
three CNC subjects and seven AD subjects carrying the APOE-ε4
allele (Supplementary Data 1). Discussed details are summarized in
Table 2.

As shown in Table 2 and Figure 2, 30% of the CN-cohort and
70% of the AD-cohort carry the APOE-ε4 allele, which is associated
with the risks of getting AD. However, chi-square test results
revealed an insignificant contribution of the APOE-ε4 allele to the
AD diagnosis (p = 0.074). The relative risk of getting Alzheimer’s
found between the APOE-ε4 carrier and non-carrier is 2.4.

3.2 Di�erences in control- and AD-groups’
RNA profiles

To compare the expression between two cohorts to detect
potential diagnosis biomarkers and provide insights about AD
pathology within the Vietnam population, differential Expression—
DE analysis was conducted according to the described protocol
(Section 2.4.2). In brief, the samples collected from two included
cohorts exhibit distinctive traits that can be observed as two
independent clusters (CNC: orange; AD: green, Figure 3A).
136 significantly differentially expressed genes (DE genes) were
identified from 581 detected genes (Supplementary Datum 3, 4;
Figure 3B, green dots), with five genes labeled as extremes with
p < 10−5 and abs(log2foldchange)1 > 10 (Figure 3B, orange
dots). Within 136 significant DE genes (Figure 3C), 19 genes were
detected with the highest level of significant difference2 between the
two cohorts (p < 0.001∗∗∗): SASH1, BIN2, GAPT, NUDT4, RGPD8,
EEF1B2_1, IL1RL1, NUDT4P2, NUDT4B, RPS25_1, RPS25, MSN,

RPS11, ACTB, RMRP, NSA2, KCNQ1OT1, EEF1B2, RPL6. There
were 18 genes detected with moderately significant differences
between the two cohorts (p < 0.01∗∗): RGPD5, STXBP3, JADE1,
CAPN2, GNAI2, RPL37, RN7SK, NACA, PMS1, FNBP4, PRRC2C,

G3BP1, CREB1, SFMBT2, PAX7, SYNPO, UTRN, STK38. The rest
of the list was detected at a low significance level (p < 0.05∗).
On the other hand, GAPDH—the reference gene, showed an
insignificant difference between the two cohorts (p = 0.7436).
Within the 136 DE genes, there were 84 upregulated genes and
52 downregulated genes (Figure 3D) in the AD group compared to
the CNC group. The expression level of BIN2, GAPT, and NUDT4

decreased significantly in the AD cohort (log2foldchange < −10),
with SASH1 and RGPD8 expressing a notable upregulation in the
AD cohort (log2foldchange > 10) (Figures 3B, D) compared to the
CNC cohort. The dependency test between the discussed APOE-
genotype and the genetic expression level of the DE-genes also
revealed 37 genes with their expression level depending on the
existence of the APOE-ε4 allele. In detail, the expression level of
15 genes increased significantly when subjects’ genomes carried the
APOE-ε4 allele (p < 0.05), while 21 genes got their expression level
deduced (Figure 3E).

In detail, Figure 4A shows the normalized transcript counts per
upregulated gene per subject in two cohorts. In layman’s terms,
high normalized counts indicate a higher gene expression level
in an individual subject and vice versa. 132/840 (15.71 %) of the
AD group’s records showed counts beyond the 90th percentile of
the counts, 4.3 times higher compared to 31/840 (3.690%) of the
CNC group. The upregulation was most obvious in the SASH1

gene as 40% of AD-cohort exceeded the 80th percentile while the
CNC-cohort exhibited undetectable counts. This trend resembles
MSN, where half of the AD cohort passed the 80th percentile while
the CNC cohort yielded extremely low to undetectable counts.
Considering the downregulated genes (Figure 4B), 384/520 records
(73.85%) of the AD group showed counts below the 50th percentile,
which is 2.7 times higher than CNC records with 139/520 CNC
records (26.73%). Notably, considering BIN2 and GAPT genes,

