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Background: The DLG3 gene encodes disks large membrane-associated

guanylate kinase scaffold protein 3, which plays essential roles in the clustering

of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously,

DLG3 has been identified as the causative gene of X-linked intellectual

developmental disorder—90 (XLID-90; OMIM# 300850). This study aims to

explore the phenotypic spectrum of DLG3 and the genotype-phenotype

correlation.

Methods: Trios-based whole-exome sequencing was performed in patients with

epilepsy of unknown causes. To analyze the genotype-phenotype correlations,

previously reported DLG3 variants were systematically reviewed.

Results: DLG3 variants were identified in seven unrelated cases with epilepsy.

These variants had no hemizygous frequencies in controls. All variants were

predicted to be damaging by silico tools and alter the hydrogen bonds with

surrounding residues and/or protein stability. Four cases mainly presented

with generalized seizures, including generalized tonic-clonic and myoclonic

seizures, and the other three cases exhibited secondary generalized tonic-

clonic seizures and focal seizures. Multifocal discharges were recorded in all

cases during electroencephalography monitoring, including the four cases with

generalized discharges initially but multifocal discharges after drug treating.

Protein-protein interaction network analysis revealed that DLG3 interacts with

52 genes with high confidence, in which the majority of disease-causing

genes were associated with a wide spectrum of neurodevelopmental disorder

(NDD) and epilepsy. Three patients with variants locating outside functional

domains all achieved seizure-free, while the four patients with variants locating

in functional domains presented poor control of seizures. Analysis of previously

reported cases revealed that patients with non-null variants presented higher
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percentages of epilepsy than those with null variants, suggesting a genotype-

phenotype correlation.

Significance: This study suggested that DLG3 variants were associated with

epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3.

The observed genotype-phenotype correlation potentially contributes to the

understanding of the underlying mechanisms driving phenotypic variation.

KEYWORDS

DLG3 gene, epilepsy, neurodevelopmental disorder, variants, Genotype-phenotype
correlation

1 Introduction

Neurodevelopmental disorder (NDD) is the most common
neurological disease in children, including intellectual development
disorder (ID), developmental speech or language disorder (DSD),
autism spectrum disorder (ASD), developmental learning disorder
(DLD), attention deficit hyperactivity disorder (ADHD), tic
disorder (TD) and others (Zhu et al., 2023). Epilepsy is one of the
most common comorbidities in patients with neurodevelopmental
disorders, whereas up to 26% of individuals with NDDs have
epilepsy (McGrother et al., 2006; Ali Rodriguez et al., 2018; Heyne
et al., 2018; Turner et al., 2021). NDD is a vital risk factor for
epileptogenesis, and frequent seizures can also lead to or worsen
NDD (Pisella et al., 2019). Increasing evidence has highlighted the
genetic overlap of both epilepsy and NDD (Shimizu et al., 2022).
Previously, a series of genes have been identified as causative genes
for both epilepsy and NDD, such as GRIN2A, GRIN2B, BCOR,
FRMPD4, APC2, NEXMIF, SZT2, SHROOM4, BRWD3, KCNK4,
and UNC79 (Liu et al., 2021; Bian et al., 2022; Li et al., 2022, 2023;
Yan et al., 2022; Bayat et al., 2023; Jin et al., 2023; Luo et al., 2023;
Tian et al., 2023; Wang et al., 2023; Ye et al., 2023). However, the
majority of overlapping genetic etiologies for epilepsy and NDD
remain undetermined.

The N-methyl-D-aspartate receptor (NMDAR) is one of
the main excitatory receptors in the central nervous system,
with essential roles in regulating neuroplasticity, excitatory
neurotransmission, and the development of learning and memory
(Chen et al., 2021). Genes encoding NMDAR subunits (such
as GRIN1, GRIN2A, and GRIN2B) have been identified to be
associated with broad-spectrum phenotypes, including epilepsies,
epilepsies with NDD, and NDD without seizures (Endele et al.,
2010; Charron et al., 2022). Similar to NMDAR genes, an increasing
number of genes encoding NMDAR-associated proteins have been
identified to be associated with a broad phenotypic spectrum, such
as DLG4 and SYNGAP1 (Moutton et al., 2018; Agarwal et al.,
2019). The phenotypic spectrum of other genes encoding NMDAR-
associated proteins warrants further study.

