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Parkinson’s disease (PD) is a complex neurodegenerative condition characterized

by alpha-synuclein aggregation and dysfunctional protein degradation pathways.

This study investigates the differential gene expression of pivotal components

(UBE2K, PSMC4, SKP1, and HSPA8) within these pathways in a Mexican-Mestizo

PD population compared to healthy controls. We enrolled 87 PD patients and

87 controls, assessing their gene expression levels via RT-qPCR. Our results

reveal a significant downregulation of PSMC4, SKP1, and HSPA8 in the PD

group (p = 0.033, p = 0.003, and p = 0.002, respectively). Logistic regression

analyses establish a strong association between PD and reduced expression of

PSMC4, SKP1, and HSPA8 (OR = 0.640, 95% CI = 0.415–0.987; OR = 0.000,

95% CI = 0.000–0.075; OR = 0.550, 95% CI = 0.368–0.823, respectively).

Conversely, UBE2K exhibited no significant association or expression difference

between the groups. Furthermore, we develop a gene expression model based on

HSPA8, PSMC4, and SKP1, demonstrating robust discrimination between healthy

controls and PD patients. Notably, the model’s diagnostic efficacy is particularly

pronounced in early-stage PD. In conclusion, our study provides compelling

evidence linking decreased gene expression of PSMC4, SKP1, and HSPA8 to PD in

the Mexican-Mestizo population. Additionally, our gene expression model exhibits

promise as a diagnostic tool, particularly for early-stage PD diagnosis.
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1 Introduction

Parkinson’s disease (PD) stands as a multifaceted neurodegenerative disorder
characterized by the progressive degeneration of dopaminergic neurons. Nevertheless, the
intricate mechanisms underlying this condition remain shrouded in uncertainty. Emerging
evidence has spotlighted dysregulation in the clearance and degradation of alpha-synuclein
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as a pivotal player in the pathogenesis of neuronal demise
in PD (Mehra et al., 2019; Jankovic and Tan, 2020). At the
crux of this degradation nexus lies the concerted interplay
among chaperones, the ubiquitin-proteasome system (UPS), and
autophagy-lysosomal pathways.

The UPS pathway orchestrates the disposal of damaged
proteins through a meticulous tagging process involving three key
enzymes: activating enzyme E1, conjugating enzyme E2, and ligase
enzyme E3 (Chen and Dou, 2010). Subsequent to this tagging,
the protein-ubiquitin conjugates are recognized and degraded by
the 26S proteasome, a large proteolytic assembly resident within
the cytosol and nucleus of eukaryotic cells. This proteasome is
composed of a 20S core particle and a 19S regulatory particle
(Jarome and Devulapalli, 2018).

Intriguingly, prior inquiries into the expression of genes
associated with these degradation machineries in blood and brain
tissues of individuals afflicted by PD, including PSMC4 (an integral
component of the 19S proteasomal particle), SKP1 (an essential
constituent of the SCF complex endowed with E3 ubiquitin
ligase activity), UBE2K (an ubiquitin-conjugating enzyme E2K),
and HSPA8 (a 70kDa heat shock protein exerting chaperone
functions), have yielded divergent results (Grunblatt et al., 2004;
Mandel et al., 2005, 2012b; Molochnikov et al., 2012; Su et al.,
2018). This divergence may stem from genetic disparities among
diverse populations, imparting an element of complexity to our
understanding of PD etiology.

Thus, the principal objective of our study is to scrutinize the
expression profiles of these genes in peripheral blood samples
sourced from the Mexican-mestizo population. By doing so, we
aim to ascertain whether these gene expression patterns possess the
potential to serve as a risk profile for PD.

2 Materials and methods

2.1 Study participants and ethical criteria

We collected samples from a cohort of 87 PD patients
and 87 healthy, age-matched controls devoid of familial
or personal histories of neurodegenerative diseases. PD
diagnoses were confirmed by neurologists employing the
United Kingdom Parkinson’s disease Society Brain Bank
(UKPDSBB) diagnostic criteria. Participants were recruited
from three prominent public hospitals located in central
and northwest Mexico: Hospital General Dr. Manuel Gea
Gonzalez in Mexico City, Hospital General 450, and Hospital
General Santiago Ramón y Cajal in Durango City. This study
secured the ethical approval of each participating hospital’s
ethics committee.

All procedures adhered strictly to the ethical principles outlined
in the 1964 Helsinki Declaration and its subsequent amendments.
Informed written consent was obtained from all participants,
with the additional requirement of a family member’s consent for
each participant. Pertinent patient data, encompassing age, gender,
presence of depression, cognitive status, age of disease onset, and
Unified Parkinson’s disease Rating Scale (UPDRS) scores, were
meticulously documented.

