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Stroke is a devastating condition that can lead to significant morbidity and

mortality. The aftermath of a stroke, particularly hemorrhagic transformation

(HT) and brain edema, can significantly impact the prognosis of patients. Early

detection and effective management of these complications are crucial for

improving outcomes in stroke patients. This review highlights the emerging

diagnostic markers and therapeutic targets including claudin, occludin, zonula

occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ,

TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1,

ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF,

VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these

biomarkers were also discussed.

KEYWORDS

diagnostic marker, therapeutic target, stroke, hemorrhagic transformation, edema,
zonula occluden, S100β, albumin

1 Introduction

In strokes, the blood supply to part of the brain is interrupted or reduced, resulting
in a loss of oxygen and nutrients to the brain (Li B. et al., 2022). Brain cells begin to
die within minutes. Strokes can lead to permanent disability or death and are a medical
emergency. A stroke is classified as ischemic, hemorrhagic, transient ischemic attack
(TIA), or cryptogenic based on its cause (Campbell et al., 2019). Despite the availability
of reperfusion therapies such as thrombolytic therapy and mechanical thrombectomy,
hemorrhagic transformation (HT) and brain edema remain significant challenges in stroke
management (Uniken Venema et al., 2022).

Hemorrhagic transformation represents the occurrence of bleeding within an area of
the brain that has suffered an ischemic insult (Hong et al., 2021). This bleeding can happen
spontaneously or be precipitated by treatments, especially those that aim to restore blood
flow, like thrombolytic agents (Jickling et al., 2014). Brain edema refers to the accumulation
of fluid in the brain tissue, leading to increased intracranial pressure. Following an ischemic
stroke, edema can develop around the infarcted area, causing a mass effect, which can
further compromise brain function and even lead to herniation, a life-threatening condition
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(Ji et al., 2021). Both complications are associated with poor
prognosis and limited treatment options. While imaging methods
like CT and MRI are commonly used to diagnose HT and
brain edema, the early stages of these complications may not
always be detectable (von Kummer et al., 2015). Besides, there’s
a lack of universally accepted, standardized treatment protocols
for managing HT and brain edema, especially in the setting
of large vessel occlusions and after endovascular procedures.
Current treatments for brain edema, such as osmotic therapy and
decompressive craniectomy, are somewhat non-specific and come
with their own set of risks (Beez et al., 2019). More targeted
therapies, perhaps at the molecular or cellular level, are needed.
Therefore, identifying novel diagnostic markers and therapeutic
targets is essential for early detection and improved management
of post-stroke HT and brain edema. This review aims to explore
recent advances in the pathophysiology of post-stroke HT and
brain edema, as well as the identification and potential therapeutic
targets of novel diagnostic markers (Figure 1).

2 Blood-brain barrier (BBB)
structural markers

Blood-brain barrier is a highly specialized structure in the
central nervous system (CNS) that regulates the passage of
substances between the blood and the brain. It plays a crucial
role in maintaining a stable internal environment for neuronal
function (Sweeney et al., 2019). Disruption of the BBB can have
significant implications for brain health, leading to neuronal
damage and various neurological conditions such as cerebral
edema and brain hemorrhage (Sweeney et al., 2018). Tight
junctions (TJs) are complex structures that form the primary
barrier within the BBB, (Abdullahi et al., 2018). They seal adjacent
endothelial cells together, ensuring a strict regulation of substance
movement between the blood and the brain’s extracellular fluid.
Tight junction proteins (TJPs) are crucial components of these
junctions, and their integrity is essential for maintaining the
BBB’s selective permeability (Berndt et al., 2019). Changes in
the levels of TJPs like claudin, occluding, junction adhesion
molecules (JAMs), and zonula occludens (ZO) after a stroke lead to
heightened permeability of the BBB allowing for the extravasation
of blood components, which might hint toward impending HT and
vasogenic edema (Huang et al., 2012; Zhao et al., 2018).

Claudins are integral membrane proteins that play a pivotal
role in the formation and maintenance of TJs. Among the claudin
family, claudin-5 is particularly significant in the BBB (Lv et al.,
2018). It forms the tight junction strands’ backbone and determines
the selective permeability of the barrier (Li C. et al., 2022). While
not as selectively determinant as claudins, occludin plays a role in
the regulation and maintenance of TJ integrity. It is involved in
the sealing of the paracellular pathway (Kim et al., 2020). ZO-1 is
a cytoplasmic scaffolding protein that ensures structural stability
by linking transmembrane proteins like claudins and occludin
to the actin cytoskeleton, providing structural support (Gao and
Shivers, 2004). This interaction stabilizes and strengthens the tight
junctions, ensuring the selectivity and integrity of the BBB. JAM-
A is an adhesion molecule that is part of the immunoglobulin
superfamily found at tight junctions between endothelial cells

(Williams et al., 1999; Babinska et al., 2020). It interacts with
other TJPs like ZO-1 and plays a role in leukocyte transmigration,
which can be relevant in neuroinflammatory conditions (Severson
and Parkos, 2009; Sladojevic et al., 2014). Alterations in JAM-
A expression or function can impact BBB integrity and may be
associated with post-stroke complications like HT and brain edema
(Haarmann et al., 2010; Xie et al., 2023). Following an ischemic
stroke, there’s often inflammation and oxidative stress which can
negatively impact the expression, structure, and function of TJPs
(Yang et al., 2019). Disrupted TJs of BBB indicate an increased
risk of blood products leaking into the brain tissue leading to HT,
especially after reperfusion therapies or spontaneous reperfusion.
With the disassembly or dysfunction of TJs, there’s an osmotic
imbalance created by the abnormal influx of water and solutes from
the bloodstream into the brain tissue. This results in cytotoxic and
vasogenic edema, increasing intracranial pressure and exacerbating
brain injury (Corrigan et al., 2016).

3 Matrix metalloproteinases (MMPs)

Matrix metalloproteinases are zinc-dependent proteolytic
enzymes that degrade the extracellular matrix (ECM). A variety of
physiological processes rely on them, including tissue remodeling,
embryogenesis, and wound healing (de Almeida et al., 2022).
In the context of ischemic stroke, certain MMPs are implicated
in the disruption of BBB by degrading TJPs and basal lamina
components directly, which will promote HT and brain edema
(Rempe et al., 2016). Besides, several MMPs are reported to cleave
and activate various inflammatory mediators, exacerbating post-
stroke inflammation, and further contributing to brain edema.

Of the MMPs, MMP-9 (gelatinase B) has been most
prominently tied to BBB disruption following ischemic stroke
degrading type IV and V collagens, which are significant
components of the ECM’s basal lamina as well as tight junction
proteins including occludin, claudins, and ZO-1 (Yang et al., 2020).
This degradation weakens the structural integrity of BBB, making
it more susceptible to disruption. Hence, upregulated levels of
MMP-9 in the serum or CSF after stroke have been correlated
with worse clinical outcomes and increased risk of hemorrhagic
transformation and vasogenic edema (Rosell et al., 2008; Barr et al.,
2010; Mechtouff et al., 2020). MMP-9 can also activate microglia
and attract leukocytes to the site of injury, further promoting
inflammation (Qiu et al., 2023). This inflammatory cascade can
exacerbate brain edema. Additionally, MMP-9 contributes to
cytotoxic edema by indirectly impairing cellular ion and water
balance mechanisms. MMP-2 (gelatinase A) can degrade type IV
collagens. Apart from its role in ECM degradation, MMP-2 can
induce endothelial cell apoptosis (Zhang S. et al., 2018). Loss of
endothelial cells further weakens the BBB structure and function.
It’s constitutively expressed in the brain and can be upregulated
after cerebral ischemia. MMP-3 (stromelysin-1) can activate other
MMPs, including MMP-9, amplifying the proteolytic effects. It
also has substrate specificity for various extracellular matrix
components, especially proteoglycans and fibronectin, potentially
contributing to BBB breakdown (Chung et al., 2013). Its role in BBB
disruption has been studied in conditions like neuroinflammation
and traumatic brain injury. The pro-inflammatory cytokines,
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FIGURE 1

Involvement of markers in the pathophysiology of post-stroke HT and brain edema. The blood-brain barrier (BBB) consists of endothelial cells
surrounded by pericytes, astrocytic end feet processes and the basement membrane, comprising extracellular matrix (ECM). Disruption of the BBB
have significant implications for hemorrhagic transformation (HT) and brain edema. Tight junctions (TJs) are a key feature of the BBB, sealing the
spaces between the endothelial cells and restricting the paracellular movement of solutes. TJs are complex structures comprised of various proteins
like claudin, occludin, junction adhesion molecules (JAMs) and zonula occludens (ZO). Neural cells suffer from energy failure after stroke leading to
inflammatory cascade and oxidative stress exacerbating BBB disruption. Pro-inflammatory cytokines can increase the expression and promote the
activity of matrix metalloproteinases (MMP) which will degrade the ECM’s basal lamina. Markers like von Willebrand factor (vWF) and Vascular
Endothelial Growth Factor (VEGF) might be indicative of endothelial disruption or activation, potentially predicting the risk of HT and edema. AQP4 is
most abundantly located in the astrocyte foot processes that has insignificant effect on water homeostasis in the brain. It plays an important role in
both the formation and resolution of post-stroke edema.

especially TNF-α and IL-1β, can upregulate MMP expression via
activation of transcription factors like NF-κB and AP-1. This creates
a feedback loop wherein inflammation promotes MMP activity, and
MMPs further augment inflammation (Huang et al., 2022).

