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Copy number variants (CNVs) are among the main genetic factors identified 
in schizophrenia (SZ) through genome-scale studies conducted mostly in 
Caucasian populations. However, to date, there have been no genome-scale 
CNV reports on patients from India. To address this shortcoming, we generated, 
for the first time, genome-scale CNV data for 168 SZ patients and 168 controls 
from South India. In total, 63 different CNVs were identified in 56 patients and 
46 controls with a significantly higher proportion of medium-sized deletions 
(100  kb–1  Mb) after multiple testing (FDR  =  2.7E-4) in patients. Of these, 13 CNVs 
were previously reported; however, when searched against GWAS, transcriptome, 
exome, and DNA methylation studies, another 17 CNVs with candidate genes 
were identified. Of the total 30 CNVs, 28 were present in 38 patients and 12 in 27 
controls, indicating a significantly higher representation in the former (p  =  1.87E-
5). Only 4q35.1-q35.2 duplications were significant (p  =  0.020) and observed 
in 11 controls and 2 patients. Among the others that are not significant, a few 
examples of patient-specific and previously reported CNVs include deletions 
of 11q14.1 (DLG2), 22q11.21, and 14q21.1 (LRFN5). 16p13.3 deletion (RBFOX1), 
3p14.2 duplication (CADPS), and 7p11.2 duplication (CCT6A) were some of the 
novel CNVs containing candidate genes. However, these observations need to 
be  replicated in a larger sample size. In conclusion, this report constitutes an 
important foundation for future CNV studies in a relatively unexplored population. 
In addition, the data indicate that there are advantages in using an integrated 
approach for better identification of candidate CNVs for SZ and other mental 
health disorders.
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Introduction

Schizophrenia is a complex neuropsychiatric disorder with 
symptoms such as delusions, hallucinations, cognitive impairment, 
and lack of social interest. Although the exact cause is not established, 
both genetic and environmental factors are well recognized as playing 
a role in its occurrence (Wahbeh and Avramopoulos, 2021). In the 
case of genetic evidence, there is a 6-fold risk in families with an 
affected first-degree relative, whereas in monozygotic and dizygotic 
twins, the risk increases by 48- and 17-fold, respectively 
(Gottesman, 1994).

Multiple large-scale genome-wide association studies (GWAS) 
involving cases and controls identified three kinds of risk variants: 
single nucleotide polymorphisms (SNPs), copy number variants 
(CNVs), and de novo mutations (DNMs) (Kirov et al., 2012; Rees 
et al., 2014; Ripke et al., 2014; Marshall et al., 2017). Of these, CNVs 
involve segmental deletion or duplication of a DNA segment ranging 
in size from 1 kb to several Mb, resulting in a dosage imbalance of 
genes equivalent to haplo-insufficiency in cases that involve deletions 
and triplosenstivity in cases of duplications (Rees and Kirov, 2021).

To date, most genome-scale CNV studies have been conducted 
in Caucasian populations and a few in Asian populations but none 
have been undertaken for populations in India (Ikeda et al., 2010; 
Rees et al., 2014; Li et al., 2016; Kushima et al., 2017; Marshall et al., 
2017). Since India is the most populated country in the world, this 
lack of genome-scale studies impedes understanding of the 
contribution of CNVs to SZ in this region. In this study, we first 
identified CNVs in 168 SZ patients and 168 age- and sex-matched 
controls from South India using PsychArrays. The CNVs identified 
in the sample set were searched against databases that contain 
previously reported CNVs. To detect unreported CNVs with 
candidate genes, GWAS, de novo mutation, methylation, and 
expression data from the SZDB V2.0 were used (Wu et al., 2017).

Materials and methods

Generation of genotyping data, quality 
control filtering, and relatedness testing