2.2 Blood collection, RNA extraction,
cDNA synthesis, and RT-qPCR

Venous whole blood was collected from the subjects in Tempus
Blood RNA tubes and reserved at −80 C until RNA extraction.
We processed samples according to the manufacturer protocol to
extract total RNA using MagMAX for Stabilized Blood Tubes RNA
Isolation kit (Life Technologies, Norway). We then synthesized
cDNA using a High-Capacity cDNA Reverse Transcription kit
(Applied Biosystems, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Concentration and purity of RNA and
cDNA were determined using NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific Inc., Germering, Germany) and cDNA
was stored at −20 C until further evaluation. Gene expression
levels of UBE2K, HSPA8, SKP1, and PSMC4 were measured
through relative quantification (RQ) of 125 ng/mL of cDNA by
Real-time quantitative PCR (RT-qPCR) using a QuantStudio 3
System (Applied Biosystems, Carlsbad, CA, USA) with TaqMan
assays (UBE2K assay ID Hs00193507_m1, HSPA8 assay ID
Hs03044880_gH, SKP1 assay ID Hs00429069_m1 and PSMC4 assay
ID Hs00197826_m1, Applied Biosystems). The expression was
normalized to the RPLP0 gene (RPLP0 assay ID Hs00420895_gH,
Applied Biosystems). The reaction conditions were: initial hold of
10 min at 95 C; 40 cycles of denaturation for 15 s at 95 C and
annealing for 1 min at 60 C.

2.3 Statistical methods

Statistical analyses were executed using SPSS Statistics 20.0
software. Quantitative data are presented as mean ± standard
deviation (SD). For normally distributed parameters, differences
were assessed using a two-tailed t-test, while non-parametric
tests were applied to analyze mRNA and protein levels.
Logistic regression was employed to investigate the association
between mRNA expression and PD, with significant P-values
retaining relevance in constructing predictive classifier
models. Receiver operating characteristic curve (ROC)
data were derived from predictive probabilities generated
via multivariate logistic regression, encompassing all PD
patients and a subset of early-stage PD patients (those with
less than 5 and 3 years of disease evolution). Correlations
were evaluated via Spearman correlation with the two-
tailed test of significance. P-value < 0.05 was considered
statistically significant.

3 Results

3.1 Demographic and clinical
characteristics

Table 1 presents a comprehensive overview of the demographic
and clinical attributes of both the PD cases and control subjects.
Comparative analysis of these variables between the two groups
unveiled significant differences on the presence of depression
(p = 0.040).
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TABLE 1 Demographic and clinical characteristics of study participants.

PD
n = 87

Control
n = 87

p

Age± SD 70.4± 9.27 70.03± 9.19 0.793+

Gender

Female 42 (48.3%) 42 (48.3%) 1++

Male 45 (51.7%) 45 (51.7%)

Minimum Age 53 53

Maximum Age 94 92

Depression (HAM-D) 67 (77.2%) 53 (61.3%) 0.040++

Cognitive impairment (MMSE) 44 (51.2%) 45 (52.3%) 0.890++

Age of onset± SD 64.9± 9.6

PD Early stage (smaller or equal
to 5 years of diagnosis)

52 (59.8%)

PD Early stage (smaller or equal
to 3 years of diagnosis)

31 (17.8%)

UPDRS total score± SD 68.6± 31.3

UPDRS PART I± SD 10.5± 6.9

UPDRS PART II± SD 14.9± 9.4

UPDRS PART III± SD 39.9± 19.7

UPDRS PART IV± SD 2.3± 4.8

+Student t-test, ++chi-square test.

3.2 Gene expression profiles

Figure 1 provides a graphical representation of the observed
gene expression levels in both the PD and control groups. Utilizing
Relative Quantification (RQ) analysis, we identified a significant
reduction in the expression levels of HSPA8, SKP1, and PSMC4
among PD cases (p = 0.002, p = 0.003, and p = 0.033, respectively).
To further elucidate their relevance to PD, logistic regression
analysis was conducted, adjusting for sex and age (Table 2). The
results unequivocally substantiated the associations of HSPA8,

SKP1, and PSMC4 with PD. However, UBE2K exhibited no
statistically significant association with the disease.

3.3 Influence of depression on gene
expression

We observed a notable disparity in the frequency of depression
between the PD and control groups (Table 1), consequently,
we conducted a gene expression association analysis considering
while adjusting for sex, age, and depression. The findings revealed
that, even after factoring in depression, the previously established
associations for HSPA8 and SKP1 remained statistically significant
(Table 3).