Given their significant role in BBB disruption, MMPs, especially
MMP-9, have become therapeutic targets for interventions aiming
to reduce the complications of ischemic stroke. Some of the
MMP inhibitors have been studied in the context of stroke.
Batimastat (BB-94) is a broad-spectrum MMP inhibitor that has
shown neuroprotective effects in animal models of stroke when
administered either before or immediately after the onset of

ischemia (Zhou et al., 2021). Despite this, poor bioavailability
and potential side effects restrict its clinical application. Naturally
occurring endogenous inhibitors of MMPs including TIMP-1
and TIMP-2 have been of particular interest in stroke research
(Zieliñska-Turek et al., 2022). Overexpression of TIMPs or using
recombinant TIMPs has shown neuroprotection in animal models
of ischemic stroke. Though primarily an antibiotic, minocycline
has anti-inflammatory properties and can inhibit MMPs, especially
MMP-2 and MMP-9 (Switzer et al., 2011). Several preclinical
studies have shown that minocycline can reduce infarct area and
improve neurological outcomes in animal ischemic stroke models.
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Some clinical trials have also been undertaken, suggesting potential
benefits, though more extensive studies are needed (Ortiz et al.,
2020). Preclinical studies have shown that SB-3CT, a more selective
inhibitor targeting MMP-2 and MMP-9, can reduce infarct size
and preserve BBB integrity in animal models of ischemic stroke
(Cai et al., 2017). However, it’s crucial to approach MMP inhibition
with caution, as these enzymes also play roles in tissue repair and
remodeling during the recovery phase.

4 Inflammatory markers

Stroke triggers an inflammatory cascade consisting of the
activation of immune cells and the secretion of inflammatory
mediators, such as cytokines, chemokines, and adhesion molecules
(Chen S.-J. et al., 2022). These molecules promote leukocyte
infiltration and increase vascular permeability, ultimately resulting
in BBB disruption, vasogenic edema, hemorrhagic transformation,
and worse neurological outcomes (Candelario-Jalil et al., 2022).
Neuroinflammation can also lead to a positive feedback loop,
where inflammation worsens BBB disruption and BBB disruption
exacerbates inflammation.

4.1 Cytokines

Cytokines are small secreted proteins released by cells that play
pivotal roles in mediating inflammatory reactions by affecting cell
interaction and communications. After a stroke, there’s a rapid
increase in the production of pro-inflammatory cytokines which
affect endothelial cell function and integrity of BBB (Qiu et al.,
2021). Increased BBB permeability allows the extravasation of
blood cells, plasma proteins, and fluid into the brain parenchyma,
leading to HT and vasogenic edema. Some cytokines may influence
cellular ion balance and osmotic regulation, indirectly contributing
to cytotoxic edema. Certain cytokines can activate astrocytes, which
can exacerbate brain edema due to their role in water regulation
within the CNS (Song et al., 2021).

A pro-inflammatory cytokine, IL-1β is among the earliest
to be released after ischemic injury. Once released, active IL-1β

binds to the IL-1 receptor (IL-1R) on various cell types, including
endothelial cells, neurons, and glial cells. It triggers a cascade of
inflammatory events by the NF-κB pathway, resulting in the further
upregulation of other pro-inflammatory mediators and reactive
oxygen species (ROS). IL-1β has been shown to alter the expression
and function of TJPs, promoting MMP activity, and inducing
endothelial cell activation, contributing to the development of HT
and brain edema.

Tumor necrosis factor-alpha (TNF-α) can activate neighboring
astrocytes, endothelial cells, and other microglia, propagating the
inflammatory response. TNF-α increases the level of adhesion
molecules, such as ICAM-1 and VCAM-1, on brain endothelial
cells (Tang et al., 2011). This facilitates the adhesion and migration
of peripheral immune cells, like neutrophils and monocytes, into
the brain parenchyma. The binding of TNF-α to TNFR1 activates
several downstream pathways, including NF-κB Pathway, MAPK
Pathway, and Caspase Pathway. Elevated levels of TNF-α have been
associated with brain edema formation and might increase the risk

of HT by affecting tight junction proteins and promoting matrix
metalloproteinase (MMP) activity through its signaling cascades
(Chen et al., 2019).

Interleukin-6 (IL-6) levels rise following ischemic stroke from
affected neurons, astrocytes, and microglia (Zhu et al., 2022).
This initial release can further be augmented by other pro-
inflammatory cytokines such as IL-1β and Interferon-gamma (IFN-
γ) (Philipp et al., 2018). IL-6 binding to its receptor, IL-6R, further
associates with the gp130 signaling protein and then activates
various intracellular signaling cascades, including the JAK/STAT,
MAPK, and PI3K/Akt pathways (Heinrich et al., 2003). IL-6 can
contribute to BBB disruption by promoting endothelial cells into
activation as well as increasing the expression of MMPs through
its intracellular signaling pathways (Aliena-Valero et al., 2021). IL-
6 can also modulate TJPs and contribute to the breakdown of
the BBB. IL-6 has been suggested as a potential biomarker for
a higher risk of developing HT and brain edema after ischemic
stroke (Leasure et al., 2021). Regarding hemorrhagic stroke, higher
IL-6 levels at admission are related to worse prognosis regarding
function, hemorrhage volume, and edema (Leasure et al., 2021).

Interferon-gamma is primarily produced by T cells and
natural killer cells and has both pro-inflammatory and immune-
modulating effects (Zhang G. et al., 2018). In the context of
stroke, IFN-γ can influence the production of adhesion molecules
and MMPs breaking down BBB integrity. IL-6 and IFN-γ trigger
the JAK-STAT pathway, leading to the expression of genes that
contribute to BBB breakdown and inflammation (Zhu et al., 2021).

Transforming Growth Factor-beta (TGF-β) has been involved
in both protective and detrimental effects in the context of cerebral
ischemia. In response to the ischemic insult, latent TGF-β is
activated. Activated TGF-β binds to its receptors, specifically, TGF-
β type I and type II receptors (TβRI and TβRII), and activates
the downstream Smad proteins, specifically Smad2 and Smad3.
These proteins then form complexes with Smad4, translocate to
the nucleus, and regulate target gene transcription (Zhang et al.,
2019). TGF-β has been shown to enhance the integrity of the BBB
by promoting the expression of tight junction protein occludin (Hu
et al., 2023). This action can be protective against BBB breakdown,
a critical factor in the development of HT and brain edema.
However, chronic TGF-β activation can lead to vascular remodeling
and fibrosis, potentially affecting vascular fragility (Mickael and
Graham, 2019). Some studies suggest that TGF-β may increase the
risk of HT, possibly by altering vascular integrity or promoting
angiogenesis (Zhang et al., 2021).

Unlike the pro-inflammatory cytokines listed above,
Interleukin-10 (IL-10) is primarily anti-inflammatory. IL-10
might help dampen the inflammatory response after ischemic
stroke, thereby potentially reducing the risk of HT and brain
edema (Piepke et al., 2021). Interleukin-4 (IL-4) and Interleukin-13
(IL-13) are typically associated with anti-inflammatory responses
(Xu et al., 2020). They might play roles in shifting the immune
response after stroke toward a more reparative, less inflammatory
phenotype, potentially reducing the risk of HT and edema.

4.2 Chemokines

Chemokines are a subset of cytokines specifically involved
in directing the migration of cells, particularly immune cells.
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Following ischemic stroke, chemokines are released in the brain,
leading to immune cell recruitment and activation which can
contribute to BBB breakdown. The disruption of the BBB
potentially results in HT and vasogenic edema. Some chemokines
might directly affect the permeability of brain endothelial cells
or influence osmotic regulation, contributing to edema formation
(Marchetti et al., 2022).

Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is one of
the most studied chemokines in the pathophysiology of ischemic
stroke (Zhao et al., 2020). MCP-1 recruits macrophages and
monocytes to the injury site (Stowe et al., 2012). MCP-1 can
activate astrocytes, the major cell type involved in maintaining the
brain’s extracellular environment (Zhou M. et al., 2022). Activated
astrocytes can lead to cytotoxic edema (Liu J. et al., 2023). Elevated
levels have been associated with exacerbated brain injury and
edema (Schuette-Nuetgen et al., 2012). CXCL2 (MIP-2α) can
promote the disruption of the BBB by inducing endothelial cell
activation and neutrophil recruitment, potentially leading to the
extravasation of blood components and water, culminating in HT
and vasogenic brain edema (Chen et al., 2021). While CXCL2
primarily acts on immune cells, there is the potential for direct
effects on brain cells like neurons, astrocytes, and microglia (De
Paola et al., 2007; La Cognata et al., 2023). Activated astrocytes
and microglia can produce inflammatory mediators that can
contribute to cytotoxic edema and neuroinflammation. CXCL8 (IL-
8) also attracts neutrophils and has been linked to inflammation,
BBB disruption, and subsequent brain edema (Lv et al., 2019).
CXCL12 (SDF-1) has implications in ischemic brain injury and
related complications such as HT and brain edema, Post-ischemia,
CXCL12 is upregulated in the brain, acting as a chemoattractant
for various immune cells, including monocytes, natural killer cells,
and T cells, especially via its primary receptor, CXCR4 (Wang et al.,
2012; Wang D. et al., 2023). These cells, once in the ischemic tissue,
can release proteolytic enzymes, such as MMPs, which degrade the
extracellular matrix and weaken the BBB. In addition, CXCL12
overexpression in ischemic tissues has been found to enhance bone
marrow-derived cells (BMCs) recruitment from peripheral blood
and then to induce angiogenesis (Zemani et al., 2008; Shiba et al.,
2009; Nguyen et al., 2023). This process increases the risk of HT and
brain edema. Continuous administration of the CXCR4 antagonist
AMD3100 for 2 weeks can inhibit CXCL12-induced angiogenesis
in a mouse model of stroke (Selvaraj et al., 2017).

Unique among chemokines, fractalkine (CX3CL1) exists in
both membrane-bound and soluble forms. It’s involved in
recruiting monocytes and microglia. In the context of ischemic
stroke, fractalkine signaling has been associated with both
neuroprotective and neurotoxic effects, and its role in HT and brain
edema is still being elucidated (Cipriani et al., 2011).

4.3 Adhesion molecules

Adhesion molecules play a pivotal role in mediating the
interaction between leukocytes and the endothelial cells of BBB
during inflammatory processes (Supanc et al., 2011). In response
to inflammatory signals, such as TNF-α and IL-1β, some adhesion
molecules are upregulated on endothelial cells. The overexpression
or increased activity of these molecules can lead to enhanced

leukocyte infiltration into the brain parenchyma, potentially
exacerbating inflammatory damage. In the context of ischemic
stroke, this can contribute to complications like HT and brain
edema. Here are some of the key adhesion molecules associated
with these complications.

Intercellular Adhesion Molecule-1 (ICAM-1) on the
endothelial cells facilitates the binding and transmigration of
leukocytes, especially neutrophils, and monocytes, into the
brain tissue (Huang et al., 2022; Witsch et al., 2023). ICAM-1
can bind integrins on leukocytes, facilitating their adhesion to
the endothelium (Singh et al., 2023). The process of leukocyte
transmigration, facilitated by ICAM-1, releases various mediators,
including MMPs, and compromises the TJs between endothelial
cells, leading to increased permeability of the BBB (Kunze et al.,
2015). Overexpression of ICAM-1 has been linked to increased
BBB permeability, inflammation, and consequent brain edema
and HT (Simundic et al., 2004; Ma et al., 2011; Zhang et al.,
2020). A recent study from China showed that an elevated level of
serum ICAM-1 was related to the increased risk of HT after acute
ischemic stroke (Wu et al., 2018).

Vascular Cell Adhesion Molecule-1 (VCAM-1) primarily
participates in the adhesion and transmigration of monocytes
(Sun et al., 2020; Bai et al., 2023). VCAM-1 interacts with its
integrin counter-receptors (mainly VLA-4) found on leukocytes,
promoting their adhesion to the vascular wall and transmigrating
into the ischemic zone subsequently (Eidson et al., 2021; Gao et al.,
2021; Bai et al., 2023). Leukocyte transmigration will disrupt BBB
as previously mentioned. Its upregulation post-stroke potentially
exacerbates HT and edema (Li B. et al., 2023).

P-selectin and E-selectin located on the surface of activated
endothelial cells and platelets, can initiate the tethering and rolling
of leukocytes on the endothelium which is a critical step preceding
firm adhesion and transmigration (Geissmann et al., 2003; Liu S.
et al., 2023). P-selectin is stored in the Weibel-Palade bodies of
endothelial cells and the α-granules of platelets (Ling et al., 2023).
In the event of a stroke, P-selectin is rapidly translocated to the
cell surface, where it plays a key role in the initial tethering and
rolling of leukocytes along the endothelium by interacting with its
ligands (like PSGL-1) on leukocytes (Yu et al., 2023). E-selectin is
distinctly inducible and expressed on endothelial cells in response
to inflammatory cytokines, particularly TNF-α and IL-1 (Takeda
et al., 2002). Following the initial tethering and rolling mediated
by P-selectin and E-selectin, leukocytes become more activated,
leading to firm adhesion [via other molecules like ICAM-1 and
VCAM-1 and subsequent transmigration into the tissue (Richard
et al., 2015; Hatchell et al., 2023)]. Higher levels of selectins have
been associated with exacerbated post-stroke inflammation, BBB
disruption, and potential complications like HT and brain edema
(Jin et al., 2011; Hase et al., 2012; Salas-Perdomo et al., 2018; Li
et al., 2020). Recently a prospective study demonstrated that higher
serum E-selectin levels were statistically significantly associated
with an increased risk of malignant brain edema in ischemic
stroke patients receiving endovascular thrombectomy treatment
(Hu et al., 2022; Zhou et al., 2023).

Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-
1/CD31) is an immunoglobulin-like cell adhesion molecule
expressed on the surface of endothelial cells, platelets, neutrophils,
and some subsets of lymphocytes (Arias et al., 2022; Fu et al., 2023).
It facilitates the final steps of leukocyte migration through the
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endothelial cell junctions post-stroke (Arias et al., 2022). PECAM-
1 plays a role in transmitting survival signals in endothelial cells,
preventing apoptosis (Gao et al., 2003). Any imbalance in PECAM-
1 signaling might affect the stability of blood vessels, making them
more susceptible to hemorrhagic events (Mahooti et al., 2000;
Maeda et al., 2009). Besides, being expressed on platelets, PECAM-1
is involved in platelet aggregation and adhesion (Soriano Jerez et al.,
2021). Dysregulation in platelet function can contribute to either
thrombotic events or impaired clot stability, both of which might
impact the risk of HT. Masashi Maeda et al. found that combined
treatment of rt-PA with tacrolimus reduces HT, which might be due
to its effects on PECAM-1/CD31 in thrombotic ischemia stroke
rat model (Maeda et al., 2009). Its role in ischemic stroke and its
complications is multifaceted and requires further investigation.

4.4 High mobility group box 1 (HMGB1)

High mobility group box 1, a nuclear protein, stabilizes
nucleosome formation and promotes transcription under
physiological conditions (Lotze and Tracey, 2005; Park et al.,
2006). However, upon ischemic injury, HMGB1 can be released
extracellularly by necrotic cells and function as a damage-
associated molecular pattern (DAMP) molecule (Qiu et al., 2008;
Mi et al., 2019; Chen R. et al., 2022). As a DAMP, HMGB1 binds
to multiple receptors, such as the advanced glycation end-products
(RAGE) receptors and toll-like receptors (TLRs), particularly
TLR2 and TLR4 (Yang et al., 2010, 2011; Kim et al., 2011). The
binding of HMGB1 to these receptors initiates intracellular
signaling pathways that amplify inflammation (Banks et al.,
2023). For example, nuclear factor-kappa B (NF-κB) and the
subsequent transcription of various pro-inflammatory genes were
activated afterward. This results in the production and secretion
of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6
(Xie et al., 2019; Xu et al., 2023). HMGB1 can also promote the
expression and activity of MMPs, especially MMP-9, thus altering
the function of TJPs and consequently increasing BBB permeability
(Richard et al., 2017). Therefore, HMGB1, via its inflammatory
effects, plays a role in the formation of HT and vasogenic edema.

Anti-inflammatory agents might reduce the risk of HT and
brain edema. Statins or 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase inhibitors, such as Atorvastatin and
Simvastatin, have anti-inflammatory and provide antioxidant
properties beyond their lipid-lowering effects. Some researchers
have suggested that early statin therapy might be beneficial
in acute ischemic stroke (Thomas et al., 2023). Glycyrrhizin
was suggested as an adjuvant therapy for avoiding HT by
inhibiting the HMGB1/TLR2 signaling pathway (Chen et al.,
2020). Corticosteroids are powerful anti-inflammatory agents and
have been considered for use in various neurological conditions,
especially in brain tumors, primarily to counteract brain edema
and inflammation (Kast et al., 2021). However, the application
of corticosteroids in stroke remains a topic of debate due to
potential risks and the varied outcomes observed in studies.
Anakinra, an IL-1 receptor antagonist (IL-1Ra), is primarily
used for rheumatoid arthritis. Animal studies have suggested its
potential neuroprotective effects when administered post-stroke
(Sjöström et al., 2021; Venugopal et al., 2021). Natalizumab and

Fingolimod are immunomodulators, primarily used for multiple
sclerosis. They’ve shown promise in preclinical models of stroke,
primarily by reducing the immune cell infiltration into the brain
(Elkins et al., 2017; Elkind et al., 2020; Leigh et al., 2021; Ma et al.,
2021; Malone et al., 2023).