The DLG3 gene (OMIM∗ 300189), located in Xq13.1, encodes
disks large membrane-associated guanylate kinase scaffold protein
3. The DLG3 protein, also known as synapse-associated protein 102
(SAP102), is an NMDAR-associated protein with essential roles in
clustering of NMDARs at excitatory synapses and regulating cell
proliferation. It is highly expressed in the human brain, particularly
in the cortex.1 Hemizygous knockout of DLG3 in mice led to

1 http://www.gtexportal.org/

abnormalities in the cortex and synapse morphology, impairment
in spatial learning, and abnormal excitatory postsynaptic currents
(Cuthbert et al., 2007). Previously, DLG3 has been identified as the
causative gene of X-linked intellectual developmental disorder—
90 (XLID-90; OMIM# 300850). It is unknown whether DLG3 is
associated with epilepsy and shares a broad phenotypic spectrum
similar to NMDAR/NMDAR-associated genes.

In this study, we performed trio-based whole-exome
sequencing (WES) in a cohort of patients with childhood
epilepsy without acquired causes. Six novel DLG3 variants were
identified in seven unrelated cases with heterogeneous epilepsies,
including three with epilepsy and four with epilepsy and ID.
Previously reported DLG3 variants were systematically reviewed to
explore the underlying mechanism of phenotypic heterogeneity.
This study suggested that DLG3 may be associated with epilepsy
without neurodevelopmental disability.

2 Materials and methods

2.1 Patients

The patients were recruited from multiple centers through
the platform of China Epilepsy Project 1.0, including the Women
and Children’s Hospital affiliated with Qingdao University, the
Second Affiliated Hospital of Guangzhou Medical University,
the First Affiliated Hospital of Zhengzhou University, Maoming
People’s Hospital, Guangdong 999 Brain Hospital, and Guangdong
Province People’s Hospital. Patients with acquired epilepsy
were excluded, such as trauma, immunity, and infection.
Detailed clinical information, including disease progression,
prognosis, personal history, family history and results from
general and neurological examinations, was collected from patients
or their families.

2.2 Whole-exon sequencing

Blood samples of the probands were collected to extract
genomic DNA. Whole-exon sequencing was performed using a
NextSeq500 sequencing instrument (Illumina, San Diego, CA,
USA) following the standard procedures previously described
(Wang et al., 2018). The sequencing data were generated using
massively parallel sequencing with an average depth of > 125x
and > 98% coverage of the capture region on the chip, ensuring
the acquisition of high-quality reads. These reads were mapped
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to the Genome Reference Consortium Human genome build 37
by Burrows-Wheeler alignment. Variants were called and qualified
with the Genome Analysis Toolkit (DePristo et al., 2011). Sanger
sequences were used to validate candidate variants.

2.3 Genetic analysis

To identify potentially pathogenic variants, an individualized
analytical approach was employed for each case, following the
methodology outlined in our previous study (Li et al., 2021; Wang
et al., 2021). We screened DLG3 variants with the explainable
origination for genetic diseases, including de novo and hemizygous
mutations. All DLG3 variants identified in this study were
annotated into the reference transcript NM_021120.4.

2.4 Literature review and analysis of
genotype-phenotype correlation

The DLG3 variants and associated clinical information were
systematically reviewed from the PubMed database and the Human
Gene Mutation Database (HGMD) up to September 2023. Variants
with undefined origination or unexplained origination for the
occurrence of genetic diseases were excluded. Null variants that
result in truncated protein were employed to identify variants,

including canonical splice site variants frameshift, nonsense, and
initiation codon (Richards et al., 2015). Other variants were
classified into non-null variants, such as missense and intron
variants.

