
Frontiers in Molecular Neuroscience 01 frontiersin.org

The application of weighted gene 
co-expression network analysis 
and support vector machine 
learning in the screening of 
Parkinson’s disease biomarkers 
and construction of diagnostic 
models
Lijun Cai 1, 2, Shuang Tang 1, Yin Liu 1, Yingwan Zhang 1 and 
Qin Yang 1*
1 Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, 
Guiyang, Guizhou, China, 2 Department of Neurology, The Affiliated Hospital of Guizhou Medical 
University, Guiyang, Guizhou, China

Background: This study aims to utilize Weighted Gene Co-expression Network 
Analysis (WGCNA) and Support Vector Machine (SVM) algorithm for screening 
biomarkers and constructing a diagnostic model for Parkinson’s disease.

Methods: Firstly, we  conducted WGCNA analysis on gene expression data 
from Parkinson’s disease patients and control group using three GEO datasets 
(GSE8397, GSE20163, and GSE20164) to identify gene modules associated with 
Parkinson’s disease. Then, key genes with significantly differential expression from 
these gene modules were selected as candidate biomarkers and validated using 
the GSE7621 dataset. Further functional analysis revealed the important roles of 
these genes in processes such as immune regulation, inflammatory response, and 
cell apoptosis. Based on these findings, we constructed a diagnostic model by 
using the expression data of FLT1, ATP6V0E1, ATP6V0E2, and H2BC12 as inputs 
and training and validating the model using SVM algorithm.

Results: The prediction model demonstrated an AUC greater than 0.8  in the 
training, test, and validation sets, thereby validating its performance through 
SMOTE analysis. These findings provide strong support for early diagnosis of 
Parkinson’s disease and offer new opportunities for personalized treatment and 
disease management.

Conclusion: In conclusion, the combination of WGCNA and SVM holds potential 
in biomarker screening and diagnostic model construction for Parkinson’s disease.
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Highlights

 ‑  This study was the first to utilize a combination of WGCNA and Support Vector Machine 
(SVM) to screen biomarkers and construct a diagnostic model for Parkinson's disease using 
multiple Parkinson's GEO datasets. Additionally, we have successfully developed a robust 
Parkinson's disease diagnostic model.

 ‑  This study reports for the first time the potential mechanisms and diagnostic value of FLT1, 
ATP6V0E1, ATP6V0E2, and H2BC12  in regulating the immune microenvironment in 
Parkinson's disease.

 ‑  This study demonstrates the significant value of constructing a diagnostic model using FLT1, 
ATP6V0E1, ATP6V0E2, and H2BC12, and their importance in the diagnosis of 
Parkinson's disease.

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that 
primarily affects the elderly population, with a slightly higher 
incidence in males than females (Tansey et al., 2022). The exact cause 
is unknown but may involve genetic and environmental factors. 
Currently, there are no therapies that can reverse the progression of 
the disease (Lizama and Chu, 2021). Long‑term pharmacological 
treatments face challenges such as declining efficacy and side effects, 
with the inability of neurons to regenerate posing a core obstacle to 
treatment (Liu et al., 2022). The pathogenesis of Parkinson’s remains 
incompletely understood, and reliable non‑invasive biomarkers for 
early diagnosis are lacking (Surguchov, 2022). Emerging interventions 
like stem cell therapy and gene therapy are still under clinical 
investigation (Kline et al., 2021). In summary, Parkinson’s therapies 
are hampered by issues like drug dependence and difficulties with cell 
regeneration. Ongoing research and development of novel medications 
along with exploration of emerging treatment modalities is warranted 
to find effective therapies that can control disease progression.

