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Editorial on the Research Topic

Neuroplasticity in cognitive and psychological mechanisms of anxiety

The impact of anxiety in contemporary society is increasing. Several new impulses

emerged from the modern types of anxiogenic stimuli: lockdown-anxiety, eco-anxiety and

climate-anxiety (Clayton, 2020; Panu, 2020; Coffey et al., 2021). Anxiety disorders affect

both male and female patients, but women are twice the risk for developing anxiety and

depression than men (Asher et al., 2017). The complexity of the cellular and molecular

elements involved in aggravating and maintaining this state is partly explained by the fact

that it can represent a contemporary symptom, comorbidity, or pathological condition. For

example, emerging evidence shows a link between unexpected diseases, such as neuropathic

pain, vascular dementia and autism, and anxiety (Ballard et al., 2000; Seignourel et al.,

2008; White et al., 2009; Gormsen et al., 2010). From a mechanistic point of view, a link

between microbiota dysbiosis and anxiety seems to be confirmed (Clapp et al., 2017; Jiang

et al., 2018). Several lines of work converge on a conserved set of brain regions required

for the execution of adaptive defensive responses in both human and animal models. This

circuitry includes the amygdala and other subcortical structures, which are necessary for

the identification and coordination of behavioral and physiological responses to threats

(Rauch et al., 2003; Walf and Frye, 2006). Nevertheless, international research provided data

supporting escape strategies and pharmacological and non-pharmacological approaches to

limit anxiety disorders. Digital mental health interventions and treadmill exercise have

received interest from the public as well as the scientific community (Ströhle, 2009; Jayakody

et al., 2014; Firth et al., 2018).

In this Research Topic, novel evidence is being discussed to supply a thorough overview

in the field of Molecular Neuroscience and Anxiety and on its future challenges (Figure 1).

Herrera-Rivero et al. investigated the effects of genetic background and environmental

enrichment on transcriptional profiles of the mouse amygdala using an established

cognitive bias test. They observed wide-ranging molecular effects of genetic background

in both living environments (normal and enriched). C57BL/6J animals showed more

transcriptional changes in response to enriched environments than B6D2F1N mice. The

authors found more dysregulated genes in the posterior than in the anterior part of the

amygdala. Interestingly, though, strain-specific differences between both portions of the

amygdala focused on stress and immune pathways, suggesting that these mouse strains may

respond differently to environmental stimuli. Their results suggest the involvement of lipid
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FIGURE 1

Representative image of data presented; for details, see main text. The figure was partly generated using Servier Medical Art, provided by Servier,

licensed under a Creative Commons Attribution 3.0 unported license (https://smart.servier.com/, accessed June 14, 2023).

metabolism in optimistic cognitive bias and, in general, propose a

crucial role for immunity in the control of the amygdala-related

emotional processing.

Wen et al. analyzed the link between neuropathic pain and

anxiety. They show that late-stage neuropathic pain is associated

with anxiety and depression. Silencing of the anterior cingulate

cortex resulted in a significant alleviation of pain sensitivity,

anxiety, and depression in rats with sparing nerve injury.

Mechanistically, the CREB/BDNF signaling pathway was activated

and central and peripheral inhibition of CREB reversed pain

sensitivity and anxiety disorders caused by peripheral nerve injury.

Therefore, the authors hypothesize that cingulate CREB/BDNF

regulation could be a safe therapeutic method for the treatment of

neuropathic pain and associated stress.

Re et al. investigated the effects of exercise as a therapeutic

program to reduce anxiety-like symptoms in acute withdrawal

methamphetamine mice and users. They found severe peripheral

immune dysfunction in methamphetamine users during acute

withdrawal. This significant inflammatory responsemay contribute

in part to anxiety symptoms. As shown in a constructed mouse

model, the mouse striatum and hippocampus showed microglial

activation and proinflammatory cytokines release during acute

withdrawal of methamphetamine. Treadmill exercise attenuated

the anxiety-like symptoms induced by methamphetamine

acute withdrawal. Accordingly, treadmill exercise counteracted

methamphetamine-induced microglial activation and increased

the release of proinflammatory cytokines. This report provides

new data showing the immunomodulatory modulation of specific

targets during exercise in male patients affected by acute anxiety

induced by withdrawal from methamphetamines.

Lee et al. analyzed autism-like behavior in Chd8 mutant mice

(knock-in). Juvenile Chd8 mice exhibited sex and age-dependent

behaviors. Taking into account the anxiety-related symptoms,

Chd8+/S62X juveniles show increased mother seeking, which is

followed by increased anxiety-like behavior in adults (decreased

open-field center time [females] and increased closed-arm time

[males and females]. Moreover, this study shows that two different

mutations (N2372K vs. S62X) can change the extent and time

course of sexual dimorphisms in autistic-like phenotypes.

Shu et al. performed a bioinformatic analysis of the frontal

and temporal cortex in vascular dementia. They found overlapping

differentially expressed genes (DEGs) between the frontal cortex

and the temporal cortex in vascular dementia patients. Moreover,

the authors recognized 10 hub genes (GNG13, CD163, C1QA,
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TLR2, SST, C1QB, ITGB2, CCR5, CRH, and TAC1), four key

regulatory transcription factors (FOXC1, CREB1, GATA2, and

HINFP), and four microRNAs (miR-27a-3p, miR-146a-5p, miR-

335-5p, and miR-129-2-3p). CRH encodes a member of the

corticotropin-releasing factor family that acts as an important

regulator of homeostasis, mediating autonomic, behavioral, and

neuroendocrine responses to stress. These results may help

to understand the mechanisms of vascular dementia, and the

early symptoms and provide potential targets and drugs for

therapeutic interventions.

Pate et al. studied the relationships between brain plasticity

and immune gene expression, peripheral immunity, and brain

and liver metabolism in germ-free and specific pathogen-free

mice. They investigated intermediary factors involved in the

gut microbiota to brain communication, with implications for

the role in anxiety. The main results of this work showed

that brain acetate was significantly reduced in germ-free mice,

while glutamate, glutamine and N-acetylaspartate metabolites

were increased. Interestingly, cFOSmRNA expression, which was

significantly reduced in the prefrontal cortex of germ-freemice, was

correlated with glutamate and glutamine level. The study supplies

insight into possible mechanisms by which the microbiota may

regulate neurotransmission through modulation of the host’s brain

and liver metabolome, which may have implications for stress-

related psychiatric disorders such as anxiety.
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