2.5 Bioinformatic analyses

In order to evaluate the detrimental impact of candidate
missense variants, protein modeling was conducted using the
Iterative Threading ASSEmbly Refinement software (I-TASSER)
(Yang and Zhang, 2015). PyMOL Molecular Graphics System
(version 2.3.2; Schrödinger, LLC; New York, USA) was utilized to
visualize and analyze the protein structure changes. The protein
stability changes of each variant were predicted using the I-Mutant
Suite server (Capriotti et al., 2005), which indicated the free
energy change (11G). Negative 11G values indicate a decrease in
mutant protein stability. The VarSite web server was used to analyze
amino acid and hydrophobicity changes (Laskowski et al., 2020).

2.6 Protein-protein interaction (PPI)
network analysis

The protein-protein interaction (PPI) network of the DLG3
protein was analyzed using the STRING database (version: 12.0;

FIGURE 1

Genetic data of cases with DLG3 variants. (A) Pedigrees of the cases with DLG3 mutations and their corresponding phenotypes. (B) DNA sequencing
chromatograms of the cases with DLG3 variants. Red arrows indicate the positions of the mutations. (C) The amino acid sequence alignment
showed that the six identified missense variants are residues with high conservation in mammals.
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University of Zurich, Zurich, Switzerland) (Szklarczyk et al., 2023).
The interactive genes with a confidence score ≥ 0.7 were taken into
analysis. The PPI networks were visualized by Cytoscape (version
3.10.1).

2.7 Statistical analysis

Statistical analyses were conducting using R (version 4.0.3).
The two-tailed Fisher’s exact test was used to compare the
differences between groups. P-value < 0.05 was considered
statistically significant.

3 Results

3.1 Identification of DLG3 variants

Six DLG3 variants were identified in seven unrelated
male individuals, including c.18C > G/p.His6Gln, c.128G >

T/p.Gly43Val, c.463C > T/p.Pro155Ser, c.593G > A/p.Arg198Gln,
c.1415G > A/p.Arg472His, and c.1998T > A/p.Asn666Lys
(Figures 1A, B and Table 1). The variant c.128G > T/p.Gly43Val
was recurrently identified in cases 2 and 3. All variants originated
from their asymptomatic mothers, consistent with Mendelian
X-linked recessive (XLR) inheritance.

These variants were absent in the male controls of the gnomAD
database (Table 2). The six variants were found to be located in
residues that were highly conserved among mammals based on
amino acid sequence alignment (Figure 1C). All variants were
predicted to be “damaging” or “conserved” by more than five
in silico tools (Table 2).

The molecular effects of the missense variants were assessed
through protein modeling and visualized using PyMOL. Among
the six missense variants, three were predicted to alter hydrogen
bonds with neighboring residues. The remaining three missense
variants (p.His6Gln, p.Gly43Val, and p.Pro155Ser) were not
predicted to alter hydrogen bonds with surrounding residues
but were predicted to decrease the protein stability (Figures 2A,
C). Four variants (p.His6Gln, p.Gly43Val, p.Pro155Ser, and
p.Arg472His) were also predicted to cause hydrophobicity changes,
based on the Fauchère and Pliska hydrophobicity scale (Figure 2B).

No pathogenic or likely pathogenic variants in other
epilepsy-related genes were identified in the seven patients
(Supplementary Table 2) (Wang et al., 2017).

3.2 Clinical features of the cases with
DLG3 variants

The detailed clinical features of the patients with DLG3 variants
were summarized in Table 1. The patients were all diagnosed with

TABLE 1 Clinical characteristics of individuals with DLG3 variants.

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Variants
(NM_021120.4)

p.His6Gln p.Gly43Val p.Gly43Val p.Pro155Ser p.Arg198Gln p.Arg472His p.Asn666Lys

Sex M M M M M M M

Age 7 years 15 years 14 years 19 years 9 years 7 years 10 years

Seizure onset 2 years 2 month 4 years 12 years 16 years 7 years 4 years 2 years

Seizure course sGTCS, 3–4
times/year

CPS, 2–3
times/day;
GTCS and
sGTCS, 3–4
times/month

GTCS and
sGTCS, 1–2
times/year

GTCS, once;
myoclonic
seizure, 5–10
times/day

CPS, 5–6
times/month
sGTCS, 3 times

GTCS 2
times/year

GTCS 2
times/month.