Current research indicates close links between Parkinson’s disease 
and the immune system/inflammatory responses (Heidari et  al., 
2022). Neuroinflammatory reactions have been observed in brain 
tissues and peripheral blood samples of patients. Animal experiments 
also confirm microglial activation can exacerbate Parkinsonian 
symptoms (Haque et  al., 2020; Zhang et  al., 2021). Though anti‑
inflammatory treatments demonstrate some protective effects, the 
precise role of the immune system in Parkinson’s pathogenesis 
requires further investigation (Heavener and Bradshaw, 2022). 
Immunomodulatory therapeutic strategies for Parkinson’s are still in 
early exploratory phases. Overall, further elucidation of the interplay 
between Parkinson’s and the immune system may unveil novel 
therapeutic avenues for this disorder (Bjørklund et al., 2021).

Reliable biomarkers for early screening and diagnosis of 
Parkinson’s disease are still lacking at present. Various studies have 
attempted to identify specific biomarkers from peripheral blood, 
cerebrospinal fluid, imaging, genetic data analysis, etc., but with 
inconsistent results. Sensitivity and specificity of imaging techniques 
like PET need further improvement (Karayel et al., 2022). Screening 
methods utilizing olfactory testing and skin tissue samples are still in 

early phases. Using a combination of biomarkers may improve 
diagnostic performance but requires further optimization. Overall, 
non‑invasive methods for early screening and diagnosis of Parkinson’s 
remain a central challenge and priority in current research. Obtaining 
reliable early diagnostic markers holds great significance for early 
detection and treatment of Parkinson’s disease (Atik et  al., 2016; 
Angelopoulou et al., 2019). Therefore, the present study attempts to 
screen and validate potential PD biomarkers and molecular 
mechanisms through in‑depth mining of multiple gene expression 
omnibus (GEO) datasets using weighted gene co‑expression network 
analysis (WGCNA). The clinical diagnostic utility of identified 
biomarkers will also be evaluated using machine learning approaches.

2. Materials and methods

2.1. Data selection and preprocessing

In this paper, gene expression data for Parkinson’s disease were 
downloaded from the Gene Expression Omnibus.1 Altogether four 
datasets were screened out following the keywords “Parkinson’s 
disease” and “substantia nigra.” The microarray datasets GSE8397, 
GSE20163 and GSE20164 were obtained through the GPL96 platform. 
The raw expression data of the microarray data were selectively log2 
transformed and normalized according to their numerical 
characteristics using the “affy” package in R software (version 3.48.3). 
Upon processing, the “sva” package (version 3.40.0) was used to 
remove batch effects from three datasets as the united dataset, 
including 38 PD patients and 29 controls. For the validation dataset, 
the GSE7621 obtained from GPL570 was preprocessed similarly, 
including 16 PD patients and 9 controls (Figures 1A,B).

2.2. Differential analysis to identify 
PD-related genes

Differential analysis of the united dataset was performed using the 
lmFit and eBayes methods from the “limma” package in R software 
(version 3.48.3). In order to identify a large number of differential genes 
with confidence, the p value < 0.05 was set as a threshold for the variation 

1 https://www.ncbi.nlm.nih.gov/geo/

Abbreviations: WGCNA, Weighted gene co-expression network analysis; SVM, 

Support vector machine; PD, Parkinson’s disease; GEO, Gene expression omnibus; 

SVM, Support vector machine; CC, Cellular component; MF, Molecular function.
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between the PD samples and the control samples. The captured genes 
were considered as the relevant genes for PD and further screened.

2.3. Construction of WGCNA for module 
analysis

The “WGCNA” package (version 1.71) was used to identify the 
expression patterns of all genes in the united dataset. First, all samples 
were clustered by the “hclust” function to check for the presence of 
outliers. If there were outliers, those would be  removed and the 
remaining samples would be re‑clustered to ensure the accuracy of the 
subsequent network construction. Then, the “pickSoftThreshold” 
function was used to calculate the soft threshold power. Next, a 
co‑expression network for all genes was constructed and segmented 
using the “blockwiseModules” function. Finally, module‑trait 
correlations were estimated using the correlation between the disease 
state of Parkinson’s disease as a clinical trait and module eigengenes. 
Two modules with significant positive and negative correlations with 
the clinical trait were selected, and the gene information corresponding 
to these modules was extracted for subsequent analysis.

