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Editorial on the Research Topic

Transcription regulation—Brain development and homeostasis—A finely

tuned and orchestrated scenario in physiology and pathology, volume II

The Research Topic (RT) discussed herein is the second volume of a Research Topic

focused on transcription factors (TF) and transcription regulation in the healthy and

diseased brain. The previously published first volume was compiled into a well-visited and

well-read E-Book (with more than 61,000 total views and downloads, to date) (Muñoz et al.,

2021, 2022). Encompassed in this second volume are eleven peer-reviewed manuscripts

including five original articles, four reviews, one mini review, and one brief research

report. Seventy-five authors took part in this initiative, from eleven countries: Argentina,

Australia, Austria, Denmark, Germany, Italy, India, Spain, Sweden, United Kingdom, and

United States.

Among the interesting contributions, Xia et al. summarize the current knowledge of

transcription regulation of the respiratory neurons in the brainstem. These neurons are

responsible for generating, monitoring, and adjusting breathing patterns in response to

external and internal demands. Thus, these motor neurons represent key actors of breathing

(or respiration), which is an elementary but complex and dynamic behavior. First, the

authors present generalities of the transcriptional programs that drive the anterior-posterior

and the dorsal-ventral patterning of the developing brainstem, emphasizing its neuronal

diversity. Next, they discuss the transcriptional control that secures the specification of

certain groups of neurons that form the central respiratory system in the hindbrain. This

discussion includes the pontine groups, and the neurons of both the dorsal and the ventral

medullary respiratory columns. Lastly, the authors consider disturbances of TF-coding genes

(e.g., mutations in PHOX2B and LBX1) that cause congenital respiratory syndromes, as a

possible path to further understand the genesis, specification, and function of respiratory

neurons and the basis of breathing. The review is well-illustrated, and the readers can visit
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the following references for further details (Alexander et al., 2009;

Hernandez-Miranda and Birchmeier, 2015; Hernandez-Miranda

et al., 2017, 2018; Isik and Hernandez-Miranda, 2022; Lowenstein

et al., 2023).

The prefrontal cortex (PFC) is a large brain region that

compromises a diversity of neuronal and non-neuronal cell types.

The timely appearance and connectivity of these cells during

development are crucial for normal PFC anatomy and functions

(Cadwell et al., 2019). PFC is involved in fundamentally important

brain processes, such as cognition and memory. In this RT, Singh

and Tiwari focus their brief research report on the developing

human PFC. The authors aimed to identify transient cell states

that emerge during the cellular developmental trajectories of the

major cortical cell types and their underlying gene regulatory

circuitry, with respect to early (8–13 gestational weeks, GW),

mid (16–19 GW), and late (23–26 GW) fetal stages. The authors

reanalyzed two publicly available single-cell RNA sequencing

(scRNA-seq) datasets (Zhong et al., 2018; Bhaduri et al., 2021),

by using advanced computational approaches including CellRank

for cellular trajectory reconstruction (Lange et al., 2022), the

partition-based graph abstraction (PAGA) method for cell fate

connectivity (Wolf et al., 2019), and the iQcell platform for

gene regulatory network dissection (Heydari et al., 2022). The

authors present and discuss cellular trajectories for neuronal and

oligodendroglial lineages and key drivers of cell fate decisions, as

well as novel TF regulatory networks [e.g., SOX8/SOX10-driven

gene expression programs for the oligodendrocyte progenitor cell

(OPC) lineage (Stolt et al., 2005; Garcia-Leon et al., 2018)]. They

concluded that the precise characterization of the cellular and

molecular heterogeneity of the developing and mature human

cortex is essential to understanding brain functions and regulation,

and to identifying the causes and potential interventions for

neurodevelopmental and neurological disorders.

Cell state transitions and the underlying transcriptional

regulatory mechanisms during the neural induction stage were

studied in vitro by Gupta et al.. They performed a longitudinal

analysis of the transcriptome of human induced pluripotent stem

cells (hiPSC), as these cells were undergoing 8-day neural induction

(Shi et al., 2012; Lee et al., 2020). The authors identified distinct

functional modules by following the temporal dynamics of key TFs

(e.g., OTX2, KEAP and NRF2), and subsequent changes in the

expression profiles of their target genes. These modules are related

to the transition whereby pluripotency is lost as distinct neural

identity is gained, cell cycle progression, metabolic reprogramming,

stress response, and genome integrity. Some of the modules may

operate throughout the entire initiating process, but they may

use different gene signatures. Finally, the authors focused their

attention on the precociously expressed TFOTX2 (Rath et al., 2006;

Acampora et al., 2013), for which they propose diverse mechanisms

throughout the neural induction stage. This was validated by

knocking down OTX2 expression by CRISPRi prior to neural

induction. The authors emphasize the widespread remodeling

of the whole cell that takes place during the induction of one

specific lineage.