Prognosis Seizure-free by
VPA, LTG

Seizure-free by
VPA, LTG

Seizure-free by
LEV

Remission by
VPA

Refractory Seizure-free by
VPA, LTG

Refractory

EEG Diffuse slow
waves in
background;
spike,
poly-spike, and
spike-slow waves
in bilateral
central-parietal-
occipital regions
and posterior
temporal regions
at 5 years old.

Generalized
spike-slow waves
at 4 years old.
Slow wave
paroxysm in the
left frontal and
frontal midline
at 13-year-old.
Normal at
15 years old.

Generalized
spike and
spike-slow waves
at 12 years old.
Multifocal spike
and spike-slow
waves at 13 years
old.
Normal at
14 years old.

Generalized
sharp (spike)
waves and
poly-spike-slow
waves.

Spike waves and
spike-slow in
bilateral anterior
head at 7 years
old.

Generalized
spike and
spike-slow waves
at 4 years old.
Multifocal spike
and spike-slow
waves at 7 years
old.

Spike waves and
spike-slow in left
occipital and
temporal lobe at
9 years old.

Brain MRI NA Normal Normal Gray matter
heterotopia

Normal NA Normal

Neurodevelopment ASD, DD and ID Normal Normal Mild ID ASD, ADHD, ID
and speech delay

ID and speech
delay

Normal

Diagnosis PE IGE IGE IGE PE IGE PE

ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; CPS, complex partial seizure; DD, developmental disorder; EEG, electroencephalogram; GTCS, generalized
tonic-clonic seizure; ID, intellectual disability; IGE, idiopathic generalized epilepsy; PE, partial epilepsy; sGTCS, secondary generalized tonic-clonic seizure; LTG, lamotrigine; LEV,
levetiracetam; MRI, magnetic resonance imaging; VPA, valproate acid.
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epilepsy. The onset age of seizures ranged from 2 years old to
16 years old, with a median onset age of 4 years. Four cases mainly
presented with generalized seizures (Cases 2, 3, 4 and 6), including
generalized tonic-clonic and myoclonic seizures. Three cases (Cases
1, 5, and 7) exhibited secondary generalized tonic-clonic seizures
and focal seizures. Seizure-free was achieved in cases 1, 2, 3, and
6. Multifocal discharges were recorded in all cases during EEG
monitoring (Figures 3A–D). Generalized discharges were initially
presented in cases 2, 3, 4 and 6, but multifocal discharges were
also exhibited after being treated with antiseizure medications. MRI
scans detected no structural abnormities of the brain, except case
4 with gray matter heterotopia (Figure 3E). Neurodevelopmental
abnormalities were also exhibited in cases 1, 4, 5 and 6.

3.3 Location of DLG3 variants and
molecular subregion effects

The SAP102 protein, contains three tandem amino-terminal
PSD-95/Dlg/ZO-1 (PDZ) domains mediating protein-protein
interactions, a src homology 3 (SH3) domain, and a C-terminal
guanylate-kinase like (GK) domain (Kuwahara et al., 1999).
The variants Pro155Ser and Arg198Gln were located in PDZ1
domain, and Asn666Lys was located in guanylate-kinase like
domain, while other three variants (p.His6Gln, p.Gly43Val,
and p.Arg472His) were located outside the functional domains
(Figure 4).

Previous studies showed that the location of the variants was
associated with the variation of clinical phenotypes (Tang et al.,
2020). It is noted that the three variants locating outside functional
domains were all identified in patients achieving seizure-free (Cases
1, 2, 3 and 6), while other three variants locating in functional
domains were all identified in the patients with poor control of
seizures (Case 4, 5 and 7).