5 Endothelial activation/dysfunction
markers

Markers like von Willebrand factor (vWF) and Vascular
Endothelial Growth Factor (VEGF) might be indicative of
endothelial disruption or activation, potentially predicting the risk
of HT and edema.

Von Willebrand factor is a multimeric glycoprotein that is
produced in endothelial cells and megakaryocytes and stored
in Weibel-Palade bodies of endothelial cells and α-granules of
platelets (Zhu et al., 2016). Under conditions of vascular injury,
such as that seen during an ischemic stroke, vWF binds to
exposed subendothelial collagen facilitating platelet adhesion and
aggregation (Menih et al., 2017). Given this, elevated vWF levels
might be seen as protective against hemorrhage. However, the
dynamic between vWF, thrombogenesis, reperfusion injury, and
inflammation can create conditions conducive to BBB disruption
and, subsequently, HT (Zhu et al., 2016). Patients with higher vWF
levels post-stroke are at a higher risk of HT, especially following
thrombolytic therapy (Zhang et al., 2023). The increased risk might
be related to the concomitant BBB disruption and microvascular
occlusions. The association of vWF with BBB integrity has
implications for brain edema. Increased BBB permeability can lead
to vasogenic edema due to the influx of serum proteins and fluid
into the brain parenchyma (Zhu et al., 2016). Additionally, the
thrombogenic role of vWF might contribute to cytotoxic edema by
exacerbating ischemic injury.

Vascular Endothelial Growth Factor (VEGF) is a potent
angiogenic factor (Liman and Endres, 2012). In the context of
ischemic stroke, VEGF has dual and somewhat contradictory
effects, with implications for both protective and detrimental
outcomes, especially concerning HT and brain edema. HT can
be promoted by VEGF due to its effects on vascular permeability
and the creation of fragile, immature vessels and more permeable
in the affected region (Zhang et al., 2000; Lai et al., 2022). In
addition, VEGF increases vascular permeability by affecting the
endothelial cell tight and adherens junctions, notably through its
influence on occludin, claudin-5, and ZO-1 (Weis and Cheresh,
2005). As mentioned, the enhanced vascular permeability resulting
from VEGF activity leads to the influx of serum proteins and
fluids into the brain parenchyma, contributing to vasogenic edema
(Weis and Cheresh, 2005; Lai et al., 2022). This kind of edema
increases intracranial pressure, which can exacerbate neurological
deficits and potentially lead to life-threatening conditions like
herniation. Conversely, VEGF promotes post-stroke angiogenesis
by stimulating the proliferation and migration of endothelial
cells, which contribute to tissue repair and regeneration by
enhancing blood flow to affected areas (Zhang and Chopp, 2002;
Kaya et al., 2005). Beyond its vascular effects, VEGF has direct
neuroprotective actions. It supports neuronal survival, stimulates
neurogenesis, and enhances the function of neural progenitor cells
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(Jin et al., 2000; Sun et al., 2003). The overall balance between
VEGF’s neuroprotective vs. its vascular actions can influence post-
stroke outcomes, especially in the acute phase.

Delayed enhancement of VEGF signaling might be
beneficial during the recovery phase, where angiogenesis and
neuroprotection can support tissue repair and functional recovery.
However, in the acute phase, especially in patients undergoing
reperfusion strategies, VEGF inhibition might be considered to
reduce the risk of HT and severe edema. Overall, understanding the
temporal dynamics of VEGF expression and signaling post-stroke,
as well as individual patient factors, will be crucial for developing
effective therapeutic strategies centered on VEGF.

6 Oxidative stress

Oxidative stress is a condition characterized by an imbalance
between reactive oxygen species (ROS) production and antioxidant
defense systems (You et al., 2023). During reperfusion following
an ischemic stroke, the reintroduction of blood flow causes a
paradoxical surge in ROS production, exacerbating the injury (Wu
et al., 2021; Hong et al., 2023). Oxidative stress damages the BBB by
directly affecting the endothelial cells, pericytes, and basal lamina
as well as activating MMPs, and inflammatory pathways indirectly
(Shaheryar et al., 2023; Wang S. et al., 2023). A compromised BBB
increases the risk of hemorrhagic transformation and vasogenic
edema. Oxidative stress can reduce the availability of nitric oxide,
a vasodilator, and impair endothelial function, making vessels
more susceptible to injury and hemorrhage (Chen R. et al., 2023).
Besides excessive ROS can damage cellular components, including
lipids, proteins, and DNA (Ratliffe et al., 2023). This can disrupt
cellular ion pumps leading to cellular swelling (Lipski et al., 2006).
Oxidative stress can impact astrocyte function and the regulation of
AQP4, influencing edema dynamics which will be described below
in detail.

Antioxidants can help in mitigating the detrimental effects of
oxidative stress. Edaravone, a free radical scavenger, has emerged
as a therapeutic agent for ischemic stroke, particularly in some
Asian countries (Ishihara and Suzuki, 2016; Wang et al., 2017).
Its ability to neutralize ROS enables it to preserve the integrity
of the BBB, potentially reducing vasogenic edema and the risk of
hemorrhagic transformation. N-acetylcysteine (NAC) is a versatile
compound with antioxidant properties that has been investigated
for its potential neuroprotective effects in ischemic stroke (Zhou
Z. et al., 2022; Chamorro et al., 2023). It serves as a precursor to
glutathione, one of the primary intracellular antioxidants, and plays
a critical role in scavenging free radicals, reducing oxidative stress,
and modulating inflammatory processes (Alkandari et al., 2023).
These features make NAC an intriguing candidate for addressing
complications like post-stroke hemorrhagic transformation and
brain edema. Vitamin E, as a lipid-soluble antioxidant, and Vitamin
C, as a water-soluble antioxidant, have been extensively researched
in the context of various health conditions, including its potential
neuroprotective effects in stroke (Tang et al., 2022; Palakurti et al.,
2023). Alpha-lipoic acid helps regenerate other antioxidants, like
vitamins E and C and is involved in energy metabolism. Coenzyme
Q10 (CoQ10), also known as ubiquinone, is a naturally occurring
antioxidant found in almost every cell of the body. It participates

in mitochondrial electron transport and also acts as a potent
free radical scavenger (Crane, 2001). Due to its antioxidant and
energy-promoting effects, CoQ10 holds promise as a potential
therapeutic agent after stroke (Olga Nikolaevna et al., 2020).
Melatonin is a hormone predominantly secreted by the pineal
gland. Apart from its well-recognized role in sleep regulation,
melatonin has garnered attention for its potent antioxidant, anti-
inflammatory, and neuroprotective properties (Yawoot et al., 2023).
These attributes have made it an intriguing candidate for various
neuroprotective strategies, including those aimed at minimizing the
aftermath of ischemic stroke (Li D. et al., 2023). While antioxidants
offer a promising avenue for neuroprotection after stroke, further
research, especially large-scale human trials, is needed to determine
their efficacy, optimal timing, and dosing.

7 Aquaporin-4 (AQP4)

Aquaporin-4 is the predominant water channel in the CNS
that has an insignificant effect on water homeostasis in the brain
(Saadoun and Papadopoulos, 2010). Specifically, AQP4 is most
abundantly located in the astrocyte foot processes that ensheath
blood vessels, which is a strategic location for water transport in
and out of the brain parenchyma (Han et al., 2015). The polarized
distribution of AQP4 underscores its role in edema dynamics
(Abbott et al., 2006). In the early phases after an ischemic stroke,
the shortage of oxygen and nutrients, leading to cellular energy
failure, causes failure of ion pumps, resulting in an accumulation
of intracellular sodium, which subsequently draws water into cells
(Chen Y.-Y. et al., 2023). AQP4 facilitates this water movement
into neurons and astrocytes during this phase, leading to cell
swelling, a hallmark of cytotoxic edema (Manley et al., 2000). In
the later phases post-stroke, the upregulation of AQP4 expression
aids in the leaking of plasma proteins and water into the interstitial
space of the brain by disrupting the BBB integrity, exacerbating
vasogenic edema (Datta et al., 2022). While AQP4 contributes to
edema formation, it also affects edema resolution. Once the initial
injury settles and repair mechanisms are activated, the excess water
needs to be cleared from the brain. AQP4 assists in channeling this
excess water back into the vasculature or toward the cerebrospinal
fluid (CSF), helping in reducing edema (Hirt et al., 2009; Zador
et al., 2009). After a stroke, ionic homeostasis is disturbed, creating
osmotic gradients. AQP4 helps in equilibrating these gradients by
allowing water to move in response to the osmotic differences.

Given the dual role of AQP4 in both the formation and
resolution of post-stroke edema, therapeutic strategies targeting
AQP4 need to be carefully timed and executed. During the early
phase post-stroke, inhibiting AQP4 might help reduce cytotoxic
edema (Sucha et al., 2022; Gono et al., 2023). TGN-020 is a
selective AQP4 inhibitor. In animal models of ischemic stroke,
administration of TGN-020 has been shown to reduce brain
water content, suggesting its potential efficacy in reducing cerebral
edema (Sun et al., 2022). Another approach to inhibit AQP4 is
through RNA interference, targeting AQP4 mRNA and preventing
its translation (Zhang et al., 2022). While RNAi technology offers
specificity, its delivery and stability in vivo can be challenging.
During recovery, promoting the AQP4 function might expedite
the clearance of excess water, aiding in the resolution of vasogenic
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edema. To date, there aren’t many specific agents known to directly
activate AQP4.