The hiPSC model was also used by Schuster et al. to study

GABAergic interneuron development and function in the Mowat-

Wilson syndrome (MWS). This epileptic neurodevelopmental

disorder is caused by heterozygous variants in the ZEB2 gene,

which encodes the TF ZEB2 (Mowat et al., 1998; Zweier

et al., 2002). Inhibitory cortical and hippocampal GABAergic

neurons require a functional ZEB2 for correct migration and

differentiation, to maintain hence a balanced overall neuronal

activity (Miquelajauregui et al., 2007; Van Den Berghe et al.,

2013). In this original article, the authors confirm that ZEB2

haploinsufficiency alters the GABAergic fate trajectory and its

function. They transcriptomically compared hiPSC lines derived

from fibroblasts of two related MWS subjects carrying the

heterozygous non-sense variant c.1027C>T (p.Arg343∗) in exon

8, with those from two healthy donors. The authors used

a 65-day protocol that started with neural induction and

concluded with GABAergic differentiation (Schuster et al., 2019).

Dysregulation of specific genes related to transcription control,

cell fate decisions and patterning, and epilepsy, is presented and

discussed. Mixed cell identities to the detriment of the GABAergic

neuron type, impaired migration of neural stem cells (NSC), and

altered electrophysiological properties of differentiated GABAergic

interneurons, were found. This finding has led the authors to

propose their data (and the in vitro MWS model) as a framework

for further study to better understand the underlying cellular and

molecular basis behind the neuropathogenesis and seizures in

MWS, that could potentially lead to interventions of the disease.

Arcuschin et al. contributed to this Research Topic with

a mini review that links mechanisms of robustness with

neurodevelopment. The robustness of a biological system is

defined as its ability to buffer internal and external perturbations,

generated by genetic and epigenetic variations, molecular noises

or environmental fluctuations, in favor of promoting a reliable

output or a particular phenotype (Barkai and Shilo, 2007; Felix

and Wagner, 2008). Neurodevelopment in multicellular organisms

involves complex signaling interactions between participating cells,

as they develop (Silbereis et al., 2016). Fluctuations in these

signals may impact gene regulatory networks (GRN) that control

cell type trajectories and patterning, as well as other aspects

not discussed in this article. Therefore, robustness strategies are

essential during normal neural development. First, the authors

compare the concept of robustness with the lack of phenotype

variability. Next, they present the developing nervous system, with

its cellular heterogeneity, sequential cell type genesis (neurogenesis

followed by gliogenesis), and broad spectrum of internal and

external regulatory signals [e.g., gradients of morphogens such

as Shh (Sagner and Briscoe, 2017)], as a model to study and

define mechanisms of robustness. At the transcriptional level, the

authors address the redundancy of TFs due to gene duplication

[e.g., Gsx1 and Gsx2 (Chapman et al., 2018)], as well as the

presence of multiple TF binding sites within a specific enhancer and

multiple enhancers for the expression of a particular gene (e.g., Shh,

Krox20, and Pax3), as mechanisms to buffer perturbations during

neurodevelopment. In addition, they present miRNAs [e.g., miR-

9a for the Senseless TF (Cassidy et al., 2013)], and the chromatin

conformation and promoter architecture, as having roles that

contribute to gene expression robustness. At a higher and more

complex level (from cells to systems), the authors consider the

robustness of interlocking GRNs, as well as the influence of cell-

to-cell interactions. Finally, the authors discuss how alterations in
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robustness mechanisms, or their surpassing by excessive disruptors,

may lead to neurodevelopmental disorders includingmicrocephaly,

FXS (fragile X syndrome), and ASD (autism spectrum disorder).