2.4. GO and KEGG analysis of module 
genes

To explore the potential molecular function of the genes in the 
above selected modules, GO and KEGG analysis were performed. 
First, the GO analysis was performed by using the “clusterProfiler” 
package (version 4.0.5). Then, the KEGG pathways from David’s 
online analysis2 were visualized online using Bioinformatics,3 a tool 

2 https://david.ncifcrf.gov/

3 https://www.bioinformatics.com.cn/

that can perform secondary clustering of similar pathways. All the 
above results were significantly enriched with p value < 0.05.

2.5. Correlation coefficient matrix 
decomposition

To identify the hub genes with specific biological functions, a 
specific enriched pathway from KEGG analysis results was targeted. 
A set of genes with significant expression differences in the selected 
pathway was identified as the hub genes in GSE7621. After that, the 
Pearson correlation coefficients between the hub genes were calculated 
as Rcon and RPD for the control and PD samples in the united dataset. 
The “eigen” function in R software was used to decompose Rcon and 
RPD respectively to extract the corresponding eigenvalues λ and 
eigenvectors 



X . They reflect the essence of the correlation coefficient 
matrix. Following the convention, the order of λ should 
be λ λ λ1 2≥ ≥ ≥ s (s is the number of the hub genes). Conversion of 
all eigenvalues into percentages was performed using the formula 
λ λ λi i

k
k= ∑/ 1

. Thus, the value of λi  is between 0 and 1, and 
the sum of them is 1.

2.6. Construction of the SVM diagnostic 
model

The package “sklearn” in Python (version 2.1) was used to build a 
support vector machine (SVM) diagnostic model for Parkinson’s 
disease. Aiming at this diagnostic model, the disease status of the sample 
can be determined more effectively based on the input of the hub genes. 
Here, we use the polynomial kernel function for the linear indivisibility 
feature of the united dataset. All samples from the united dataset were 
randomly divided into the training set (60%) and the testing set (40%), 
with the additional GSE7621 serving as an external validation set. For 
either data type input, the area under the ROC curve (AUC) was used 

FIGURE 1

Flow chart of this study, respectively, for screening (A) and validation (B).
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to identify the accuracy of the model for disease classification. In 
addition, the ROC curve for the age characteristics of the samples in the 
united dataset were used as a control for our model.

2.7. SMOTE analysis

The SMOTE algorithm was used to oversampling the minority 
class samples. The main idea of the SMOTE algorithm is to randomly 
select a sample among the k nearest neighbors of each minority 
sample, and then interpolate between the lines of these two minority 
samples to generate a new minority sample. This process generates 
many new minority class samples, thus changing the imbalance ratio 
between majority and minority classes.

3. Results

3.1. The differential genes related to PD

To identify the set of genes with altered expression levels and high 
confidence in the alteration, the differential analysis was performed 
on the united dataset (GSE8397, GSE20163, and GSE20164; Figure 2). 
Samples from 38 PD patients and 29 normal nigrostriatal tissue 
differentially expressed a total of 3,568 genes, of which 1742 genes 
were up‑regulated and 1826 genes were down‑regulated in expression.

3.2. The modules most relevant to disease

Weighted co‑expression network analysis (WGCNA) aggregates 
genes with similar expression patterns into one module and later the 
relationship with clinical traits can be explored through the module. 
Cluster all samples in the united dataset and remove the outlier 
samples GSM208642, GSM208630 and GSM208668 by setting the 
threshold value of Height to 50 (Supplementary Figure  1A). 