8 Soluble molecular markers of BBB
leakage

When the BBB becomes compromised, several soluble
molecules can be detected at altered levels or locations.

S100β is a small calcium-binding protein predominantly found
in astrocytes within the CNS (Kleindienst et al., 2007). On account
of its location and the specificity of its distribution, S100β has
garnered interest as a potential biomarker for BBB integrity
and astrocyte-related brain injury. Under normal physiological
conditions, the levels of S100β in the bloodstream are relatively
low due to the restrictive nature of the BBB. When the BBB
is compromised, such as during trauma, inflammation, stroke,
or after certain therapeutic interventions, there’s a heightened
permeability that allows S100β to leak from the brain into the
bloodstream (Taylor et al., 2022). Therefore, elevated serum levels
of S100β might be indicative of BBB disruption and the potential for
edema. A recent study found that pre-administration with Leonuri
Herba Total Alkali (LHA) could significantly reduce neurological
deficit scores, infarction volume, the serum levels of S100β (Li et al.,
2021).

Albumin is normally restricted from entering the brain by the
BBB. By measuring the ratio of albumin in the cerebrospinal fluid
(CSF) to that in the blood (often referred to as the CSF/serum
albumin quotient or Qalb), clinicians can gauge the degree of BBB
disruption. An in vivo experiment showed that albumin aggravates
cerebral edema in rats with ischemic stroke by increasing BBB
permeability (Li C. et al., 2022).

Recognizing and understanding these above markers allows for
better diagnostic, prognostic, and therapeutic strategies.

9 Unresolved questions and future
directions

Essentially, deeper investigations into the mechanism of these
markers, elucidating how they interact with cellular components
and signaling pathways, must be conducted. Developing selective
inhibitors of specific markers is crucial to avoid off-target effects
and potential toxicity. Besides, longitudinal studies exploring the
temporal dynamics of these markers will illustrate their role across
different stages after stroke, determining the optimal timing of
interventions. Most importantly, conducting clinical trials to assess
the utility and reliability of these markers in predicting and
monitoring hemorrhagic transformation and brain edema in stroke
patients is pivotal for bridging the translational gap. Research
exploring individual genetic, epigenetic, and environmental factors
affecting marker expression and response will facilitate the
development of personalized medicine approaches for stroke
patients. Moreover, investigating the synergistic effects of multi-
target interventions can provide a comprehensive approach to
mitigating the complex pathological processes involved in post-
stroke complications. Of course, there are other yet unidentified
markers of hemorrhagic transformation and brain edema post-
stroke that need further study. Addressing these unresolved

questions and exploring the proposed future directions will
significantly advance the field, providing innovative and effective
strategies for managing post-stroke hemorrhagic transformation
and brain edema.

10 Conclusion

Post-stroke HT and brain edema are serious complications
following ischemic stroke, resulting in increased morbidity and
mortality rates. This review highlights the recent advancements in
diagnostic markers and therapeutic targets for these complications.
By better understanding the underlying mechanisms and
identifying novel diagnostic tools and therapeutic strategies,
we can improve patient outcomes and reduce the burden of
post-stroke HT and brain edema. Rigorous clinical trials and
translational studies are paramount to bring these innovations
from bench to bedside.
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Menih, M., Križmarić, M., and Hojs Fabjan, T. (2017). Clinical role of von
Willebrand factor in acute ischemic stroke. Wien. Klin. Wochenschr. 129, 491–496.

Mi, L., Zhang, Y., Xu, Y., Zheng, X., Zhang, X., Wang, Z., et al. (2019).
HMGB1/RAGE pro-inflammatory axis promotes vascular endothelial cell apoptosis
in limb ischemia/reperfusion injury. Biomed. Pharmacother. 116:109005. doi: 10.1016/
j.biopha.2019.109005

Mickael, C. S., and Graham, B. B. (2019). The role of Type 2 inflammation in
schistosoma-induced pulmonary hypertension. Front. Immunol. 10:27. doi: 10.3389/
fimmu.2019.00027

Nguyen, J. N., Mohan, E. C., Pandya, G., Ali, U., Tan, C., Kofler, J. K., et al. (2023).
CD13 facilitates immune cell migration and aggravates acute injury but promotes
chronic post-stroke recovery. J. Neuroinflammation 20:232. doi: 10.1186/s12974-023-
02918-3

Olga Nikolaevna, O., Evgeniya Aronovna, G., Elena Igorevna, K., Margarita
Alekseevna, B., Mikhail Vladimirovich, G., Valery Gennadievich, M., et al. (2020).
Intravenous administration of coenzyme Q10 in acute period of cerebral ischemia
decreases mortality by reducing brain necrosis and limiting its increase within 4
days in rat stroke model. Antioxidants (Basel, Switzerland) 9:1240. doi: 10.3390/
antiox9121240

Ortiz, J. F., Ruxmohan, S., Saxena, A., Morillo Cox, Á, Bashir, F., Tambo, W., et al.
(2020). Minocycline and magnesium as neuroprotective agents for ischemic stroke: a
systematic review. Cureus 12:e12339. doi: 10.7759/cureus.12339

Palakurti, R., Biswas, N., Roy, S., Gnyawali, S. C., Sinha, M., Singh, K., et al. (2023).
Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the
stroke-affected site of the brain. Mol. Ther. Nucleic Acids 31, 276–292. doi: 10.1016/j.
omtn.2022.12.019

Park, J. S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.-Y., Strassheim,
D., et al. (2006). High mobility group box 1 protein interacts with multiple Toll-like
receptors. Am. J. Physiol. Cell Physiol. 290, C917–C924. doi: 10.1152/ajpcell.00401.
2005

Philipp, D., Suhr, L., Wahlers, T., Choi, Y.-H., and Paunel-Görgülü, A. (2018).
Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens
their potential to promote IL-6-dependent M2b polarization. Stem Cell Res. Ther.
9:286. doi: 10.1186/s13287-018-1039-2

Piepke, M., Clausen, B. H., Ludewig, P., Vienhues, J. H., Bedke, T., Javidi, E.,
et al. (2021). Interleukin-10 improves stroke outcome by controlling the detrimental
Interleukin-17A response. J. Neuroinflammation 18:265. doi: 10.1186/s12974-021-
02316-7

Qiu, J., Nishimura, M., Wang, Y., Sims, J. R., Qiu, S., Savitz, S. I., et al. (2008). Early
release of HMGB-1 from neurons after the onset of brain ischemia. J. Cereb. Blood
Flow Metab. 28, 927–938. doi: 10.1038/sj.jcbfm.9600582

Qiu, L., Wang, Y., Wang, Y., Liu, F., Deng, S., Xue, W., et al. (2023). Ursolic
acid ameliorated neuronal damage by restoring microglia-activated MMP/TIMP
imbalance in vitro. Drug Design Dev. Ther. 17, 2481–2493. doi: 10.2147/DDDT.
S411408

Qiu, Y.-M., Zhang, C.-L., Chen, A.-Q., Wang, H.-L., Zhou, Y.-F., Li, Y.-N., et al.
(2021). Immune cells in the BBB disruption after acute ischemic stroke: targets for
immune therapy? Front. Immunol. 12:678744. doi: 10.3389/fimmu.2021.678744

Ratliffe, J., Kataura, T., Otten, E. G., and Korolchuk, V. I. (2023). The evolution of
selective autophagy as a mechanism of oxidative stress response: the evolutionarily
acquired ability of selective autophagy receptors to respond to oxidative stress is
beneficial for human longevity. Bioessays 45:e2300076. doi: 10.1002/bies.202300076

Rempe, R. G., Hartz, A. M. S., and Bauer, B. (2016). Matrix metalloproteinases in
the brain and blood-brain barrier: versatile breakers and makers. J. Cereb. Blood Flow
Metab. 36, 1481–1507. doi: 10.1177/0271678X16655551

Richard, S. A., Sackey, M., Su, Z., and Xu, H. (2017). Pivotal neuroinflammatory
and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci. Rep.
37:BSR20171104. doi: 10.1042/BSR20171104

Richard, S., Lagerstedt, L., Burkhard, P. R., Debouverie, M., Turck, N., and Sanchez,
J.-C. (2015). E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-
month outcome in cerebrovascular diseases. J. Inflamm. (Lond.) 12:61. doi: 10.1186/
s12950-015-0106-z

Rosell, A., Cuadrado, E., Ortega-Aznar, A., Hernández-Guillamon, M., Lo, E. H.,
and Montaner, J. (2008). MMP-9-positive neutrophil infiltration is associated to
blood-brain barrier breakdown and basal lamina type IV collagen degradation during
hemorrhagic transformation after human ischemic stroke. Stroke 39, 1121–1126. doi:
10.1161/STROKEAHA.107.500868

Saadoun, S., and Papadopoulos, M. C. (2010). Aquaporin-4 in brain and
spinal cord oedema. Neuroscience 168, 1036–1046. doi: 10.1016/j.neuroscience.2009.
08.019