The potential association of FXTAS with variations in the

human AQP4 gene was studied by Elias-Mas et al.. Aquaporin

4 (AQP4) is a highly expressed brain water channel that is

essential for fluid homeostasis (Szczygielski et al., 2021). In fact,

the dysfunction of AQP4 has been related to several degenerative

conditions including Alzheimer’s (AD) disease and Parkinson’s

(PD) disease (Mader and Brimberg, 2019). FXTAS (fragile X-

associated tremor/ataxia syndrome) is also a neurogenerative

disease with a late onset and impaired motor and cognitive

functions. FXTAS is linked to FMR1 gene premutations (55–200

CGGs) (Cabal-Herrera et al., 2020). Not all FMR1 premutation

carriers, however, present clinical symptoms. An investigative

search to identify additional risk factors led the authors to conduct

this study. Elias-Mas et al. compared the frequency of seven disease-

related single nucleotide polymorphisms (SNP) across the AQP4

gene in both FXTAS and non-FXTAS individuals, by genotyping

160 FMR1 premutation Caucasian carriers (59% were clinically

positive for FXTAS). No significant association with the risk of

developing FXTAS was found for any of the analyzed SNPs neither

for the major and minor allele haplotypes (HTMa and HTMi);

conclusion that was maintained after correction by multiple tests.

The authors discuss the limitations of their study regarding sample

sizes and age differences between FXTAS and non-FXTAS groups.

They also stated the need to further study AQPs and the glymphatic

system, to either confirm or discard their involvement in FXTAS

initiation and its progression.

Regarding genetic defects and developmental abnormalities,

Bernardinelli et al. present two novel sequence variants of POU3F4:

g.5284delA and g.6045T>A, which encode truncated protein

products of the TF POU3F4, p.S74Afs∗8 and p.C327∗, respectively.

These mutations were identified by genotyping twomale Caucasian

subjects, who had been diagnosed with typical hallmarks of

POU3F4-related hearing loss [incomplete partition of the cochlea

type 3 and enlarged vestibular aqueduct (Roesch et al., 2021)].

The authors studied the pathogenicity of these novel sequences in

cell-based assays, by analyzing their subcellular distribution and

transcriptional activity. Of these defective proteins, only p.C327∗

did successfully reach the cell nucleus, which was explained by

the presence of two of the three nuclear localization signals

(NLS) predicted in the wild type (WT) POU3F4. However,

it was noted that the spatial pattern of the nuclear p.C327∗

was different than that of the WT POU3F4. In addition, both

variants failed to properly activate the expression of a reporter

gene and to enhance the transcription of POU3F4-driven genes,

which were identified by RNA-seq under the influence of the

WT TF. Among these genes, the authors selected SLC6A20 for

further analysis due to the essential function of SLC6A20 as

an amino acid transporter, as well as the association that this

class of transporters has with some pathologies, notably hearing

loss and cognitive impairment (Swarna et al., 2004; Takanaga

et al., 2005; Broer et al., 2008). However, a straightforward

correlation between genotypes and phenotypes was not found in

these individuals, suggesting that a higher level of complexity may

be involved.

Kaltschmidt et al. address the human genetics of NF-kappa

B signaling, as it applies to neurodegenerative diseases and

malignant brain tumors. Although the NF-κB family of TFs

has been extensively involved in inflammation and cancer, it is

also well-accepted that it influences a broad range of cellular

processes, including within the nervous system (Kaltschmidt and

Kaltschmidt, 2009). NF-κB functions are executed via a selection

of canonical, non-canonical and atypical pathways (Kaltschmidt

et al., 2021), all of which are concisely presented in this article.

Then, the authors discuss the synaptic location of NF-κB in certain

brain regions (e.g., cerebellum, cortex, and hippocampus), and

its retrograde transport from the synapsis to the cell nucleus.

The authors suggest that these characteristics might make NF-

κB a suitable messenger to communicate feedback for regulating

gene expression, which could contribute to synaptic plasticity

(Kandel, 2001). Additional related topics are introduced, including

a comparison of constitutive vs. inducible NF-κB activities in

glutamatergic neurons, and animal models to study the impact

of altered NF-κB signaling in learning and memory, and in

brain regeneration. In their discussion of the pathophysiology and

genetics of both AD and PD, and how they are impacted by the

TNFα/NF-κB pathway, the authors propose new target genes, as

well as new theories and hypotheses (Snow and Albensi, 2016;

Panicker et al., 2021; Bellenguez et al., 2022). Finally, the authors

summarize current knowledge related to NF-κB signaling and

glioblastoma multiforme (GBM), in terms of growth, invasiveness,

and angiogenesis (Smith et al., 2008; Wang et al., 2021). The

authors conclude that the recent genetic evidence around the NF-

κB pathway may lead to new research and therapeutic approaches

for treating neurodegenerative diseases and brain tumors.