3.4 Genotype-phenotype correlation

The previously reported variants and associated clinical
information were systemically reviewed by using the HGMD
(version: HGMD Professional 2023.1) and PubMed databases.
A total of 27 variants were identified in 46 patients, including
thirteen missense variants, five nonsense variants, five canonical
splicing site variants, one intron variant, and three frameshift
variants (Figure 5A and Supplementary Table 1). The majority of
DLG3 variants were of XLR pattern, and only four variants were
of X-linked dominant (XLD) pattern. Further analysis showed that
the XLR variants were all inherited from asymptomatic mothers,
whereas XLD variants were all de novo (Figures 5B–D). The
phenotype of male patients in the cases with XLD variants was more
severe than that of female patients (Tarpey et al., 2004; Sandestig
et al., 2020). To analyze the relationship between genotype and
phenotype, the genotype was classified into null variants and non-
null variants. Patients with non-null variants presented higher
percentages of epilepsy with/without NDD than those with null
variants (10/14 vs. 1/13; p = 0.001) (Figure 5E), potentially
suggesting a genotype-phenotype correlation.
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FIGURE 2

Schematic illustration of hydrogen bond changes, hydrophobicity changes and protein stability prediction. (A) Three-dimensional structure of DLG3
protein and localization of DLG3 variants of this study. (B) Fauchère and Pliska hydrophobicity scale exhibited the hydrophobicity of 20 amino acids.
Abscissa: from left to right, hydrophobicity gradually decreased. Blue amino acids are hydrophobic, green amino acids are neutral, and yellow amino
acids are hydrophilic. Amino acids with high positive values are more hydrophobic, whereas amino acids with low negative values are more
hydrophilic. (C) Hydrogen bond changes and Gibbs free energy of folding (DDG) values of DLG3 variants. The residues where the mutations
occurred are shown as green rods. The red dotted line represents hydrogen bonds. Arrows indicate the positions with hydrogen bond changes.
Three of six variants were predicted to alter hydrogen bonds with surrounding residues. All variants were predicted to decrease protein stability.

3.5 Protein-protein interactive network
analysis

Protein-protein interactions, the basis of cellular metabolism,
are indispensable in all life activities. The interactive genes tend to
be associated with similar phenotypes. We thus further investigated
the interactive partner of DLG3 protein and their associated
phenotypes to explore the underlying phenotypic spectrums of
DLG3 gene. DLG3 protein is predicted to interact with 52 proteins
with high confidence (minimum required interaction score ≥ 0.7,
String database). The majority of disease-causing genes encoding
the proteins interacting with the DLG3 protein are associated
with neurological diseases, including five causative genes of both
epilepsy and NDD (GRIN1, GRIN2A, GRIN2B, GRIK2, and NBEA),
eleven causative genes of NDD with seizures (GRIA1, GRIA2,
CASK, NRXN1, NLGN3, NEDD4L, SHANK3, GPSM2, DLG4,
SYNGAP1, and UBE3A), and four causative genes of NDD without

seizures (NLGN4X, CACNG2, SHANK2, and NLGN1) (Figure 6).
These broad phenotypes of genes encoding proteins interacting
with DLG3 protein provided possible clues for the association
between DLG3 and epilepsy.

4 Discussion

In this study, we identified six novel DLG3 variants in seven
unrelated patients with heterozygous epilepsies, including three
with only epilepsy and four with epilepsy and NDD. The variants
were not presented as hemizygous states in controls. These
variants were located in residues with high conservation and
were predicted to be damaging by multiple in silico tools. Protein
modeling showed that the variants altered the hydron bonding with
surrounding residues and protein stability. Genotype-phenotype
correlation analysis revealed that patients with non-null variants
presented higher percentages of epilepsy with/without NDD than
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FIGURE 3

Representative EEG and magnetic resonance imaging (MRI) of the cases with DLG3 variants. (A) Interictal EEG of case 1 at 2 years of age showed
bilateral and multifocal spike-slow waves. (B) Interictal EEG of case 6 at 7 years of age showed bilateral multifocal spikes and spikes-slow waves
(obtained). (C,D) Interictal EEG of case 7 at 9 years of age showed spike-slow waves predominant at the left posterior head (C) and eye closure
sensitivity (D). (E) The MRI of case 4 at the age of 16 years showed gray matter heterotopia.

FIGURE 4

Schematic illustration of variant location. Schematic diagram of the DLG3 protein and the localization of the DLG3 variants identified in this study.
Variants identified in patients with seizure-free are shown in black. Variants identified in patients with poor control of seizures are shown in red.

those with null variants. This study suggested that DLG3 variants
were potentially associated with epilepsy with or without NDD.
The genotype-phenotype correlation helps in understanding the
underlying mechanism of phenotypic variation.