A total of 384 samples containing 194 schizophrenia cases (mean 
age ± SD: 36.4 ± 12.4; women = 48%) and 190 age-and sex-matched 
controls (mean age ± SD: 36.7 ± 10.2; women = 46%) of South Indian 
origin were identified based on the Diagnostic Statistic Manual-5 
(DSM-V) criteria by an experienced psychiatrist. Written consent for 
peripheral blood sampling was obtained from all the participants or 
their legally authorized relatives. Genomic DNAs from the blood 
samples were genotyped using Illumina’s Infinum™ PsychArray v 1.3 
(Illumina, San Diego, California, USA) at Sandor Life Sciences 
(Hyderabad, India). The intensity data obtained were used for sample 
and SNP-level quality control. GenomeStudio was used for data 
pre-processing using the clustering algorithm with a quality cutoff 
score of 0.15 (Bacchelli et al., 2020), and samples with low GenCall 
(GC) scores, having call rates below 0.98, and those of unknown sex 
were excluded from the analysis. These QC-passed data were subjected 
to further quality control using PLINK1.9 (Purcell et al., 2007), and 
SNPs with >5% missing call rates, those with a minor allele frequency 
of less than 1%, and those that failed the Hardy–Weinberg equilibrium 

(HWE; case value of p < 1 × 10−6, control value of p: <1 × 10−10) were 
removed from analyses (Rodríguez-López et al., 2018; Behera et al., 
2023). Samples with 5% missing calls, sex discrepancy, and those 
deviating by three standard deviations from the heterozygosity rate 
were then excluded. Cryptic relatedness between individuals was 
detected based on pairwise identity-by-descent analysis, wherein any 
member of each pair of individuals with PIHAT >0.2 was removed 
(Marees et  al., 2018). Using the remaining samples, MDS-based 
clustering was performed to study the population structure using 
PLINK1.9, and data were plotted using R-program to verify an 
appropriate overlap of the cases and controls and, to identify 
any outliers.

CNV calling

CNV calling was performed using the PennCNV algorithm to 
identify regions with copy number variations following standard 
pipelines that mainly focus on autosomes (Wang et al., 2007; Fang and 
Wang, 2018). First, the intensity files were used to generate PennCNV-
compatible log R ratio (LRR) and B-allele frequency (BAF) input files 
for each sample. Then, a custom population B-allele frequency file 
(PFB) was generated using the “compile_pfb.pl” script followed by a 
GC model signal file specific for PsychArray using “cal_gc_snp.pl” to 
adjust the genomic waves and reduce false-positive CNV calls. CNVs 
were detected using the “detect_cnv.pl” script, and the adjacent calls 
were merged using “clean_cnv.pl” if two successive CNVs provided a 
gap of less than 20% of the total length. For CNV filtering based on 
the sample level, individuals with a standard deviation of log R 
ratio ≥ 0.3 were excluded. Furthermore, CNVs based on call-level 
filtration (≥10 kb with ≥30 consecutive probes) were identified using 
the “filter_cnv.pl” script (Vega-Sevey et al., 2020). The centromeric and 
telomeric regions were compiled from UCSC (hg19 assembly) and 
CNV calls overlapping with ≥50% of these chromosomal regions were 
removed by running the “scan_region.pl” script (Karolchik et  al., 
2004; Fang and Wang, 2018) using PennCNV. For annotating the 
identified CNVs, we used the hg19 reference gene annotation file from 
the PennCNV package using script “scan_region.pl.” The coordinates 
of the shortlisted CNVs were viewed in the UCSC browser to 
determine cytogenetic band information. CNVs were classified as 
non-recurrent or recurrent based on their occurrence in one or more 
individuals, respectively.

Statistical analyses

Significant differences between cases and controls were identified 
using the two-tailed Fisher’s exact test.1 Odds ratios were calculated 
using MedCalc Software Ltd. version 22.007.2 For multiple testing of 
the association of CNVs based on size, we  used the 
Benjamini–Hochberg method of false discovery rate (FDR). Briefly, 
the p-values obtained by the Fisher’s test were ranked, and FDRs were 
calculated based on the formula: FDR = n p value

Rank number
x

 

− , where 

1 Graphpad.com

2 https://www.medcalc.org/calc/odds_ratio.php
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n = number of different CNV types tested (see Table 1; Thissen et al., 
2002). Post-hoc statistical power was calculated using the frequencies 
of CNVs observed in patients and controls, the sample sizes used, and 
the type I error rate of 0.05 using the ClinCalc tool.3

Identification of CNVs with potential 
association with SZ

We first filtered CNVs as reported or unreported based on their 
presence and association with SZ in the SZDB2.0 database. 
Unreported CNVs were further queried against the genes identified 
by GWAS (11,260 patients and 24,542 controls), exome sequencing 
(14,598 patients and 11,515 controls), and DNA methylation 
analyses (191 patients and 335 controls) reported in the same 
database. Genome-wide transcriptome studies reported by the 
CommonMind and PsychEncode Consortia (817 patients and 1,115 
controls) were used to identify a subset of the CNVs containing the 
candidate genes (Gandal et al., 2018; Hoffman et al., 2019). CNVs 
that were not present in the SZDB2.0 and that did not contain the 
candidate genes were considered to not be  associated with 
SZ. Wherever possible, the frequencies of the observed CNVs in the 
present population were compared with those reported for 
other populations.