1 Absolute value of the Log2foldchange.

2 According to the APA scale.
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FIGURE 3

Summary of di�erential expression results (A) PCA plot for similarity clustering; (B) Volcano Plot expressed the correlation between the
log2foldchange and the adjusted p-value of 533 detected genes [gray—p > 0.05, green—p < 0.05; orange—p < 0.0001 and abs(log2foldchange) >

20]; (C) The adjusted p-value of 88 significant di�erentially expressed genes; (D) Log2foldchange of these genes as AD-CNC; (E) The adjusted p-value
of 37 genes that showed a significant relationship with the existence of APOE-ε4 in the genome (red, positive correlation; blue, negative correlation).
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FIGURE 4

Heatmaps showing the cumulative counts after normalization of the (A) upregulated genes and (B) downregulated genes in 133 DE-genes
(AD-CNC). The scale is divided as the percentile of the counts.
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FIGURE 5

Overview of network construction and module identification. (A) Graph of the soft threshold power vs. scale independence and mean connectivity.
The red line indicates the scale-free topology fit threshold of R2 = 0.9; (B) Hierarchical clustering dendrogram of the modules. Six modules were
detected and assigned arbitrary colors: blue, brown, green, red, turquoise, and gray (the gray module contains genes that were not clustered into any
modules); (C) The number of genes in detected modules; (D) Pearson correlation coe�cients between module eigengenes and phenotypic traits.
P-values are in parentheses.

50% of the CNC group exceeded the 50th percentile threshold,
while all of the AD groups did not reach the threshold. The
normalized counts of the genes, particularly BIN2, GAPT, and

SASH1, were consistent with the log2foldchange and the adjusted
p-values discussed previously.

3.3 Co-expression network of AD-related
genes

3.3.1 Three modules of interest were identified
through network construction and phenotypic
correlation

A weighted co-expression network on the filtered gene
expression matrix was conducted to identify clusters of co-
expressed genes. Firstly, it was found that the soft thresholding
power of 12 met the scale-free topology fit criteria of R2 = 0.9,

which ensured the optimal scale-free property (Figure 5A, left)
and mean connectivity (Figure 5A, right) of our resulting network.
The scale-free property of the network is a key assumption of
the WGCNA package to produce biologically meaningful networks
(Zhang and Horvath, 2005). The correlation and adjacency matrix
was then constructed according to the chosen threshold. After
performing hierarchical clustering and dynamic tree cutting on

the correlation matrix, six modules of co-expressed genes were

obtained, which were assigned arbitrary color names by WGCNA
for reference (Figures 5B, C). The number of genes in each co-

expression module ranged from 50 to 90 genes, with the exception

of the turquoise module that contained 142 genes (Figure 5C). To
identify modules of particular relevance to AD, we then correlated

the expression of the identified modules (using the WGCNA-
definedmodule eigengenemeasure) with phenotypic variables such
as Alzheimer’s disease status, age, and sex. We found three modules
(brown, yellow, and turquoise) that correlated significantly with
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FIGURE 6

Gene Ontology enrichment analysis results of each co-expression module (turquoise, yellow, brown). Each column block represents a GO
sub-ontology (BP, biological process; CC, cellular component; MF, molecular function). The dot size represents the gene ratio between genes in the
module/gene in the GO set. The dot color represents the Benjamini-Hochberg adjusted p-value of the enrichment (only significant terms with
p-value < 0.05 are shown).

Alzheimer’s disease status (p < 0.05; R2 > 0.5) (Figure 5D). This
result indicates that these gene modules are likely to be closely
associated with and possibly play important roles in Alzheimer’s
disease. The brown and yellow modules exhibited a positive

correlation with Alzheimer’s status (0.58 and 0.59, respectively),

while the turquoisemodule exhibited a negative correlation (−0.77)

(Figure 5D). We found no statistically significant association

between the modules and potentially confounding variables such
as patient age or sex.