Afterwards, the compactness of the clustering between the remaining 
samples can be  seen from the re‑clustering plot 
(Supplementary Figure  1B), which is beneficial to improve the 
accuracy of module partitioning. Then β = 4 (scale‑free R2 = 0.90) was 
chosen as the soft threshold for constructing the co‑expression 
network (Supplementary Figure 1C). A total of 10 different modules 
appeared in the clustering tree (Figure 3A). Next, correlations were 
calculated based on the module eigenvalues with the clinical traits, 
that is, the status of the disease (Figure 3B). The blue module was 
significantly positively correlated with PD (r = 0.75; p = 5E‑7) and the 
turquoise module was significantly negatively correlated with PD 
(r = −0.67; p = 1E‑9). The expression of these two modular eigenvalues 
was plotted in each sample (Figures  3C,D), and a trend towards 
up‑and down‑regulation of expression levels was found overall, 
consistent with their correlation with the disease, respectively. 
Therefore, the blue and turquoise modules were identified as the most 
relevant to the disease and used for further analysis.

3.3. The differential genes in immune 
disease pathway for PD

A set of 743 genes positively associated with Parkinson’s disease 
was obtained from the blue module above, denoted as Sblue. Also, 
there were 1805 genes negatively associated with Parkinson’s disease 
from the turquoise module, denoted as Sturquoise . The functional 
enrichment analysis was performed to further capture the pathogenic 
manner in which these genes were associated with the disease. GO 
enrichment results indicated that Sblue were mainly involved in 
synapse organization, regulation of nervous system development and 
sphingolipid metabolic process in biological processes (BP) analysis 
(Figure 4A). Cellular component (CC) analysis revealed that Sblue 
were primarily enriched in neuronal cell body, cell cortex and 
glutamatergic synapse. The top two enriched terms for Sblue in 
molecular function (MF) were GTPase regulator activity and 
phospholipid binding. The enrichment results of Sturquoise  showed 
that the genes were mostly associated with RNA catabolic process, 
presynapse and GTPase activity in BP, CC and MF analysis 
(Figure 4B). In addition, KEGG analysis was performed for genes in 
Sblue and Sturquoise  respectively, and the results of Sturquoise  were 
found to be more accurately enriched in neurodegenerative diseases 
(Supplementary Figures 2A,B). The re‑clustering of KEGG analysis 
results by Bioinformatics was able to discover pathway affiliation as a 
whole (Figures 4C,D). The enriched genes of the immune disease 
pathway of Sturquoise in human diseases were collected (Table 1). It is 
possible that these genes affect the disease onset and progression in 
PD through the biological process of immune response.

3.4. Alterations in the interplay between 
the hub genes

To avoid the accidental screening of a single dataset, the 
validation dataset GSE7621 was used to identify the expression of 16 
genes in Table 1. The results showed that only the alterations in gene 
expression levels of FLT1, ATP6V0E1, ATP6V0E2, and H2BC12 
were credible (p value < 0.05; Figure  5A). Among them, the 
expression level of ATP6V0E2 was down‑regulated compared to the 

FIGURE 2

Identifying the differentially expressed genes (DEGs) related to PD in 
the united dataset. Volcano plot of all genes. Those with red dots 
represent up-regulated genes and those with blue dots represent 
down-regulated genes. The black dashed line, red dashed line and 
blue dashed line refer to the threshold of p value and logFC (Fold 
Change), respectively (Here, the threshold of logFC followed the 
setting of p value to obtain more differential genes). The gray dots 
delimited by the dashed lines represent genes that do not change.
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controls, while the expression alterations of the remaining genes 
were up‑regulated. These four genes were considered as the final hub 
genes, and the correlation coefficients between them were calculated 
(Supplementary Tables 1, 2). To explore the interplay variations 
between hub genes, eigenvalues and eigenvectors were obtained by 
matrix decomposition of the correlation coefficient matrix for 
control and PD stage. The results of the eigenvalues indicated a 
variation in the magnitude of the eigenvalue values in the PD stage 
compared to the control (Figure 5B). This suggested that the overall 
correlation between these four genes increased as the disease 
progressed, resulting in an elevated efficiency of the 
immune response.