Calculation of penetrance

The number of controls and patients containing 22q11.2 deletions 
and the total number of samples tested were obtained from the SZDB 
2.0. Using an incidence of 0.7%, penetrance and its critical intervals 
were calculated using CalPen software (Addepalli et al., 2020).

3 https://clincalc.com/stats/power.aspx

Results

Of the 194 patients and 190 controls used, 373 samples passed 
filtering for low GenCall (GC) scores, call rates <0.98, and unknown 
sex. A further 11 samples were excluded due to ambiguous sex calls. 
SNPs that did not conform to HWE or showed >5% missing call rates 
or MAF < 1.0% were removed from further analysis. This resulted in 
273,175 SNPs with which heterozygosity analysis was used to 
eliminate one outlier, resulting in 361 samples. Cryptic relatedness 
testing using PIHAT further identified another 13 patients and 12 
controls with scores ≥0.2 that were removed to finally obtain 336 
analyzable samples (168 controls and 168 patients). MDS clustering to 
study population stratification confirmed an appropriate overlap of 
the controls and patients with no outliers and were suitable for CNV 
detection (Figure 1A).

All the 336 samples had standard deviations of log R ratios <0.3 
and gave an initial list of 3,110 CNVs which when filtered based on 
size (≥10 kb), the presence of ≥30 consecutive probes gave 122 
variants, of which 106 were genic. Four of them were further removed 
because of their overlaps with centromeric and telomeric regions. Of 
the remaining 102 CNVs, 39 were represented more than once, 
leaving 63 unique CNVs. The size distribution of these 63 CNVs is 
summarized in Table 1. The medium-sized CNVs (0.1–1.0 Mb) were 
higher in patients than in controls (p = 0.1975), but the difference was 
significant in case of deletions (20 vs. 8; p = 4.5E-5; FDR = 2.7E-4). Of 
the 63 different CNVs, 45 were present in patients and 30 in controls, 
including 12 that were shared between the two groups 
(Supplementary Table 1). These data suggest ~1.5-fold representation 
in patients (p = 0.0107) over controls.

In total, 13 of the 63 different CNVs observed in 17 patients and 
7 controls were previously reported (Table 2). Of these, seven were 
present only in patients and two in only controls, whereas the 
remaining four were shared. When the remaining 50 unreported 
CNVs were tested for the presence of candidate genes (mentioned in 
the section Materials and Methods), an additional 17 were identified 
(Table 2). Of these, 11 CNVs were present exclusively in patients, and 
the remaining 6 were shared with controls. In total, of the 30 different 
CNVs (17 unreported with candidate genes and 13 reported), 28 were 

TABLE 1 Number of different sized deletions and duplications identified in controls and patients.

CNV type Total unique 
identified

Controls Patients p-value FDR

Present Absent Present Absent

Large-sized 

deletions

3 0 3 3 0 0.1000 NS

Medium-sized 

deletions

20 8 12 20 0 4.5E-5 2.7E-4

Small-sized 

deletions

1 1 0 1 0 1.0000 NS

Large-sized 

duplications

2 1 1 1 1 1.0000 NS

Medium-sized 

duplications

36 36 0 30 6 0.0249 0.0747

Small-sized 

duplications

1 0 1 1 0 1.0000 NS

Gray row indicates CNVs showing significant difference between controls and patients. NS, Not significant; FDR, False discovery rate calculated by Benjamini-Hochberg method.
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present in patients and 12  in controls, indicating a significant 
difference in their representation (p = 1.87E-5). This difference was 

mainly because of a higher number of medium-sized deletions in 
patients as mentioned above.
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FIGURE 1

(A) MDS plot of controls and patients. (B) 4q35.1-q35.2 region showing duplications in 11 controls (dark green) and 2 patients (light green). 5 indicates 
that five controls had identical duplications. (C) 22q11.21 region showing reported and observed deletions. Vertical dotted lines indicate the minimal 
region. The numbers on the left indicate PMIDs corresponding to Marshall et al. (2017; 27869829) and Rees et al. (2014; 24311552).
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TABLE 2 List of reported and unreported CNVs with candidate genes identified in the patients and controls in the present study and their frequencies in 
other populations.