Salas-Perdomo, A., Miró-Mur, F., Urra, X., Justicia, C., Gallizioli, M., Zhao, Y., et al.
(2018). T cells prevent hemorrhagic transformation in ischemic stroke by P-selectin
binding. Arterioscler. Thromb. Vasc. Biol. 38, 1761–1771. doi: 10.1161/ATVBAHA.118.
311284

Schuette-Nuetgen, K., Strecker, J.-K., Minnerup, J., Ringelstein, E. B., and Schilling,
M. (2012). MCP-1/CCR-2-double-deficiency severely impairs the migration of
hematogenous inflammatory cells following transient cerebral ischemia in mice. Exp.
Neurol. 233, 849–858. doi: 10.1016/j.expneurol.2011.12.011

Selvaraj, U. M., Ortega, S. B., Hu, R., Gilchrist, R., Kong, X., Partin, A., et al. (2017).
Preconditioning-induced CXCL12 upregulation minimizes leukocyte infiltration after
stroke in ischemia-tolerant mice. J. Cereb. Blood Flow Metab. 37, 801–813. doi: 10.
1177/0271678X16639327

Severson, E. A., and Parkos, C. A. (2009). Mechanisms of outside-in signaling at the
tight junction by junctional adhesion molecule A. Ann. N. Y. Acad. Sci. 1165, 10–18.
doi: 10.1111/j.1749-6632.2009.04034.x

Shaheryar, Z. A., Khan, M. A., Hameed, H., Zaidi, S. A. A., Anjum, I., and Rahman,
M. S. U. (2023). Lauric acid provides neuroprotection against oxidative stress in mouse
model of hyperglycaemic stroke. Eur. J. Pharmacol. 956:175990. doi: 10.1016/j.ejphar.
2023.175990

Shiba, Y., Takahashi, M., Hata, T., Murayama, H., Morimoto, H., Ise, H., et al. (2009).
Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis.
Cardiovasc. Res. 81, 169–177. doi: 10.1093/cvr/cvn247

Simundic, A.-M., Basic, V., Topic, E., Demarin, V., Vrkic, N., Kunovic, B., et al.
(2004). Soluble adhesion molecules in acute ischemic stroke. Clin. Invest. Med. 27,
86–92.

Singh, V., Kaur, R., Kumari, P., Pasricha, C., and Singh, R. (2023). ICAM-1 and
VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin.
Chim. Acta 548:117487. doi: 10.1016/j.cca.2023.117487

Sjöström, E. O., Culot, M., Leickt, L., Åstrand, M., Nordling, E., Gosselet, F., et al.
(2021). Transport study of interleukin-1 inhibitors using a human in vitro model of
the blood-brain barrier. Brain Behav. Immun. Health 16:100307. doi: 10.1016/j.bbih.
2021.100307

Sladojevic, N., Stamatovic, S. M., Keep, R. F., Grailer, J. J., Sarma, J. V., Ward,
P. A., et al. (2014). Inhibition of junctional adhesion molecule-A/LFA interaction
attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion
injury. Neurobiol. Dis. 67, 57–70. doi: 10.1016/j.nbd.2014.03.010

Song, S., Huang, H., Guan, X., Fiesler, V., Bhuiyan, M. I. H., Liu, R., et al. (2021).
Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB
damage in ischemic stroke. Prog. Neurobiol. 199:101963. doi: 10.1016/j.pneurobio.
2020.101963

Soriano Jerez, E. M., Gibbins, J. M., and Hughes, C. E. (2021). Targeting platelet
inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 32, 761–769.
doi: 10.1080/09537104.2021.1882668

Stowe, A. M., Wacker, B. K., Cravens, P. D., Perfater, J. L., Li, M. K.,
Hu, R., et al. (2012). CCL2 upregulation triggers hypoxic preconditioning-
induced protection from stroke. J. Neuroinflammation 9:33. doi: 10.1186/1742-
2094-9-33

Sucha, P., Hermanova, Z., Chmelova, M., Kirdajova, D., Camacho Garcia, S.,
Marchetti, V., et al. (2022). The absence of AQP4/TRPV4 complex substantially
reduces acute cytotoxic edema following ischemic injury. Front. Cell. Neurosci.
16:1054919. doi: 10.3389/fncel.2022.1054919

Sun, C., Lin, L., Yin, L., Hao, X., Tian, J., Zhang, X., et al. (2022). Acutely inhibiting
AQP4 with TGN-020 improves functional outcome by attenuating edema and peri-
infarct astrogliosis after cerebral ischemia. Front. Immunol. 13:870029. doi: 10.3389/
fimmu.2022.870029

Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., et al. (2003). VEGF-
induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.
J. Clin. Invest. 111, 1843–1851. doi: 10.1172/JCI17977

Sun, Z., Wu, K., Gu, L., Huang, L., Zhuge, Q., Yang, S., et al. (2020). IGF-1R
stimulation alters microglial polarization via TLR4/NF-κB pathway after cerebral
hemorrhage in mice. Brain Res. Bull. 164, 221–234. doi: 10.1016/j.brainresbull.2020.
08.026

Supanc, V., Biloglav, Z., Kes, V. B., and Demarin, V. (2011). Role of cell adhesion
molecules in acute ischemic stroke. Ann. Saudi Med. 31, 365–370. doi: 10.4103/0256-
4947.83217

Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V. (2018). Blood-brain barrier
breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev.
Neurol. 14, 133–150. doi: 10.1038/nrneurol.2017.188

Frontiers in Molecular Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1286351
https://doi.org/10.1002/eji.202350370
https://doi.org/10.1002/eji.202350370
https://doi.org/10.1038/72256
https://doi.org/10.1002/eji.202149238
https://doi.org/10.1161/STROKEAHA.120.029395
https://doi.org/10.1016/j.biopha.2019.109005
https://doi.org/10.1016/j.biopha.2019.109005
https://doi.org/10.3389/fimmu.2019.00027
https://doi.org/10.3389/fimmu.2019.00027
https://doi.org/10.1186/s12974-023-02918-3
https://doi.org/10.1186/s12974-023-02918-3
https://doi.org/10.3390/antiox9121240
https://doi.org/10.3390/antiox9121240
https://doi.org/10.7759/cureus.12339
https://doi.org/10.1016/j.omtn.2022.12.019
https://doi.org/10.1016/j.omtn.2022.12.019
https://doi.org/10.1152/ajpcell.00401.2005
https://doi.org/10.1152/ajpcell.00401.2005
https://doi.org/10.1186/s13287-018-1039-2
https://doi.org/10.1186/s12974-021-02316-7
https://doi.org/10.1186/s12974-021-02316-7
https://doi.org/10.1038/sj.jcbfm.9600582
https://doi.org/10.2147/DDDT.S411408
https://doi.org/10.2147/DDDT.S411408
https://doi.org/10.3389/fimmu.2021.678744
https://doi.org/10.1002/bies.202300076
https://doi.org/10.1177/0271678X16655551
https://doi.org/10.1042/BSR20171104
https://doi.org/10.1186/s12950-015-0106-z
https://doi.org/10.1186/s12950-015-0106-z
https://doi.org/10.1161/STROKEAHA.107.500868
https://doi.org/10.1161/STROKEAHA.107.500868
https://doi.org/10.1016/j.neuroscience.2009.08.019
https://doi.org/10.1016/j.neuroscience.2009.08.019
https://doi.org/10.1161/ATVBAHA.118.311284
https://doi.org/10.1161/ATVBAHA.118.311284
https://doi.org/10.1016/j.expneurol.2011.12.011
https://doi.org/10.1177/0271678X16639327
https://doi.org/10.1177/0271678X16639327
https://doi.org/10.1111/j.1749-6632.2009.04034.x
https://doi.org/10.1016/j.ejphar.2023.175990
https://doi.org/10.1016/j.ejphar.2023.175990
https://doi.org/10.1093/cvr/cvn247
https://doi.org/10.1016/j.cca.2023.117487
https://doi.org/10.1016/j.bbih.2021.100307
https://doi.org/10.1016/j.bbih.2021.100307
https://doi.org/10.1016/j.nbd.2014.03.010
https://doi.org/10.1016/j.pneurobio.2020.101963
https://doi.org/10.1016/j.pneurobio.2020.101963
https://doi.org/10.1080/09537104.2021.1882668
https://doi.org/10.1186/1742-2094-9-33
https://doi.org/10.1186/1742-2094-9-33
https://doi.org/10.3389/fncel.2022.1054919
https://doi.org/10.3389/fimmu.2022.870029
https://doi.org/10.3389/fimmu.2022.870029
https://doi.org/10.1172/JCI17977
https://doi.org/10.1016/j.brainresbull.2020.08.026
https://doi.org/10.1016/j.brainresbull.2020.08.026
https://doi.org/10.4103/0256-4947.83217
https://doi.org/10.4103/0256-4947.83217
https://doi.org/10.1038/nrneurol.2017.188
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1286351 December 19, 2023 Time: 12:35 # 12