3.3.2 Functional enrichment analysis and
intramodular analysis identify biological function
associations and hub genes behind three noted
modules

Functional enrichment analysis was performed on three

significant modules from the last analysis, with the Gene Ontology

(GO) database, to gain insights into the functions of each module
as a whole. Many significantly enriched GO terms were detected for

all three GO sub-ontologies across the three modules (Benjamini-
Hochberg adjusted p-value < 0.05), and each module contained a
distinct set of significant functional enrichments (Figure 6). The
turquoise module contained the most significant GO:Biological
Process (GO:BP) terms with the highest enrichments regarding
cytoplasmic translation and ribonucleoprotein complex-related
processes that include biogenesis and subunit organization. The

brown module is primarily enriched in the nuclear transport,
nuclear-cytoplasmic transport, and protein localization processes,
while the most prominent GO:BP terms in the yellow module are
responses to metal ion and reactive oxygen species, as well as
gland development and lactation. There were several overlapping
enrichments between the modules in the Cellular Component sub-
ontology (GO:CC). Focal adhesion was found to be enriched in
all three modules, with the gene ratio highest in the turquoise

module. Another term, cell-substrate junction, was also present
in both brown and yellow modules. The yellow module was
distinguished by a set of significant enrichments related to
membrane components such as membrane raft and microdomain,
while the most notable GO:CC term in the brown module was the
nuclear envelope. The Molecular Function sub-ontology (GO:MF)
was primarily significant in the turquoise module, containing
functions related to ribosomes such as structural constituent of
the ribosome and rRNA binding. Other significant terms are
related to mRNA binding in the untranslated region and enzymatic
regulation activity. The brownmodule contained a single significant
term related to ankyrin binding.

We then examined the composition of thesemodules of interest
regardingmodulemembership (MM) and gene significance (GS). A
higher MM value for a particular gene indicates high connectivity
within the module, and a higher GS value indicates a high
correlation with the trait of interest (Alzheimer’s disease status
in this case). Within each module, there is a significant positive
correlation (brown module: R = 0.54, p < 0.05; yellow module:
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FIGURE 7

Intramodular analysis. (A–C) Scatterplot of module membership vs. gene significance for Alzheimer’s disease of the brown, yellow, and turquoise

modules. Individual gray points represent genes in the module. Blue points indicate upregulated genes, and red points indicate down-regulated
genes. (D–F) Network visualization of the hub genes in the brown (D), yellow (E), and turquoise (F) modules. Blue nodes indicate upregulation, while
red nodes indicate downregulation.

R = 0.64, p < 0.05; turquoise module: R = 0.65, p < 0.05)
between MM and GS, indicating that the highly connected genes
in the module are also significantly associated with Alzheimer’s
disease status (Figures 7A–C). The brown and yellow modules—
which were positively correlated with AD status—contained many
of the upregulated genes identified through the previous differential

expression analysis (Figures 7A, B), while the negatively correlated
turquoise module contained many of the downregulated genes
(Figure 7C). Many of the differentially expressed genes also tended
to have high MM and GS measures. From the intramodular
analysis, the hub genes—highly connected genes within amodule—
were selected with the criteria of having an MM value >0.8.
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FIGURE 8

Functional annotation of neuronal and immune-related genes. (A) Venn diagram showing a number of overlapping genes that are expressed in four
neuronal components: GO0030425 (dendrite), GO0043025 (neuronal cell body), GO0045202 (synapse), GO0014069 (postsynaptic density); (B) Genes
that highly associated with neuronal activity GO0070997 (neuronal death), GO1900242 (regulation of synaptic vesicle endocytosis), GO0045955
(negative regulation of calcium-ion dependent exocytosis), and four neuronal components; (C) Genes that highly associated with immune response
and angiogenesis hsa04670 (leukocyte transendothelial migration), hsa04210 (apoptosis), ko04145 (phagocytosis), GO0045766 (positive regulation of
angiogenesis), GO1901731 (platelet aggregation), GO0002544 (chronic inflammation), and GO0034063 (stress granule assembly).

Examining these genes, we found that the majority of hub genes
within the co-expression network were previously identified as
differentially expressed in the previous section (Figures 7D–F). In
the brown module, 19 out of 22 hub genes were upregulated.
The yellow module contained 32 hub genes, of which 18 were
upregulated. Finally, the turquoisemodule contained 16 hub genes,
of which 10 were downregulated. These overlapping genes were
identified as potential candidate genes for further analysis, as they
were both highly connected genes and significantly correlated with
Alzheimer’s disease.