In addition, the results of the eigenvectors showed the direction 
of alteration of the hub genes interaction (Tables 1, 2). For example, 
the eigenvector with the largest eigenvalue in the control group was 
[0.41, 0.59, −0.43, 0.54], contributing 62% of the matrix information. 
However, in the PD group, not only the eigenvalues changed, but also 
the symbols of the eigenvectors were reversed. This indicated that the 
expression pattern between the hub genes shifted from control group 
to PD group, leading to the deterioration of the disease. Among the 
elements, the first column of the eigenvector matrix corresponds to 
the largest eigenvalue, a most important element in the correlation 
coefficient matrix (Table 3).

3.5. Exploration into the association of hub 
genes with disease

Given the altered interactions between the hub genes, the 
association of such alterations with Parkinson’s disease was further 
explored. A training set from the united dataset was used to construct 
an SVM diagnostic model, using the mean and standard deviation of 
the hub genes as inputs to the model. The model was designed to find 
a hyperplane through the hub genes that could separate control 
samples from PD samples. The results revealed that the hyperplane of 
the model can accurately distinguish the samples in the training set, 
while it achieved a better division for the samples in the testing set, 
united set, and validation set (Figures  6A–D). In addition, to 
numerically know the credibility of the model, on the one hand, the 
ROC curves were used to validate the four types of datasets separately. 
The AUC values were all higher than 0.8, indicating the validity of the 
model to differentiate the control and patient groups (Figures 7A–D). 
On the other hand, the ROC curve plotted for the age characteristics 
of all samples (AUC = 0.74) indicated that the SVM diagnostic model 
was reliable (Supplementary Figure 3).

In addition, to avoid the experimental error caused by sample size, 
the SMOTE (Synthetic Minority Over‑sampling Technique) algorithm 
was used to increase the proportion of minority class samples in the 

FIGURE 3

Screening the modules most related to PD through WGCNA. (A) The cluster dendrogram of 3,568 differential genes. A total of 10 co-expression 
modules were constructed with different colors at different degrees of similarity, where a module was represented by each color. (B) The correlation 
heatmap between the 10 modules and the Parkinson’s sample traits. The correlation coefficient and the corresponding confidence were shown in 
each unit. (C,D) The gene expression profiles in each sample.
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dataset, thereby reducing their impact on the classification effect of the 
SVM diagnostic model. Similarly, the AUC value of the ROC curve 
was used to evaluate the model’s classification effect 
(Supplementary Figure 4). We found that only the classification effect 
of the united dataset showed a slight change (from 0.87 to 0.86), thus 
the PD diagnostic model constructed by FLT1, ATP6V0E1, 
ATP6V0E2, and H2BC12 genes has certain predictive accuracy and 
practical guiding value in clinical decision‑making.

4. Discussion

Parkinson’s disease is a neurodegenerative disorder primarily 
affecting middle‑aged and elderly individuals. It has a global 
prevalence of approximately 4 million people, with over 1 million 
patients in China alone (Osborne et al., 2022). The main treatment 
modalities for Parkinson’s disease currently include 
pharmacotherapy and surgical interventions. However, their 
efficacy tends to decline over time, while the incidence of side 

effects increases (Levin et  al., 2016; Reich and Savitt, 2019). 
Furthermore, recent research suggests a potential association 
between Parkinson’s disease and the immune system, including 
elevated levels of proteins in the blood and an increase in T‑cell 
count (Nachman and Verstreken, 2022). Consequently, future 
investigations may explore the use of immunotherapy or alternative 
approaches for treating Parkinson’s disease. Early screening and 
diagnosis of Parkinson’s disease remain an active area of research. 
With advancements in technology, new biomarkers have been 
discovered that could aid in the early diagnosis of Parkinson’s 
disease. For example, studies have shown that specific proteins in 
cerebrospinal fluid can serve as diagnostic markers for Parkinson’s 
disease. Additionally, research is underway to explore other 
potential biomarkers, such as gene expression profiles. However, 
further validation and research are needed before these biomarkers 
can be effectively used in clinical diagnosis (Kluge et al., 2022). 
Genetic studies of PD have led us to realize that monogenic changes 
caused by single mutations of dominant or recessive genes play an 
important role in the analytical diagnosis of PD and are 