Yao et al. 10.3389/fnmol.2023.1286351

Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., and Zlokovic, B. V. (2019).
Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78.
doi: 10.1152/physrev.00050.2017

Switzer, J. A., Hess, D. C., Ergul, A., Waller, J. L., Machado, L. S., Portik-
Dobos, V., et al. (2011). Matrix metalloproteinase-9 in an exploratory trial of
intravenous minocycline for acute ischemic stroke. Stroke 42, 2633–2635. doi: 10.1161/
STROKEAHA.111.618215

Takeda, H., Spatz, M., Ruetzler, C., McCarron, R., Becker, K., and Hallenbeck,
J. (2002). Induction of mucosal tolerance to E-selectin prevents ischemic and
hemorrhagic stroke in spontaneously hypertensive genetically stroke-prone rats.
Stroke 33, 2156–2164. doi: 10.1161/01.STR.0000029821.82531.8B

Tang, C., Xue, H.-L., Bai, C.-L., and Fu, R. (2011). Regulation of adhesion molecules
expression in TNF-α-stimulated brain microvascular endothelial cells by tanshinone
IIA: involvement of NF-κB and ROS generation. Phytother. Res. 25, 376–380. doi:
10.1002/ptr.3278

Tang, X., Liu, H., Xiao, Y., Wu, L., and Shu, P. (2022). Vitamin C intake and ischemic
stroke. Front. Nutr. 9:935991. doi: 10.3389/fnut.2022.935991

Taylor, J., Parker, M., Casey, C. P., Tanabe, S., Kunkel, D., Rivera, C., et al. (2022).
Postoperative delirium and changes in the blood-brain barrier, neuroinflammation,
and cerebrospinal fluid lactate: a prospective cohort study. Br. J. Anaesth. 129,
219–230. doi: 10.1016/j.bja.2022.01.005

Thomas, R. G., Kim, J.-H., Kim, J.-H., Yoon, J., Choi, K.-H., and Jeong, Y.-Y. (2023).
Treatment of ischemic stroke by atorvastatin-loaded PEGylated liposome. Transl.
Stroke Res. doi: 10.1007/s12975-023-01125-9 [Epub ahead of print].

Uniken Venema, S. M., Dankbaar, J. W., van der Lugt, A., Dippel, D. W. J., and
van der Worp, H. B. (2022). Cerebral collateral circulation in the era of reperfusion
therapies for acute ischemic stroke. Stroke 53, 3222–3234. doi: 10.1161/STROKEAHA.
121.037869

Venugopal, J., Wang, J., Mawri, J., Guo, C., and Eitzman, D. (2021). Interleukin-
1 receptor inhibition reduces stroke size in a murine model of sickle cell disease.
Haematologica 106, 2469–2477. doi: 10.3324/haematol.2020.252395

von Kummer, R., Dzialowski, I., and Gerber, J. (2015). Therapeutic efficacy of brain
imaging in acute ischemic stroke patients. J. Neuroradiol. 42, 47–54. doi: 10.1016/j.
neurad.2014.10.004

Wang, D., Li, B., Wang, S., Hao, Y., Wang, H., Sun, W., et al. (2023). Engineered
inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing
autophagy of abnormal mitochondria. NPJ Regen. Med. 8:44. doi: 10.1038/s41536-023-
00315-1

Wang, S., de Fabritus, L., Kumar, P. A., Werner, Y., Ma, M., Li, D., et al. (2023). Brain
endothelial CXCL12 attracts protective natural killer cells during ischemic stroke.
J. Neuroinflammation 20:8. doi: 10.1186/s12974-023-02689-x

Wang, Y., Huang, J., Li, Y., and Yang, G.-Y. (2012). Roles of chemokine CXCL12
and its receptors in ischemic stroke. Curr. Drug Targets 13, 166–172. doi: 10.2174/
138945012799201603

Wang, Y., Liu, M., and Pu, C. (2017). 2014 Chinese guidelines for secondary
prevention of ischemic stroke and transient ischemic attack. Int. J. Stroke 12, 302–320.
doi: 10.1177/1747493017694391

Weis, S. M., and Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-
induced vascular permeability. Nature 437, 497–504. doi: 10.1038/nature03987

Williams, L. A., Martin-Padura, I., Dejana, E., Hogg, N., and Simmons, D. L. (1999).
Identification and characterisation of human Junctional Adhesion Molecule (JAM).
Mol. Immunol. 36, 1175–1188. doi: 10.1016/s0161-5890(99)00122-4

Witsch, J., Roh, D., Oh, S., Iadecola, C., Diaz-Arrastia, R., Kasner, S. E., et al. (2023).
Association between soluble intercellular adhesion molecule-1 and intracerebral
hemorrhage outcomes in the FAST trial. Stroke 54, 1726–1734. doi: 10.1161/
STROKEAHA.123.042466

Wu, B.-N., Wu, J., Hao, D.-L., Mao, L.-L., Zhang, J., and Huang, T.-T. (2018).
High serum sICAM-1 is correlated with cerebral microbleeds and hemorrhagic
transformation in ischemic stroke patients. Br. J. Neurosurg. 32, 631–636. doi: 10.1080/
02688697.2018.1518515

Wu, X., Liang, T.-Y., Wang, Z., and Chen, G. (2021). The role of hyperbaric oxygen
therapy in inflammatory bowel disease: a narrative review. Med. Gas Res. 11, 66–71.
doi: 10.4103/2045-9912.311497

Xie, L., Zhang, S., Huang, L., Peng, Z., Lu, H., He, Q., et al. (2023). Single-cell
RNA sequencing of peripheral blood reveals that monocytes with high cathepsin S
expression aggravate cerebral ischemia-reperfusion injury. Brain Behav. Immun. 107,
330–344. doi: 10.1016/j.bbi.2022.11.001

Xie, W., Zhu, T., Dong, X., Nan, F., Meng, X., Zhou, P., et al. (2019).
HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against
cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways.
Biomolecules 9:512. doi: 10.3390/biom9100512

Xu, J., Chen, Z., Yu, F., Liu, H., Ma, C., Xie, D., et al. (2020). IL-4/STAT6 signaling
facilitates innate hematoma resolution and neurological recovery after hemorrhagic
stroke in mice. Proc. Natl. Acad. Sci. U.S.A. 117, 32679–32690. doi: 10.1073/pnas.
2018497117

Xu, Y., Zhang, J., Gao, F., Cheng, W., Zhang, Y., Wei, C., et al. (2023).
Engeletin alleviates cerebral ischemia reperfusion-induced neuroinflammation via the
HMGB1/TLR4/NF-κB network. J. Cell. Mol. Med. 27, 1653–1663. doi: 10.1111/jcmm.
17758

Yang, C., Hawkins, K. E., Doré, S., and Candelario-Jalil, E. (2019).
Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic
stroke. Am. J. Physiol. Cell Physiol. 316, C135–C153. doi: 10.1152/ajpcell.00136.2018

Yang, C., Yang, Y., DeMars, K. M., Rosenberg, G. A., and Candelario-Jalil, E. (2020).
Genetic deletion or pharmacological inhibition of cyclooxygenase-2 reduces blood-
brain barrier damage in experimental ischemic stroke. Front. Neurol. 11:887. doi:
10.3389/fneur.2020.00887

Yang, Q., Wang, J.-Z., Li, J.-C., Zhou, Y., Zhong, Q., Lu, F.-L., et al. (2010). High-
mobility group protein box-1 and its relevance to cerebral ischemia. J. Cereb. Blood
Flow Metab. 30, 243–254. doi: 10.1038/jcbfm.2009.202

Yang, Q.-W., Lu, F.-L., Zhou, Y., Wang, L., Zhong, Q., Lin, S., et al. (2011). HMBG1
mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor
4 signaling. J. Cereb. Blood Flow Metab. 31, 593–605. doi: 10.1038/jcbfm.2010.129

Yawoot, N., Sengking, J., Govitrapong, P., Tocharus, C., and Tocharus, J.
(2023). Melatonin modulates the aggravation of pyroptosis, necroptosis, and
neuroinflammation following cerebral ischemia and reperfusion injury in obese rats.
Biochim. Biophys. Acta Mol. Basis Dis. 1869:166785. doi: 10.1016/j.bbadis.2023.166785

You, Y., Liu, Y., Ma, C., Xu, J., Xie, L., Tong, S., et al. (2023). Surface-tethered
ROS-responsive micelle backpacks for boosting mesenchymal stem cell vitality and
modulating inflammation in ischemic stroke treatment. J. Control. Release 362, 210–
224. doi: 10.1016/j.jconrel.2023.08.039

Yu, M., Xiao, G., Han, L., Peng, L., Wang, H., He, S., et al. (2023). QiShen YiQi
and its components attenuate acute thromboembolic stroke and carotid thrombosis
by inhibition of CD62P/PSGL-1-mediated platelet-leukocyte aggregate formation.
Biomed. Pharmacother. 160:114323. doi: 10.1016/j.biopha.2023.114323

Zador, Z., Stiver, S., Wang, V., and Manley, G. T. (2009). “Role of aquaporin-4 in
cerebral edema and stroke,” in Aquaporins. Handbook of experimental pharmacology,
Vol. 190, ed. E. Beitz (Berlin: Springer). doi: 10.1007/978-3-540-79885-9_7