The DLG3 gene was highly conserved with homologs in
Drosophila melanogaster, Mus musculus, and Homo sapiens. In

Drosophila melanogaster, the majority of knockout DLG3 ortholog
lines presented preadult lethality and abnormities in neuroanatomy
neurophysiology (FlyBase ID: FBgn0001624). In Mus musculus,
hemizygous knockout of DLG3 led to abnormalities in the cortex
and synapse morphology, impairment in spatial learning, and
abnormal excitatory postsynaptic currents (Cuthbert et al., 2007).
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FIGURE 5

Genotype–phenotype correlation analysis of DLG3 variants. (A) Schematic diagram of the DLG3 protein and the localization of the DLG3 variants
identified in this study and reported previously. Variants associated with intellectual disability (ID) are shown in black, variants associated with
epilepsy are shown in green, and variants associated with epilepsy and neurodevelopmental disorders (NDDs) are shown in red. * Means termination
codon. (B) Pie chart of the genotype distribution of DLG3 variants. (C) The stacked bar chart of inherited patterns and origination of the DLG3
variants (n = 27). (D) Venn diagram of the phenotypes of patients with DLG3 variants. A total of 27 variants were identified, including sixteen variants
associated with intellectual disability, nine variants associated with both intellectual disability and epilepsy, and two variants associated with epilepsy.
(E) The stacked bar chart of phenotypes of the variants with different genotypes. Variants with non-null variants presented higher percentages in
patients with epilepsy with/without NDD than null variants (10/14 vs. 1/13; p = 0.001).

In Homo sapiens, data from large-scale genome sequencing reveal
that DLG3 is intolerant to loss-of-function (LOF) variants, with
a probability of being LOF intolerant (pLi) of 1. The variants of
the presented study were predicted to be “damaged” by diverse

in silico tools and alter hydrogen bonding and/or polarity to
disrupt protein stability, which may be associated with LOF. This
evidence suggests that LOF may be the pathogenic mechanism
for DLG3.
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FIGURE 6

Analysis of genes interacting with DLG3. The DLG3 protein interacted with 52 proteins with high confidence [(left), minimum required interaction
score ≥ 0.7, STRING database], including five genes identified to be associated with both epilepsy and neurodevelopmental disorder (NDD), eleven
genes identified to be associated with NDD with seizures, four genes identified to be associated with NDD without seizures, four genes identified to
be associated with other phenotypes, and 28 genes not identified to be associated with phenotypes (right).

FIGURE 7

Schematic diagram of the possible association between DLG3 variants on synaptic damage and related phenotypes. (A) Possible synaptic damage
and postsynaptic current alteration of various DLG3 variants. cLOF, complete loss of function; DNE, dominant-negative effects; GOF, gain of
function; NMDARE, N-methyl-D-aspartate receptors; pLOF, partial loss of function. (B) The possible association between phenotypes and synaptic
damage. Variants of mild or moderate damage would cause subtle functional alteration of synapse with abnormal electrophysiological activity and
subsequently epilepsies and/or intellectual disability; while variants of complete loss of function would lead to decreased synaptic conduction,
subsequently intellectual disability.

The DLG3 protein is an important scaffold protein interacting
with synaptic proteins, especially in excitatory synapses (Sheng
and Hoogenraad, 2007; Murata and Constantine-Paton, 2013).

Protein–protein interaction network analysis showed that DLG3
interacted with 52 genes, of which 24 genes have been identified
to be associated with disease. The sixteen genes are associated with
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NDD with seizures or developmental and epileptic encephalopathy
(Figure 6). With increasing disease-causing variants identified,
sixteen genes (including GRIN1, GRIN2A, GRIN2B, GRIK2, NBEA,
GRIA1, GRIA2, NEDD4L, CASK, NRXN1, NLGN3, SHANK3,
GPSM2, DLG4, SYNGAP1, and UBE3A) have been identified to be
associated with a wide phenotypic spectrum from mild epilepsy
to severe DEE/NDD with seizures (Endele et al., 2010; Harrison
et al., 2011; Moog et al., 2011; Tan et al., 2011; Doherty et al.,
2012; Soorya et al., 2013; Broix et al., 2016; Lemke et al., 2016;
Moutton et al., 2018; Mulhern et al., 2018; Agarwal et al., 2019;
Salpietro et al., 2019; Liu et al., 2021; Stolz et al., 2021; Blakes
et al., 2022; Ismail et al., 2022). The wide phenotypic spectrum of
DLG3-interacting genes provides possible clues for the association
between DLG3 and epilepsy. Previously, DLG3 variants have been
reported to be associated with XLID-90 (Supplementary Table 1).
This study identified DLG3 variants in three patients with mild
epilepsy without NDD, broadening the phenotypic spectrum of
DLG3.