3.4 Correlation analysis of gene
expression

An exploratory analysis of gene expression within the control
group unveiled intriguing interrelationships among the four genes
under scrutiny. Specifically, we observed a positive correlation
between the expression levels of HSPA8, UBE2K, and PSMC4.
Conversely, SKP1 exhibited a negative correlation with these three
genes (Figure 2A). Similar results were observed when testing the
PD group, except for the correlation between SKP1 and PSMC4,
which was not statistically significant (p = 0.165, Figure 2B).
Furthermore, a correlation analysis within the PD group revealed
no significant correlation between PD severity (measured with
UPDRS) and the expression levels of SKP1A (p = 0.455), PSMC4
(p = 0.655), UBE2K (p = 0.305) and HSPA8 (p = 0.786).

3.5 Predictive utility of gene expression

To assess the potential utility of gene expression as a
prognostic biomarker for PD, we constructed Receiver Operating

FIGURE 1

Relative quantification (RQ) of mRNA. Comparison between control and PD groups of mRNA levels of (A) UBE2K, (B) HSPA8, (C) SKP1, and
(D) PSMC4. Outliers are denoted by dots. **p < 0.005, *p < 0.05.
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TABLE 2 Association of gene expression levels with PD
adjusted by sex and age.

OR* 95% CI p

UBE2K 0.943 0.711–1.250 0.681

HSPA8 0.550 0.368–0.823 0.004

SKP1 0.000 0.000–0.075 0.012

PSMC4 0.640 0.415–0.987 0.044

OR, Odds Ratio; CI, confidence interval. *Adjusted by sex and age.

TABLE 3 Association of gene expression levels with PD adjusted by sex,
age and depression.

OR* 95% CI p

UBE2K 1.041 0.758–1.430 0.803

HSPA8 0.461 0.278–0.764 0.003

SKP1 0.000 0.000–0.000 0.001

PSMC4 0.798 0.499–1.278 0.348

OR, Odds Ratio; CI, confidence interval. *Adjusted by sex, age and depression.

Characteristic (ROC) curves based on predictive values derived
from logistic regression. We formulated three distinct models, each
contingent on the duration of PD evolution (Figure 3). Evaluation
of these curves unveiled increasing values for the Area under the
Curve (AUC), signifying that a shorter duration of PD evolution
positively impacts the predictive value of the model. At a cut-off
point of 0.25 it was possible to distinguish between PD individuals
and healthy controls with sensitivity and specificity values of 77%
and 72.3%, respectively (Figure 3C).

4 Discussion

In this study, we delved into the gene expression profiles of
UBE2K, HSPA8, SKP1, and PSMC4 within both control and PD
cohorts to evaluate their potential implications in the pathogenesis
of PD. Our findings unveiled marked reductions in the gene
expression levels of HSPA8, SKP1, and PSMC4 in the PD group in
comparison to the control group.

The PSMC4 gene encodes the proteasomal protein S6 ATPase, a
constituent of the 19S regulatory subunit essential for the assembly
of the 26S proteasome (Dahlmann, 2016). Previous investigations
have identified the presence of the PSMC4 protein in Lewy bodies,
demarcating their periphery within dopaminergic neurons of the
substantia nigra (Grünblatt et al., 2018). Notably, our observations
concerning PSMC4 gene expression in blood align with prior
reports (Molochnikov et al., 2012). Similar reductions in mRNA
levels of PSMC4 within the substantia nigra pars compacta (SNpc)
of the brain have been documented in PD patients when compared
to controls (Grunblatt et al., 2004; Grünblatt, 2012). The correlation
between gene expression levels, protein presence in the SNpc,
and localization within Lewy bodies in post-mortem SN samples
from PD patients suggests the potential biological relevance of our
findings derived from blood samples (Marx et al., 2007; Grünblatt
et al., 2018). Recent research indicated a decreased expression
of PSMC4 mRNA, particularly evident after 3 years of disease
progression, and established a correlation with disease severity.

Nevertheless, this correlation, while noteworthy, did not achieve
the requisite strength to be incorporated into a predictive PD
classifier model (Rabey et al., 2020).