Zemani, F., Silvestre, J.-S., Fauvel-Lafeve, F., Bruel, A., Vilar, J., Bieche, I.,
et al. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before
transplantation could increase their proangiogenic potential. Arterioscler. Thromb.
Vasc. Biol. 28, 644–650. doi: 10.1161/ATVBAHA.107.160044

Zhang, G., Chen, L., Chen, W., Li, B., Yu, Y., Lin, F., et al. (2018). Neural stem cells
alleviate inflammation via neutralization of IFN- γ negative effect in ischemic stroke
model. J. Biomed. Nanotechnol. 14, 1178–1188. doi: 10.1166/jbn.2018.2568

Zhang, K., Zhang, Q., Deng, J., Li, J., Li, J., Wen, L., et al. (2019). ALK5
signaling pathway mediates neurogenesis and functional recovery after cerebral
ischemia/reperfusion in rats via Gadd45b. Cell Death Dis. 10:360. doi: 10.1038/s41419-
019-1596-z

Zhang, L., Wei, W., Ai, X., Kilic, E., Hermann, D. M., Venkataramani, V.,
et al. (2021). Extracellular vesicles from hypoxia-preconditioned microglia promote
angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway.
Cell Death Dis. 12:1068. doi: 10.1038/s41419-021-04363-7

Zhang, L., Xu, S., Wu, X., Chen, J., Guo, X., Cao, Y., et al. (2020).
Combined treatment With 2-(2-Benzofu-Ranyl)-2-imidazoline and recombinant
tissue plasminogen activator protects blood-brain barrier integrity in a rat model
of embolic middle cerebral artery occlusion. Front. Pharmacol. 11:801. doi: 10.3389/
fphar.2020.00801

Zhang, S., An, Q., Wang, T., Gao, S., and Zhou, G. (2018). Autophagy- and MMP-
2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-
increased blood-brain barrier permeability during early reperfusion in stroke.
Neuroscience 377, 126–137. doi: 10.1016/j.neuroscience.2018.02.035

Zhang, X., Gong, P., Chen, S., Wan, T., Wang, X., Wang, M., et al. (2023).
Endothelial dysfunction and parenchymal hematoma in ischemic stroke patients
after endovascular thrombectomy. Cerebrovasc. Dis. (Basel, Switzerland). doi: 10.1159/
000530372 [Epub ahead of print].

Zhang, Y., Lei, L., Zhou, H., Lu, X., Cai, F., and Li, T. (2022). Roles of micro
ribonucleic acids in astrocytes after cerebral stroke. Front. Cell. Neurosci. 16:890762.
doi: 10.3389/fncel.2022.890762

Zhang, Z. G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., et al.
(2000). VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the
ischemic brain. J. Clin. Invest. 106, 829–838. doi: 10.1172/JCI9369

Zhang, Z., and Chopp, M. (2002). Vascular endothelial growth factor and
angiopoietins in focal cerebral ischemia. Trends Cardiovasc. Med. 12, 62–66. doi:
10.1016/s1050-1738(01)00149-9

Zhao, M., Tuo, H., Wang, S., and Zhao, L. (2020). The roles of monocyte
and monocyte-derived macrophages in common brain disorders. Biomed Res. Int.
2020:9396021. doi: 10.1155/2020/9396021

Zhao, Y.-J., Nai, Y., Li, S.-Y., and Zheng, Y.-H. (2018). Retigabine protects the blood-
brain barrier by regulating tight junctions between cerebral vascular endothelial cells
in cerebral ischemia-reperfusion rats. Eur. Rev. Med. Pharmacol. Sci. 22, 8509–8518.
doi: 10.26355/eurrev_201812_16552

Frontiers in Molecular Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1286351
https://doi.org/10.1152/physrev.00050.2017
https://doi.org/10.1161/STROKEAHA.111.618215
https://doi.org/10.1161/STROKEAHA.111.618215
https://doi.org/10.1161/01.STR.0000029821.82531.8B
https://doi.org/10.1002/ptr.3278
https://doi.org/10.1002/ptr.3278
https://doi.org/10.3389/fnut.2022.935991
https://doi.org/10.1016/j.bja.2022.01.005
https://doi.org/10.1007/s12975-023-01125-9
https://doi.org/10.1161/STROKEAHA.121.037869
https://doi.org/10.1161/STROKEAHA.121.037869
https://doi.org/10.3324/haematol.2020.252395
https://doi.org/10.1016/j.neurad.2014.10.004
https://doi.org/10.1016/j.neurad.2014.10.004
https://doi.org/10.1038/s41536-023-00315-1
https://doi.org/10.1038/s41536-023-00315-1
https://doi.org/10.1186/s12974-023-02689-x
https://doi.org/10.2174/138945012799201603
https://doi.org/10.2174/138945012799201603
https://doi.org/10.1177/1747493017694391
https://doi.org/10.1038/nature03987
https://doi.org/10.1016/s0161-5890(99)00122-4
https://doi.org/10.1161/STROKEAHA.123.042466
https://doi.org/10.1161/STROKEAHA.123.042466
https://doi.org/10.1080/02688697.2018.1518515
https://doi.org/10.1080/02688697.2018.1518515
https://doi.org/10.4103/2045-9912.311497
https://doi.org/10.1016/j.bbi.2022.11.001
https://doi.org/10.3390/biom9100512
https://doi.org/10.1073/pnas.2018497117
https://doi.org/10.1073/pnas.2018497117
https://doi.org/10.1111/jcmm.17758
https://doi.org/10.1111/jcmm.17758
https://doi.org/10.1152/ajpcell.00136.2018
https://doi.org/10.3389/fneur.2020.00887
https://doi.org/10.3389/fneur.2020.00887
https://doi.org/10.1038/jcbfm.2009.202
https://doi.org/10.1038/jcbfm.2010.129
https://doi.org/10.1016/j.bbadis.2023.166785
https://doi.org/10.1016/j.jconrel.2023.08.039
https://doi.org/10.1016/j.biopha.2023.114323
https://doi.org/10.1007/978-3-540-79885-9_7
https://doi.org/10.1161/ATVBAHA.107.160044
https://doi.org/10.1166/jbn.2018.2568
https://doi.org/10.1038/s41419-019-1596-z
https://doi.org/10.1038/s41419-019-1596-z
https://doi.org/10.1038/s41419-021-04363-7
https://doi.org/10.3389/fphar.2020.00801
https://doi.org/10.3389/fphar.2020.00801
https://doi.org/10.1016/j.neuroscience.2018.02.035
https://doi.org/10.1159/000530372
https://doi.org/10.1159/000530372
https://doi.org/10.3389/fncel.2022.890762
https://doi.org/10.1172/JCI9369
https://doi.org/10.1016/s1050-1738(01)00149-9
https://doi.org/10.1016/s1050-1738(01)00149-9
https://doi.org/10.1155/2020/9396021
https://doi.org/10.26355/eurrev_201812_16552
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1286351 December 19, 2023 Time: 12:35 # 13

Yao et al. 10.3389/fnmol.2023.1286351

Zhou, D., Huang, Z., Zhu, X., Hong, T., and Zhao, Y. (2021). Combination of
endothelial progenitor cells and BB-94 significantly alleviates brain damage in a mouse
model of diabetic ischemic stroke. Exp. Ther. Med. 22:789. doi: 10.3892/etm.2021.
10221

Zhou, F., Du, M., Yan, E., Chen, S., Wang, W., Shi, H., et al. (2023). Higher
serum E-selectin levels associated with malignant brain edema after endovascular
thrombectomy for ischemic stroke: a pilot study. Brain Sci. 13:1097. doi: 10.3390/
brainsci13071097

Zhou, M., Li, R., Venkat, P., Qian, Y., Chopp, M., Zacharek, A., et al. (2022). Post-
stroke administration of L-4F promotes neurovascular and white matter remodeling in
Type-2 diabetic stroke mice. Front. Neurol. 13:863934. doi: 10.3389/fneur.2022.863934

Zhou, Z., Dun, L., Xu, H., Yu, P., Chen, C., Si, T., et al. (2022). The neuroprotective
effect of YaoYi-moxibustion on ischemic stroke by attenuating NK-κB expression in
rats. Ann. Transl. Med. 10:791. doi: 10.21037/atm-22-3198

Zhu, H., Hu, S., Li, Y., Sun, Y., Xiong, X., Hu, X., et al. (2022). Interleukins
and ischemic stroke. Front. Immunol. 13:828447. doi: 10.3389/fimmu.2022.
828447

Zhu, H., Jian, Z., Zhong, Y., Ye, Y., Zhang, Y., Hu, X., et al. (2021). Janus
kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through
reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition. Front.
Immunol. 12:714943. doi: 10.3389/fimmu.2021.714943

Zhu, X., Cao, Y., Wei, L., Cai, P., Xu, H., Luo, H., et al. (2016). von Willebrand factor
contributes to poor outcome in a mouse model of intracerebral haemorrhage. Sci. Rep.
6:35901. doi: 10.1038/srep35901
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