Reported CNVs

CNV (coordinate)

Present study Published reports

No. of 
patients

No. of 
controls

Odds 
ratio (CI 
interval)

p-
value

Patients Controls Odds 
ratio (CI 
interval)

p-
valueWith 

CNV
Total

With 
CNV

Total
Study 
group

6p21.33 del (chr6:31360255–

31453618)
1 1

1.00 (0.06–

16.1)
1.00 6 8,290 4 7,431

1.34 (0.38–

4.77)
0.64 American

8p23.2 del (chr8:3681516–

3832465)
2 1

2.01 (0.18–

22.4)
0.57 6 8,290 2 7,431

2.69 (0.54–

13.3)
0.2256 American

11q14.1 del 

(chr11:83930211–84642163)
1 0

3.01 (0.12–

74.6)
0.49 3 1,699 0 824

3.40 (0.17–

65.9)
0.42

Chinese and 

Japanese

14q21.1 del 

(chr14:41855338–43171423)
1 0

3.01 (0.12–

74.6)
0.49 NA NA NA NA NA NA Family studies

15q11.2 del 

(chr15:22755185–23236972)
2 0

5.06 (0.24–

106.2)
0.29

44 6,882 47 11,255
1.53 (1.01–

2.32)
0.04

Multiple 

populations

6 307 3 359
2.37 (0.59–

9.53)
0.23 South Indian

20p12.1 del 

(chr20:14890211–15122254)
1 0

3.01 (0.12–

74.6)
0.49 1 454 0 416

2.75 (0.11–

67.67)
0.54 Canadian

22q11.21 del 

(chr22:19195680–20267213)
1 0

3.01 (0.12–

74.6)
0.49 64 21,094 1 20,227

88.9 (12.34–

641)
<0.0001

European, 

Asian, African 

American

4q13.2-q13.3 dup 

(chr4:69697128–71389594)
1 0

3.01 (0.12–

74.6)
0.49 1 3,518 0 4,328

3.61 (0.15–

88.7)
0.43 European

7q36.2 dup 

(chr7:153154107–

153652188)

1 0
3.01 (0.12–

74.6)
0.49 7 8,290 3 7,431

2.09 (0.54–

8.1)
0.28 American

7q21.11 dup 

(chr7:83179622–83437224)
0 1

0.33 (0.01–

8.19)
0.49 1 1,699 0 824

1.46 (0.06–

35.79)
0.81

Chinese and 

Japanese

15q11.2 dup 

(chr15:22755185–23236972)
1 1

1.00 (0.06–

16.1)
1.00 23 8,290 16 7,431

1.29 (0.68–

2.44)
0.43 American

16p13.11 dup 

(chr16:15548310–16291983)
0 1

0.33 (0.01–

8.19)
0.49 37 12,029 93 69,289

2.3 (1.57–

3.36)
<0.0001

Multiple 

populations

22q11.22 dup 

(chr22:22316631–22555078)
5 2

2.55 (0.48–

13.3)
0.26 NA NA NA NA NA NA Family studies

Unreported CNVs with candidate genes

CNVs with Odds ratio-3.01; CI-0.12-74.61 and p value 0.49

CNV Coordinate No. of 
patients

No. of 
controls

Candidate 
gene

GWAS Exome Transcriptome 
and eQTL

Differential 
methylation 
and meQTL

2q32.1-q32.2 

del

(chr2:186067813–

190115961)

1 0 CALCRL *** NA *** ***

COL3A1 * PD *** ***

DIRC1 *** PD NA NA

ITGAV * D *** ***

ZSWIM2 * PD *** ***

11p15.3 del (chr11:10970735–

11294339)

1 0 GALNT18 NA NA *** ***

1q42.13 dup (chr1:228467711–

228564884)

1 0 OBSCN – PD *** ***

(Continued)
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4q35.1-q35.2 duplication

This was the most common CNV in our dataset, measured 
~0.19 Mb containing CYP4V2, FAM149A, FLJ38576, and TLR3 genes, 
and occurred at a significantly higher number in controls than patients 
(11 versus 2, respectively; p = 0.02). Two of the controls had partial 
duplications of TLR3 (Figure 1B), a member of the highly conserved 
toll-like receptors that play a role in innate immunity. Experimental 
data suggest that TLR3 negatively controls the expression of DISC1, 
resulting in impaired dendritic arborization. CNVs of this region have 

not been reported, but there was a nominal association of an intronic 
variant (rs3775294) in SZ (p = 0.046) (Pardiñas et  al., 2018). Both 
TLR3 and FAM149A were implicated in GWAS, expression, and 
methylation studies on SZ patients (Wu et al., 2017).