3.3.3 Functional annotation revealed genes that
resided in neuronal components and their roles in
neuronal activities and immune responses

Functional annotation analysis using the DAVID was
conducted to interpret the role of the DE genes in AD pathology
and related pathways. 14 databases were included, which showed
a certain level of significance in the correlation between the
evaluating gene and the referred function: GO0030425 (p= 0.089),
GO0043025 (p = 0.045), GO0045202 (p = 0.00056), GO0014069
(p = 0.012), GO0070997 (p = 0.066), GO1900242 (p = 0.045),
GO0045955 (p = 0.024), hsa04670 (p = 0.0053), hsa04210 (p =

0.038), ko04145 (p = 0.069), GO0045766 (p = 0.1), GO1901731
(p = 0.045), GO0002544 (p = 0.053), and GO0034063 (p =

0.05). Based on the GO_CC (cellular components) database

alone, DAVID annotated 21 genes out of the DE genes (15.44
%) that are expressed in neuronal components. Within this
geneset, XRN1 is expressed in three out of four investigated
components, namely dendrite, neuronal cell body, and synapse
(Figure 8A). Four genes, GNAI2, CAPN2, CYBB, and MAGI2 were
traced to express in two components. The rest of the considered
gene sets were found in one neuronal component by previous
studies. Expand the reference database to the 14 GO_BP and
KEGG_pathway databases mentioned at the starting point of this
section, three out of 21 discussed genes—XRN1, UBB, and ACTB,
were found to also participate in the neuronal activity, including
neuron death, calcium-dependent exocytosis and synaptic vesicle
endocytosis (Figure 8B). Another three genes, including CHP1,

VAMP4, and STXBP3, were noted to participate in the mentioned
pathways yet did not have a significant association with the
discussed components in Figure 8A. On the other hand, 19
genes were noted to be a node in seven concerned immune
response pathways, namely positive regulation of angiogenesis,
leukocyte transendothelial migration, phagocytosis, apoptosis,
platelet aggregation, chronic inflammation, stress granule assembly
(Figure 8C). Five genes out of the geneset play a link in two or
more pathways. Notably, THBS1 was involved in angiogenesis,
phagocytosis, apoptosis, and chronic inflammation. Overall, it can
be noted that 38 out of the DE genes (27.94%) were found to be
involved in either neural activities or immune response, with five
genes enrolled in both categories, namely STXBP3, ACTB, RPS23,
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FIGURE 9

Correlation between MMSE-score and the normalized transcript counts (median of ratios) in five genes (A) PHACTR2, (B) YTHDC1, (C) YTHDC1_1,
(D) SASH1, (E) ITPRID2.

CYBB, and GNAI2. Considering the high fraction of the DE genes
involved in the two AD-related biological pathways, particularly
the five overlapping genes, the genes discussed in this section can
be promising tools to study AD-pathology and forecast the disease
progression as well as the probable complications.

3.4 Correlation between the AD group’s
RNA profile and AD clinical metrics

To determine the relationship between significant alternating
plasma biomarkers and subjects’ cognitive performance, Pearson
correlation was conducted between the MMSE-score of the AD
cohort (n = 7) and the respective transcriptomic counts of
136 significant markers. Five genes were found to be inversely
correlated with the MMSE scores, including PHACTR2, YTHDC1,
YTHDC1_1, SASH1, and ITPRID2 (Figure 9). The detected trend
indicated that as the transcriptomic level of these genes increased,
subjects’ MMSE levels were significantly reduced. The correlation
is most notable in ITPRID2 (R = −0.873; p = 0.0104) and SASH1

(R=−0.811; p= 0.0269) (Figures 9D, E, respectively).
Pearson correlation was also conducted between the MTA-

score of the AD-cohort (n = 6) and the respective transcriptomic
counts of significant markers to determine the relationship between

significant alternating plasma markers and subjects’ hippocampal
atrophy (Figure 10). Compared to the MMSE score, the MTA
score showed significant correlations with multiple markers in a
more diverse pattern. In detail, 14 genes were found to correlate
significantly with the said index, with 12 genes being positively
correlated and two genes being negatively correlated. Within
the positively-correlated plasma markers, ANKRD36B showed the
most significant association with the MTA score (Figure 10M,
R = 0.885 and p = 0.0190), indicating that as the marker
increased its expression level, the atrophy elevated in subjects’
brains accordingly. In contrast, RPS27 stood out between two
negatively correlated markers (Figure 10N, R= −0.926 and p= 8.1
x 10-3), implying the reduced expression level of this marker would
be associated with the expansion of the atrophy in subjects’ brains.