FIGURE 4

GO and KEGG analysis for blue and turquoise module genes. (A) The result of GO enrichment. The X-axis represents the GeneRatio (numbers of gene/
gene size) enriched to the corresponding term. The larger the dot, the higher the numbers of gene enrichment to the term. The Y-axis indicates the 
name of the GO term. The color represents the adjusted p value. The redder the color, the smaller the adjusted p value. (B) The histogram of the blue 
and turquoise module genes by KEGG analysis. The results showed enrichment pathways of genes in metabolism, genetic information processing, 
environmental information processing, cellular processes, organismal systems and human diseases. (C,D) KEGG pathway enrichment analysis.
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recommended for individual diagnosis (Selvaraj and 
Piramanayagam, 2019; Uslu et al., 2020). However, the screening 
and discovery of related susceptibility genes also restrict its 

development. Therefore, it is of great research value to find more 
molecular markers that may be  related to PD by means of 
transcriptome screening, both in promoting the selection of its own 

TABLE 1 The genes of the immune disease pathway of Sturquoise  in human diseases.

Class I Class II Pathway Gene

Human diseases Immune disease Rheumatoid arthritis

ATP6V1F

ATP6V0C

ATP6V0E1

CXCL1

ATP6V0D1

ATP6V1B2

ATP6V1G2

ATP6V0B

ATP6V1A

ATP6V0E2

ANGPT1

ATP6V1H

Human diseases Immune disease Allograft rejection HLA‑G

Human diseases Immune disease Graft‑versus‑host disease HLA‑G

Human diseases Immune disease Autoimmune thyroid disease HLA‑G

Human diseases Immune disease Systemic lupus erythematosus
H2AC14

H2BC12

FIGURE 5

Identification of hub genes and their interactions. (A) The boxplot of the expression levels of PD-related genes in the immune disease pathway. The 
symbol * indicates significance p <  0.05 and conversely ns indicates no-significant change. The genes with significant change were marked in red font. 
(B) Histogram of the eigenvalue variations in the correlation coefficient matrix. The values on the bar chart have been converted to percentages, so the 
sum of eigenvalues is 1. The blue color indicates the largest eigenvalue, while the green color indicates the smallest eigenvalue.

TABLE 2 Eigenvectors of the correlation coefficient matrix in the control stage.

V1 V2 V3 V4

1 0.41 0.82 −0.32 0.25

2 0.59 0.05 0.29 −0.75

3 −0.43 0.51 0.74 −0.02

4 0.54 −0.26 0.51 0.61
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FIGURE 6

Visualization of the classification performance of the SVM model. (A–D) The samples from (A–D) were from the training set, testing set, united dataset 
and validation set, respectively. The X-axis represents the standard deviation of the hub genes, and the Y-axis represents the mean of the hub genes. 
The value of the Z-axis was obtained by Sklearn’s decision_function, which has been used to determine whether the sample belongs to the right or left 
side of the hyperplane, and the distance from the hyperplane. The support vector refers to the closest point to the hyperplane.

application and in future mutation research. We had selected three 
GEO datasets for WGCNA analysis in order to identify relevant 
biomarkers and perform enrichment analysis of their functions and 
pathways. Furthermore, we have chosen another GEO dataset to 
validate and construct an SVM model using immune‑related 
molecules to assess their potential diagnostic value in 
Parkinson’s disease.

The protein encoded by the FLT1 gene is a receptor for 
vascular endothelial growth factor, playing a crucial role in 
neurodevelopment and neuronal function. Several studies have 
suggested that mutations in the FLT1 gene may be associated with 
an increased risk of Parkinson’s disease (PD; Dharshini et  al., 
2021). Interestingly, our study identified a significant 
upregulation of FLT1 expression in PD patients, suggesting that 

the FLT1 gene could potentially serve as a therapeutic 
target for PD.