None of the other CNVs have a significant difference in their 
occurrence between the patients and controls studied. A few that have 
been previously reported and the unreported ones with candidate 
genes are mentioned here: (i) Duplications of 22q11.22 (~0.24 Mb) 
involving PRAMENP and the first 13 exons of TOP3β were observed 
in five patients and two controls. This was the second most common 

TABLE 2 (Continued)

Unreported CNVs with candidate genes

CNVs with Odds ratio-3.01; CI-0.12-74.61 and p value 0.49

CNV Coordinate No. of 
patients

No. of 
controls

Candidate 
gene

GWAS Exome Transcriptome 
and eQTL

Differential 
methylation 
and meQTL

2p22.3 Dup (chr2:32713706–

33152042)

1 0 BIRC6 ** PD *** ***

7p11.2 Dup (chr7:55804513–

56294281)

1 0 CCT6A * B NS ***

7q21.3 Dup (chr7:96567080–

97107457)

1 0 DLX5 *** NA *** ***

9p22.1 Dup (chr9:18882562–

19192694)

1 0 ADAMTSL1 *** B *** ***

13q12.3-q13.1 

Dup

(chr13:32175095–

32525678)

1 0 EEF1DP3 * NA NS ***

CNVs with Odds ratio-5.06; CI-0.24-106.20 and p value 0.29

16p13.3 del (chr16:538565–

863498)

2 0 CAPN15 PD *** ***

3p14.2 Dup (chr3:62611243–

63258941)

2 0 CADPS *** NA NS ***

CNVs with Odds ratio-1.00; CI-0.06-16.12 and p value 1.00

16p13.3 del (chr16:6837553–

6960281)

1 1 RBFOX1 *** NA *** ***

11p15.4 Dup (chr11:9645397–

10143942)

1 1 SBF2 *** NA *** ***

11q22.3 Dup (chr11:106956255–

107426129)

1 1 CWF19L2 *** PD *** ***

16p13.3 Dup (chr16:6546624–

6672741)

1 1 Same as in 

deletion

CNVs with Odds ratio-0.17; CI-0.03-0.78 and p value 0.02

4q35.1-q35.2 

Dup

(chr4:186935500–

187122319)

2 11 FAM149A *** NA *** ***

TLR3 * B NS ***

CNVs with Odds ratio-0.24; CI-0.02-2.22 and p value 0.21

7q11.23 Dup (chr7: 76131646–

76637441)

1 4 DTX2 ** PD *** ***

POMZP3 ** D *** ***

CNVs with Odds ratio-1.50; CI-0.24-9.14 and p value 0.65

19p13.3 Dup (chr19:789890–

1397443)