4 Discussion and conclusion

Up-to-date, blood-based cfRNAs analysis is a promising
approach for the diagnosis of AD at the early stage compared
to other methods (such as MRI, PET, or MoCA questionnaire),
which objectively and quantitatively reveals the progression of AD
pathology and solves the financial conundrum at LMICs. This
preliminary study examined the difference between the cfRNA
profiles of two Vietnamese cohorts (Alzheimer’s and normal
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FIGURE 10

Correlation between MTA-score and the normalized transcript counts (median of ratios) in 14 genes (A) PRKAR1A, (B) HIVEP1, (C) RNF213, (D)
DYNC1H1, (E) TAOK3, (F) EEF2, (G) LINC01943, (H) LYRM4, (I) SGMS1, (J) CYBB, (K) RGPD2, (L) RGPD1, (M) ANKRD36B, (N) RPS27.
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control), which recruited 10 participants per group. All plasma
samples from two cohorts were successfully collected, revealing 10
APOE-ε4 carriers (three subjects in the CN cohort; seven subjects
in the AD cohort), confirming the AD prevalence of this allele
was twice the ε3 allele. In addition, the medical records of six
MTA and seven MMSE scores were collected for Spearman’s Rank
Correlation evaluation to find promising prognostic biomarkers.

DE analysis was performed to further investigate the promising
biomarkers for AD diagnosis and has identified 136 differentially
expressed genes from 581 input genes (Supplementary Datum 3,
4; Figure 3B, green dots), 84 of which were upregulated, and
52 were downregulated (Figure 4). To ensure the reliability of
the results, we first compared the expression of the GAPDH—
a housekeeping gene, between two cohorts, and there was no
significant difference (Supplementary Data 2). Three outstanding
genes were noted with outstanding log2foldchange and adjusted
p-value (Figure 3B). Also, from the collected cfRNA dataset, three
modules of co-expressed genes were detected. These modules were
found to be involved in various biological processes and functions
through enrichment analysis. The overlapping genes between the
groups of highly connected hub genes and previously identified DE
genes were highlighted in the co-expressed network as outstanding
candidates for further analysis (Figure 7). Thirty-eight DE genes
were also noted to be involved in the neural activities and immune
responses, and five of which are involved in both pathways. This
result implicated a high potential of the detected genes as clinical
markers and tools to study the pathogenesis of AD (Figure 8).
In addition, there were five genes having a significantly inverse
trend with MMSE score (Figure 9), three of which were hub genes
classified in the yellow module, YTHDC1, PHACTR2, and SASH1.
On the other hand, the correlation with MTA scores showed more
diversity compared to MMSE metrics, with 14 DE genes denoted
with a high correlation with the metric. In detail, the greatest-
positive trend was identified in the ANKRD36B gene (Fig.M, R =

0.885 and p = 0.0190), and the significantly negative association
indicated in the RPS27 gene (Fig.N, R = −0.926 and p = 8.1 ×

10–3) (Figures 10M, N).
The co-expression analysis revealed three distinct clusters of

co-expressed cfRNA transcripts that were strongly correlated with
AD status (Figure 5D). Through enrichment analysis, we found
that the enriched functions of these clusters are highly relevant
to AD pathogenesis and progression (Figure 6). Notably, all three
clusters contained many genes related to focal adhesions. It has
been reported that focal adhesions participate in various pathways
that regulate amyloid-beta signaling, eventually leading to neuronal
cell death (Caltagarone et al., 2007). Each module was also involved
in unique functions. The yellow module was enriched in biological
process terms regarding response to metal ions and reactive oxygen
species. A recent study (Chen et al., 2023) hypothesized that the
dyshomeostasis of metal ions (e.g., iron, copper, zinc, and calcium)
in the brain of AD patients is a possible cause for several AD-related
pathologies. Specifically, the imbalance of metal ions can lead to
the overproduction of amyloid beta, neuroinflammation, and tau
hyperphosphorylation. Furthermore, this disruption in metal ion
balance leads to increased oxidative stress and the production of
reactive oxygen species (ROS), which has been associated with
neuronal damage (Wang et al., 2020). This functional finding