The SKP1 gene encodes the SKP1 protein, involved in the
formation of the SCF complex, endowed with E3 ubiquitin ligase
activity. This intricate assembly plays a pivotal role in identifying
target proteins for degradation via the ubiquitin-proteasome
system, primarily through interactions with F-box proteins (Zheng
et al., 2002). SKP1 exhibits the ability to directly interact with
FBXO7, an F-box protein implicated in the regulation of alpha-
synuclein (Zhao et al., 2013; Conedera et al., 2016). Perturbations in
SKP1 function could potentially contribute to PD development by
disrupting the proper degradation of proteins, leading to an accrual
of misfolded proteins (Mandel et al., 2012a). Consistent with our
findings, reduced expression levels of SKP1 in both the SNpc and
blood have been documented in PD (Grunblatt et al., 2004; Mandel
et al., 2009; Molochnikov et al., 2012). It is important to underscore
that silencing of SKP1 has been experimentally demonstrated to
promote the accumulation of cytoplasmic inclusions reminiscent of
Lewy bodies while concurrently exerting a negative regulatory effect
on HSPA8 gene expression (Fishman-Jacob et al., 2009; Mandel
et al., 2012a). In vitro studies have further validated that SKP1
deficiency exacerbates PD pathology, culminating in the formation
of Lewy body-like inclusions and ensuing neuronal demise (Mandel
et al., 2012b). Notably, our identification of a negative correlation
between SKP1 expression and all three genes within our control
group implies that SKP1 may potentially exert its effects only
in the presence of cellular damage. Consequently, normal SKP1
expression might not suffice to deter PD progression in the absence
of underlying cellular damage.

HSC70 protein, encoded by the HSPA8 gene, stands as an
integral component of Lewy bodies in PD (Grünblatt et al., 2018).
This chaperone protein, orchestrates the selective degradation
of proteins, maintaining cellular proteostasis through chaperone-
mediated autophagy, a process contingent on lysosomes (Nie et al.,
2021). Our findings regarding HSPA8 expression harmonize with
prior assessments encompassing transcript and protein levels in
both peripheral blood and brain tissues (Grunblatt et al., 2004;
Tanaka, 2009; Alvarez-Erviti et al., 2010; Papagiannakis et al.,
2015). Nonetheless, it is worth noting that Molochnikov et al.
(2012) reported an elevation in HSPA8 expression levels in PD
patients, although the biological significance of this elevation was
not explained.

The differential expression profiles observed in our study
suggest potential perturbations in protein degradation pathways
within our study population, which could underlie the abnormal
aggregation of proteins integral to Lewy bodies and consequently
impact dopaminergic neuron function.

Our comprehensive ROC curve analysis illuminates the
potential utility of HSPA8, PSMC4, and SKP1 gene expression
levels as effective discriminators between healthy controls and
individuals with PD. Similar results in a multi- center study in
the German, Italian and Israeli population suggest the ability of a
five-gene panel, including HSPA8, PSMC4, SKP1 and UBE2K, to
diagnose early/mild PD in Italy, Germany, and Israel populations
(Molochnikov et al., 2012).

As depicted in Figure 3, this discriminatory capacity is further
augmented when PD has a shorter duration. These observations
collectively indicate that the expression levels of these genes
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FIGURE 2

Correlation analysis of gene expression in both control (A) and PD (B) groups. R = Spearman correlations coefficient.

experience significant reductions during the early stages of PD.
Importantly, these reductions may be partially ameliorated through
medication-induced epigenetic modifications.

Previously, it has been shown that the accuracy of clinical
diagnosis for PD could range from 53–74% (Tolosa et al., 2006).
More recently, accuracies ranging from 69% to over 90% have been
reported in some populations with advanced symptoms (Rizzo
et al., 2016). However, a recent study describes an accuracy of 26%
in clinical diagnoses for PD in patients with recent symptom onset
(Prajjwal et al., 2023). Our model suggests an accuracy of 79.1% for
predicting PD in the early stage, as indicated by the AUC values
obtained, suggesting it as a promising tool for PD prediction.

One noteworthy limitation of our study resides in the fact that
all PD patients were undergoing L-dopa treatment, a factor that has
been previously suggested to potentially influence gene expression
patterns (Taravini et al., 2016). Reports indicated that L-dopa
influenced DNA methylation, resulting in reduced expression of
the SNCA gene. Nevertheless, it was suggested that its epigenetic
influence on other genes could have been possible (Schmitt et al.,
2015; Guhathakurta et al., 2017; Song et al., 2017).

The variances in our findings when compared to other
populations underscore the necessity of exploring associations
between single nucleotide polymorphisms (SNPs) and gene
expression to elucidate these disparities (Soldner et al., 2016;
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FIGURE 3

Receiver Operating Characteristic (ROC) Curves for Discriminating Between PD Patients and Controls. The curve represents the relationship
between specificity and sensitivity based on the predictive probability derived from gene expression levels of HSPA8, SKP1, and PSMC4.
(A) Comparison of PD patients versus healthy controls. (B) Comparison of PD patients with a disease duration of less than 5 years versus healthy
controls. (C) Comparison of PD patients with a disease duration of less than 3 years versus healthy controls.

Salas-Leal et al., 2021). Consequently, future endeavors should
encompass genotyping to modulate transcript variants, shedding
light on these discrepancies. Additionally, the execution of cohort
studies will be indispensable in delineating the potential utility of
our model as a predictive tool for PD.
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