Maurya et al. contributed to this RT with an extensive review

about microglia, and their involvement in brain development,

homeostasis, diseases, and therapeutics. The authors discuss the

origin of these innate immune cells (Sierra et al., 2016), and

the mechanisms of their interaction with both neurons and non-

neuronal cells, including those mediated by exosomes (Muñoz,

2018, 2022; Kalluri and Lebleu, 2020; Guo et al., 2021; Hazrati

et al., 2022). Key genes in microglia biology are discussed, as well

as their regulation and dysregulation, especially related to several

pathological conditions [e.g., AD, PD, multiple sclerosis (MS) and

neurodevelopmental diseases]. Included among these genes, are

those that encode the TFs PU.1, Sall1, and NF-κB (Smith et al.,

2013; Frakes et al., 2014; Buttgereit et al., 2016; Cakir et al., 2022).

Additionally, current knowledge and perspectives are discussed

about the use of microglia as a target for the diagnosis, monitoring

and treatment of diverse pathologies.

Circadian rhythms of physiological and behavioral processes

are the result of a proper communication between cells and

timing cues (Zeitgebers; e.g., environmental light). At the molecular

level, the circadian intracellular machinery consists of interlocking

transcriptional-translational feedback loops (TTFL) controlled by

clock genes (CG), which encode activating and inhibitory TFs [e.g.,

Clock, Bmal1, Pers and Crys (Hastings et al., 2018)]. These TFs

operate in a time-synchronized manner via binding to specific

sequences [e.g., E-box (Muñoz et al., 2002, 2006; Muñoz and Baler,

2003)], present in the regulatory regions of their target genes. These

genes are known as clock-controlled genes (CCG), and they are
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involved in a broad range of cellular functions. In this Research

Topic, Fagiani et al. review current knowledge related to the

circadian molecular machinery within different brain regions and

within different brain cell types, including neurons, astrocytes, and

microglia (Hayashi et al., 2013; Brancaccio et al., 2017; Wang et al.,

2020). The authors discuss the bidirectional interplay between the

core circadian clock and various neurotransmitters [e.g., dopamine,

serotonin, noradrenaline, glutamate, and GABA (Miyamoto et al.,

2012; Korshunov et al., 2017; Maejima et al., 2021)], and its impact

on neuronal activity and the daily timekeeping of brain functions.

Discussion is included about circadian alterations in adverse

contexts [e.g., AD and PD (Breen et al., 2014; Videnovic et al.,

2014)]. Furthermore, they predict that a deeper understanding of

the space/time/sex-dependent circadian control of brain physiology

may lead to a better comprehension of circadian disruptions in the

onset and progression of natural aging, as well as neurological and

neurodegenerative diseases and their remedies.

Regulation (and dysregulation) by microRNAs represent a

promising avenue in nervous system-related diseases, especially

as biomarkers and as prognostic tools (Romano et al., 2017;

Elshelmani et al., 2020, 2021). In their original article, Aggio-Bruce

et al. reveal an early serum microRNA signature of retinal

regression. The authors used samples from both a pre-clinical

photo-oxidative damage (PD) mouse model (Natoli et al., 2016),

and patients who were clinically diagnosed with either early age-

related macular degeneration (AMD) (Wu et al., 2016) or late-stage

AMD (Holz et al., 2017). Respective controls were used for each

sample group. The expression of ∼800 miRNAs was measured

using OpenArrayTM, and differential abundance from controls was

determined using the HTqPCR R package followed by pathway

analysis with the DAVID functional annotation tool. The results

showed that the altered circulating microRNAs correlated well with

human retina pathology. Overlapping animal and human data led

the authors to define a preliminary microRNA panel with higher

stringency. Some of these microRNAs (e.g., let-7i/g-5p, miR-26a-

5p, miR-19a-3p and miR-574-3p) may represent good candidates

for early diagnosis of AMD before vision is lost. The authors also

discuss similarities and discrepancies between their data and those

previously published (Szemraj et al., 2015; Ren et al., 2017).

Overall, the original research and review articles of this second

volume illustrate the complexity behind a healthy and diseased

nervous system, and how TFs and transcription regulation are

essential in pacing its development and functions. We expect

this Research Topic will encourage researchers to delve deeper

into the role of TFs and transcription regulation in homeostatic

and adverse conditions. There is potential here to uncover novel

biomarkers that could lead to new prognostic tools and new

therapeutic remedies.
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