is also corroborated by Toden et al., who found a cluster of
genes enriched in calcium signaling in Alzheimer’s plasma cfRNA
transcripts. Finally, in the brown module, the most notable terms
were related to nuclear transport, nuclear-cytoplasmic transport,
and protein localization into the nucleus. It has been suggested that
altered nuclear transport and protein mislocalization are possible
mechanisms for the development of neurodegeneration (Sheffield
et al., 2006). This disruption is thought to be caused by tau
proteins, a key hallmark of Alzheimer’s disease. Tau proteins can
interact with nucleoporins in the nuclear pore complex, causing
mislocalization, blocking nuclear import/export, and eventually
leading to neuronal death (Eftekharzadeh et al., 2018). These
Alzheimer-linked functional associations point to the significance
of our detected modules, which can be a potential avenue for
further research.

Within each co-expressedmodule weremultiple hub genes with
high intramodular connectivity (Figure 7). These hub genes are
likely to influence the expression of other genes in the module,
thus acting as key drivers in the module’s biological functions and
pathways (Langfelder and Horvath 2008). Of special interest are
hub genes that are also found to be differentially expressed between
AD and healthy controls in our study (significant hub genes)
since these genes are likely to be highly influential and relevant to
AD. Notably, several of these significant hub genes (Figures 7D–
F) were previously reported to be associated with Alzheimer’s
disease or linked with neurodegeneration processes. For example,
in the brown module, the significant hub gene RNF213 was found
to be associated with Alzheimer’s disease in a previous RNA
transcriptome study on whole blood from an American cohort (Bai
et al., 2014). Two ankyrin-related genes were also centrally located
in the brown module (ANKRD36 and ANKRD36B), possibly
suggesting the involvement of ankyrin-binding pathways in AD.
In the yellow module, two significant hub genes are related to
calcium and iron response (CREB1 and TFRC). CREB1 is involved
in the pathways of calcium signaling, which has been previously
implicated in neurodegeneration (Tong et al., 2018). TFRC acts as
an iron uptake mediator in the central nervous system, and changes
in its expression can lead to dyshomeostasis in iron concentrations
in the brain (Rouault, 2013). The yellow module also contains
the hub gene YTHDC1 that regulates N6-methyladenosine (m6A)
RNAmethylation, the disruption of which has been associated with
increased AD risk (Qiu et al., 2023). Finally, the significant hub
gene of interest in the turquoise module is the interleukin receptor
IL1RL1. Multiple studies have reported a mutation in IL1RL1 that
is linked with a decreased Alzheimer’s disease risk by reducing
circulating ST2 levels (Jiang et al., 2022). Since the turquoisemodule
as a whole is negatively correlated with AD status, and IL1RL1

is dysregulated in our dataset, this points to a possible protective
effect of the IL1RL1 gene in our cohort. In addition, many of the
significant hub genes (YTHDC1, PHACTR2, SASH1, ANKRD36B,
RNF213, RGPD2, TAOK3) were also significantly correlated with
MMSE and MTA scores in our cohort, further suggesting their
relevance to AD pathogenesis. Overall, these significant hub genes
can help shed light on potentially new pathways and interactions
and provide guidance for further investigation as biomarkers or
therapeutic targets since they are likely to influence the expression
of a multitude of genes.
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4.1 DE genes and neural activities