The DLG3 protein, contains three PDZ domains, a SH3
domain, and a GK domain. The PDZ domains interact with a
diverse range of membrane proteins, such as ionotropic glutamate
receptors, cell-surface adhesion molecules (Wei et al., 2018). The
SH3 and GK domains interact with cytoskeletal proteins and
intracellular signaling complexes (Wei et al., 2018). In this study,
the three patients with variants locating outside functional domains
all achieved seizure-free, while the four patients with variants
locating in functional domains presented poor control of seizures,
suggesting a molecular sub-regional effect. Compared with those
in functional domain, variants locating out the functional
domain may cause mild damaging effect and subsequently
favorable outcomes, which may be one of the explanations of
phenotypic severity.

The DLG3 protein, predominantly distributed in the
postsynaptic densities of excitatory synapses, plays vital roles
in synaptic development and synaptic transmission (Sans
et al., 2000; Cuthbert et al., 2007; Elias and Nicoll, 2007; Elias
et al., 2008; Zheng et al., 2011; Wei et al., 2015). Synaptic
abnormalities are one of the core processes in the occurrence
of neurodevelopmental disorders and epilepsies (Blanpied
and Ehlers, 2004). The genotype-phenotype correlation
analysis showed that patients with non-destructive variants
mainly exhibited epilepsy with or without NDD, whereas
patients with destructive variants primarily presented with
intellectual disability (Figure 5). It is possible that phenotypic
heterogeneity is associated with the damaging effect of DLG3
variants (Figure 7). Variants of mild or moderate damage
would cause subtle functional alteration of synapse with
abnormal electrophysiological activity and subsequently
epilepsies and/or intellectual disability; while variants of
complete loss of function would lead to decreased synaptic
conduction, subsequently intellectual disability. However,
the functional alternations of all identified DLG3 variants,
including those previously reported variants, were not
experimentally validated. The association between phenotypic
heterogeneity and detailed mechanisms of variants, such
as gain of function and dominant-negative effects, warrants
functional studies.

The DLG3 protein mediates NMDA receptor trafficking and
contributes to NMDA receptor clustering and anchoring in the

PSD (Lau et al., 1996; Nagano et al., 1998). Dysregulation
of NMDAR subunits is one of the important mechanisms of
partial epilepsy (Xu and Luo, 2018). In this study, the cases
with DLG3 variants all presented with multifocal discharges
on EEG, in which four cases exhibited generalized discharges
initially but also multifocal discharges after being treated with
antiseizure medications. The phenotype of multifocal discharges
potentially reflects the functional impact of DLG3 variants
in mediating NMDAR trafficking and may be one of the
core features of patients with DLG3 variants. However, the
detailed functional alterations of these variants remain to be
functionally validated.

In this study, gray matter heterotopia (GMH) was presented
in the patient of case 4, which was distinguished from the other
six cases. Abnormities of brain structure were also not presented
in the previously reported cases (Supplementary Table 1). The
DLG3 variants may partially contribute to the phenotype of
these cases but not gray matter heterotopia. However, Mendelian
variants associated with cortical malformations were not identified
in this case (Supplementary Table 2). It is unknown whether
other factors are involved in the pathogenicity, which warrants
further verification.

In summary, this study suggested that DLG3 variants were
associated with epilepsy with/without NDD, expanding the
phenotypic spectrum of DLG3. The observed genotype-phenotype
correlation contributes to our understanding of the underlying
mechanisms of phenotypic variation.
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