The ATP6V0E1 and ATP6V0E2 genes encode V0 subunits, 
which are key components involved in acid–base balance and 
lysosomal function. In the realm of immune microenvironment 
studies, these genes are thought to participate in processes such as 
regulation of immune cell acidification, lysosomal function, and 
antimicrobial activity. Several studies have indicated their 
significant roles in immune response and inflammation. However, 
the precise regulatory mechanisms and immune functions of these 
genes require further investigation for a comprehensive 
understanding (Fu et  al., 2023; Zhu et  al., 2023). Moreover, 
research has shown a potential genetic susceptibility of these two 
genes to Parkinson’s disease, but their functional implications 

TABLE 3 Eigenvectors of the correlation coefficient matrix in the PD stage.

V1 V2 V3 V4

1 −0.50 0.59 0.26 −0.59

2 −0.41 −0.74 −0.23 −0.49

3 0.52 −0.26 0.71 −0.39

4 −0.55 −0.22 0.62 0.52
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necessitate further exploration and validation to elucidate their 
precise involvement in the pathogenesis of PD (Jin et al., 2012; 
Higashida et al., 2017). The H2BC12 gene encodes a subunit of 
histone H2B and has received relatively little attention in 
Parkinson’s disease research. Preliminary studies suggest that the 
H2BC12 gene may be  associated with disease occurrence and 
progression; however, a more detailed mechanistic understanding 
needs to be established through further investigations (Jia et al., 
2022; Zhou et al., 2022). Additionally, limited research has been 
conducted on its role within the immune microenvironment. Our 
research, for the first time, reveals its potential impact on PD 
progression through its regulatory effects on the immune 
microenvironment. Therefore, studies on the FLT1, ATP6V0E1, 
ATP6V0E2, and H2BC12 genes within the immune 
microenvironment are still in their early stages. Current research 
primarily focuses on exploring their associations with immune 
regulation, inflammatory responses, and immune cell 
functionalities. However, a thorough comprehension of their 
specific mechanisms of action and functions necessitates further 
investigation. At present, scholars have used TIMER and other 
tools to analyze the infiltration of immune cells in the field of 
oncology research, but we have not seen similar reports in PD 
research, but this will serve as a better guide for our future research 

(Liu et al., 2021; Wu et al., 2022; Zhang et al., 2022). We hope that 
future research endeavors will contribute to a more profound 
understanding of these genes’ roles within the immune 
microenvironment and their potential clinical applications.

In this study, we further utilized a training set from a combined 
dataset to construct an SVM diagnostic model using the mean and 
standard deviation of core genes as input features. The aim of this 
model was to find a hyperplane through the core genes to separate 
control samples from PD samples. The results showed that the 
hyperplane of the model accurately distinguished samples in the 
training set and achieved improved classification for the test set, 
combined set, and validation set samples. Additionally, to assess the 
reliability of the model quantitatively, we validated the four datasets 
using ROC curves and obtained AUC values greater than 0.8, 
indicating the effectiveness of the model in discriminating between 
control and patient groups. However, despite employing multiple 
analytical approaches to evaluate the diagnostic value of the model, 
future validation in large clinical cohorts is still necessary. In 
addition, with the increasing attention to epigenetics, whether these 
molecules are regulated by epigenetic mechanisms such as 
non‑coding RNA or DNA methylation in the mechanism of disease 
still needs to be further explored. This remains one of our main 
directions for future research.

FIGURE 7

Credibility validation of the SVM model by ROC curves. (A–D) These are the model confidence for the training set, testing set, united dataset and 
validation set from (A–D), respectively. The horizontal coordinate X-axis is 1 - specificity, also known as false positive rate. The closer the X-axis is to 
zero the higher the accuracy rate. The vertical coordinate Y-axis is called sensitivity, also known as true positive rate. The larger the Y-axis represents 
the better the accuracy rate.
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In conclusion, this study employed bioinformatics techniques 
to construct a diagnostic model for Parkinson’s disease. Our 
research provides important insights for the selection of early 
screening biomarkers and target identification for targeted therapy 
in Parkinson’s disease.
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