3 2 Same as in deletion

Unreported CNVs do not have population-level data. NA, No data available; NS, Not significant; D, Damaging mutation; PD, Probably damaging mutation; B, Benign; ‘–’ p value close to 0.05, 
*p value 0.05–0.02, **p value 0.02–0.01, ***p value <0.001.
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CNV in this dataset. (ii) 15q11.2 deletions were found in two patients 
but not in controls, whereas duplications were present in one patient 
and one control. When combined with the data from Saxena et al. 
(2019), both deletions and duplications were not significantly different 
in a total of 540 controls and 499 patients. CNVs of this region were 
considered as variants of uncertain significance (VUS; Mohan et al., 
2019). (iii) 11q14.1 deletion (~0.71 Mb) involving DLG2 was found in 
one patient. Deletions of this region were reported in autism spectrum 
disorders (Griesius et al., 2022) and SZ patients in Caucasian and Asian 
populations (Walsh et al., 2008; Kushima et al., 2017). (iv) 14q21.1 
deletion (~1.3 Mb) involving LRFN5 was found in one patient and was 
previously reported in SZ, developmental delay, intellectual disability, 
and microcephaly (Xu et al., 2009; Lybaek et al., 2022). The observed 
deletion was larger, involving the entire gene as well as the 60 kb region 
implicated in its regulation with conformation differences between 
maternally and paternally transmitted chromosomes (Mikhail et al., 
2011). (v) 22q11.21 deletion (~1.1 Mb) was observed in one patient and 
is smaller than the previously reported ones (~2.35 Mb and ~ 1.24 Mb; 
Rees et al., 2014; Marshall et al., 2017). The observed deletion did not 
include DGCR2, ESS2, TSSK2, GSC2, SLC25A1, and CLTCL1 
(Figure 1C). Deletions of this region are considered to have higher 
penetrance for SZ (Addepalli et al., 2020). For example, the data given 
in Table 2 gave a penetrance value of 0.272 with critical intervals of 
0.079 to 0.818. (vi) 3p14.2 duplations of ~0.65 Mb affecting the copy 
number of CADPS were observed in two patients. Duplications of this 
gene are not reported in the literature, but duplication of CADPS2, a 
member of the same gene family, was reported in autism spectrum 
disorders (Girirajan et al., 2013).

Statistical power considerations

As mentioned above, of the total of 30 CNVs identified, 28 were 
present in 38 patients (22.6%), whereas 12 were present in 27 controls 
(16.1%). These incidences, along with a Type I error rate of 0.05, the 
data on 168 patients and 168 controls yielded a post-hoc statistical 
power of 32.5%.

Discussion

The present study is the first to describe. CNVs in Indian SZ 
patients and controls, and compare the data with other ethnic groups. 
The data were in overall agreement with the increased CNV burden 
observed in SZ in other populations (Marshall et al., 2017). Specifically, 
there was a significant enrichment of medium-sized deletions that have 
been previously reported or those containing SZ-associated genes in the 
patients studied here. These data also suggest the utility of PsychArrays 
in cost-effectively validating previous findings and identifying novel 
CNVs in patients from India and such unexplored ethnic groups. It may 
be noted that this report on CNVs used 168 patients and 168 controls 
and thus had a relatively small sample size. In this context, 4q35.1-q35.2 
duplication, which was the only CNV with a significantly higher 
occurrence in controls, requires replication on a larger sample. However, 
such sample sizes were also used in other similar initial studies (e.g., 
Vega-Sevey et al., 2020; Abumadini et al., 2023).

In this initial search, only 13 out of the 63 different identified 
CNVs were previously reported in SZ. However, we reasoned that more 

relevant CNVs could be  found if genes identified through GWAS, 
methylation, exome, and transcriptome studies were also considered. 
This approach draws support from a previous study on German and 
Chinese patients, wherein the possibility of the occurrence of CNVs 
was successfully tested based on GABRB2 variants reported in other 
studies (Ullah et al., 2020). In agreement with these expectations, 17 
additional CNVs were identified in our dataset. Thus, an integrated 
approach of a similar kind is worthwhile implementing for identifying 
unreported CNVs that are of potential interest from publicly available 
data and for confirmation through replication studies for SZ and other 
mental health disorders. As mentioned in the ‘Results’ section, a few 
CNVs, such as 3p14.2 duplication, occurred only in patients but not in 
controls. This occurrence is at present not significant, but replication 
studies are needed to confirm any association between the reported 
and unreported CNVs described here.

A general observation among case–control studies on other 
populations suggests that the frequencies of many of the CNVs 
involved are less than 1% (Rees et al., 2014; Marshall et al., 2017). For 
instance, 15q11.2 del, which is the most common CNV in SZDB2.0, 
has a frequency of 0.46%, whereas 16p11.2 duplications that were 
highest in the patients studied by Marshall et al. (2017), showed a 
frequency of 0.33%. It is noteworthy that a majority of the 
SZ-associated CNVs that were identified in this study and listed in 
SZDB2.0 also do not have significant p-values except for 15q11.2 del, 
22q11.21 del, and 16p13.11 dup (p = 0.04, <0.0001 and < 0.0001, 
respectively). Thus, the data suggest that, in general, CNVs with 
candidate genes are expected to be less frequent. In this context, case–
control studies with access to samples from family members (affected 
as well as unaffected) will prove valuable in determining the 
contribution of these CNVs to SZ.
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