Functional annotation analysis indicated 21 genes expressed
in neuronal components, three of which are also involved in
neural activities. Notably, XRN1 is expressed in three out of four
investigated components, namely dendrite, neuronal cell body,
and synapse (Figures 8A, B). XRN1, together with STXBP3, were
found to participate in the negative regulation of calcium-ion-
dependent exocytosis, which is linked with synaptic transmission
by releasing quanta of neurotransmitters (Barclay et al., 2005). Both
of these genes are significantly downregulated in the AD cohort
(Figure 3D), suggesting a probable increase in neurotransmitter
release at the synaptic cleft. In previous reports, the elevation
in other neurotransmitters, particularly dopamine, glutamate, and
norepinephrine, stimulates cognitive dysfunction in AD patients,
along with the deficiency of Acetylcholine (Xu et al., 2012;
Bhuvanendran et al., 2018; Mather, 2021; Chen et al., 2022).
Besides, XRN1 has been identified as a risk contributor of late-onset
AD previously (Guttula et al., 2012; Rosenthal et al., 2012; Xu et al.,
2019), in which the significant deduction of XRN1 transcripts in
the AD cohort can explain the imbalance in neural activities that
are associated with AD pathology. Considering neuronal death,
two genes in the DE list were found to be associated—UBB and

CHP1 (Figure 8B). While CHP1 was upregulated in the AD cohort,
UBB expressed the opposite trait (Figure 3D). CHP1 is a promoter-
encoding gene that facilitates the activities of the sodium/hydrogen
exchangers (NHEs) activating neuron death, implying that its
upregulation in the AD cohort can be due to increasing neural
apoptosis triggered by AD (Song et al., 2019). The reduction in
CHP1 expression level was reported as a prominent treatment
for neural injury by promoting axonal outgrowth (Janzen et al.,
2018). UBB, on the other hand, is involved in the Ubiquitin system
that modulates synaptic plasticity and neural homeostasis (Harris
et al., 2020). The deficiency in cellular Ubiquitin has been stated to
suppress the survival capacity and lead to neuronal death, which
is well-aligned with our previous argument that neural apoptosis
occurred more robustly in AD patients (Ryu et al., 2008). In brief,
the findings from functional annotation fit with previous findings
and also support future investigation of not only biomarkers but
also therapeutics targets for AD, considering the XRN1, CHP1,

and UBB.

4.2 DE genes and immune responses

Immune responses are another aspect that we included in
this discussion, considering its bond with AD pathology, both as
a probable stimulator and a complication (Webers et al., 2020;
Griciuc and Tanzi, 2021). Considering how immune responses
can reduce the resilience of the CNS toward the amyloid plaques,
immune-related genes have been studied and recommended as
risk factors accompanying the APOE genotype (Griciuc and Tanzi,
2021). We managed to identify transcripts of THBS1, which
was noted to be involved in multiple investigated immune-
related pathways, namely angiogenesis, phagocytosis, apoptosis,
and chronic inflammation. Previous studies have reported an
association between the upregulation of THBS1 and increasing

neuroinflammation, which put the CNS in jeopardy (Wang et al.,
2023; Yao et al., 2023). This suggests the upregulation observed
in the AD cohort implied an increasing inflammatory response
that fits with precedent postulations. Knocking out the gene and
inhibiting its expression have been studied in animal models as
a means to ameliorate inflammatory processes (Qu et al., 2020;
Wang et al., 2023). In addition to THBS1, S100A9 is another
gene that takes part in chronic inflammation, as well as apoptosis,
and was noted in our study to be upregulated with the existence
of the APOE-ε4 allele (Figure 3E). This finding is well-aligned
with previous studies, which reported the upregulation of S100A9
in advancing AD, and the knockdown of this gene can alleviate
memory capacity in animal models (Shepherd et al., 2006; Chang
et al., 2012; Wang et al., 2014). According to the discussed studies,
THBS1 and S100A9 appeared to be probable risk factors for AD and
a prominent target for molecular therapeutics.

4.3 DE genes and clinical metrics

Two out of five genes that are highly correlated with the
MMSE score, namely ITPRID2 and PHACTR2, participate in the
binding process of Actin (Figure 9). Previous studies postulated
that cognitive impairment was associated with imbalanced Actin-
binding factors, such as increased dephosphorylated cofilin and
decreased drebrin (Kojima and Shirao, 2007; Bamburg et al.,
2010, 2021). This implied the consistency of our finding and
the precedent results, confirming the role of Actin dynamics
in cognitive functions. Considering 14 genes professed high
correlation with MTA-score, DYNC1H1, and EEF2 are directly
involved in neurodegeneration (KW-0523). Two other genes,
RNF213 and SGMS1, participate in lipid metabolism, which
is involved in neurodegeneration (KW-0443) (Estes et al.,
2021). RGPD1 and RGPD2, on the other hand, take part
in intracellular transport and catalytic activity (GO:0046907;
GO:0050790) (Stefanova et al., 2019). Other genes play a role in
either nucleic acid repairing process, ionic transport, or protein
binding, which put forward a postulation about the probable role
of these processes in the structural changes inside the brains of AD
patients (Figure 10).

Comparing our detected DE genes to two previous studies
profiling the plasma cf-RNA of AD patients (Toden et al., 2020; Fu
et al., 2023), we found relatively minimal overlap between the three
studies (Supplementary Data 7). The Fu study was a pilot study on
a small cohort (n = 40) of Chinese AD and healthy patients, while
the Toden study was performed on a large cohort of patients in the
USA (n= 242). While a small number of our DE genes overlapped
with the Toden group’s result, there were also a significant number
of contradictory genes (i.e., upregulated genes that were found to
be downregulated by Toden). In addition, the Toden study and Fu
study had only one DE gene in common. This indicates significant
variability in detectedDE genes across different studies and cohorts.
Some potential factors include methodological differences between
groups, sample size, and geographic variations in gene expression,
which calls for further investigation.

In conclusion, this is the first study in Vietnam to collect
and evaluate the cfRNA transcriptome from plasma samples of
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AD patients. With this novel dataset, we employed a combination
of differential expression analysis and weighted co-expression
network analysis to identify candidate gene transcripts in cfRNA
for further studies into diagnostic biomarkers and therapeutic
applications. Several candidate transcripts were identified that
were differentially expressed, highly connected, well-correlated
with AD clinical markers, and relevant to the pathogenesis of
AD (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213).
These candidate genes from our dataset indicate the potential
for plasma cfRNA as an AD diagnostic biomarker and as a tool
to elucidate the complex mechanisms of AD. Other transcripts,
specifically ones related to immune response like THBS1 and
S100A9, were also recorded in our report with similar traits as
previous independent studies. This bolsters the potential of further
studies targeting the relationship between the immune response
and AD pathology, which can be an inspiration for therapeutic
studies considering the recent progress of immunotherapy. Owing
to plasma’s relatively minimally invasive sampling compared to
other methods, this approach allows for an accessible window into
the dynamic transcriptional alterations of the AD brain, which will
hopefully improve our understanding of AD pathogenesis and aid
in the development of AD diagnostic tools.

Our pilot study has several limitations owing to its proof-
of-concept nature. Considering the sample size of this study
is scant, there is a potentially high FDR and compromising
comparison tests’ power (Liu and Hwang, 2007). Acknowledging
that the limited sample size can cast doubt upon the conclusion
of significance, the statistical tests utilized in this study were
all non-parametric tests, which do not involve the sample size
in the hypothesis, except for the correlation tests. Additionally,
the algorithms behind the differential expression analysis in
the DESeq2 package already included the size factors in their
comparisons (Love et al., 2014). Therefore, the conclusions of
significance in this study are accurate within the examined range
(Table 2). Besides, due to financial restrictions, patients with MCI
cannot be included in this study to examine the differences
in transcriptomic profile at the early stages of AD pathology.
Moreover, our extracted samples had unsatisfactory quality,
considering their purity and integrity (Supplementary Data 2).
Despite having normalized the sequencing data, there is a
probability of deviation occurring in the results. However, the
insights obtained from this study can be the foundation for
similar studies on larger populations, as well as support a more
detailed investigation of highlighted genes and their potential as
AD biomarkers and therapeutic targets. In addition, comparing the
expression traits between plasma transcriptomic profiles and those
of brain tissues is also a potential field of inquiry that can provide
further insights into cell-free AD biomarkers.
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