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Stem cells have potential applications in the field of neurological diseases, as 
they allow for the development of new biological models. These models can 
improve our understanding of the underlying pathologies and facilitate the 
screening of new therapeutics in the context of precision medicine. Stem cells 
have also been applied in clinical tests to repair tissues and improve functional 
recovery. Nevertheless, although promising, commonly used stem cells display 
some limitations that curb the scope of their applications, such as the difficulty of 
obtention. In that regard, urine-derived cells can be reprogrammed into induced 
pluripotent stem cells (iPSCs). However, their obtaining can be challenging due 
to the low yield and complexity of the multi-phased and typically expensive 
differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), 
included within the population of urine-derived cells, present a mesenchymal-
like phenotype and have shown promising properties for similar purposes. 
Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious 
for disease modeling, while overcoming some of the shortcomings presented 
by other stem cells for these purposes. Thus, this review assesses the current 
state and future perspectives regarding the potential of UDSCs in the ambit of 
neurological diseases, both for disease modeling and therapeutic applications.
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1. Introduction

Neurological diseases encompass various categories of disorders, imposing a heavy burden 
on society (Thakur et al., 2016). Animal models are widely used to assess the etiopathogenesis 
of brain disorders and test potential treatments. However, animal models also have limitations, 
such as their limited genotypic variability, high cost, ethical implications, and the high 
complexity of the human brain, leading to different therapeutic effects (Shen, 2016; Białoń and 
Wąsik, 2022). In vitro models based on human samples are an alternative approach that can 
be more cost-effective than animal models. Recent advances in stem cell research have led to the 
use of stem cells in brain disease modeling and therapy. Stem cells have a critical advantage in 
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that they not only provide models for understanding disease and a 
platform for drug discovery, but they may also have therapeutic 
applications on their own. Stem cells commonly used for brain disease 
modeling and/or therapy include embryonic stem cells (ESCs), neural 
stem cells (NSCs), mesenchymal stem cells (MSCs), endothelial 
progenitor cells (EPCs), and induced pluripotent stem cells (iPSCs). 
Although stem cells hold great promise for brain disease modeling 
and therapy, one of the biggest challenges associated with using stem 
cells is the high cost and low yield of the complex and multistep 
differentiation process required to generate brain cells, which can 
require invasive sample collection techniques in some cases (Fowler 
et al., 2020). New types of stem cells are being explored to overcome 
these limitations, such as urine-derived stem cells (UDSCs).

Several types of cells can be found in urine, namely epithelial cells, 
immune cells, and the subpopulations of UDSCs (Zhang et al., 2014; 
Arcolino et al., 2015; Manaph et al., 2018). UDSCs have emerged as a 
promising tool for stem cell research and therapy, given that they can 
be harvested from patients with minimal discomfort and without 
invasive procedures, while maintaining their genetic background 
(Bento et al., 2020). Importantly, UDSCs can be directly converted 
into other cell types, including brain cells, without the need for an 
intermediate conversion, which reduces costs, complexity, and risks 
of mutations in the process (Liu et al., 2013). Accordingly, recent data 
support the use of UDSCs as an in vitro cellular model for 
comprehensive precision medicine since they can allow the unveiling 
of patients’ specific disease biochemical mechanisms’ complexities. 
Moreover, they can also be used in therapy, either in their naturally 
occurring form or differentiated into other cell types.

In this review, we will tackle the current state of the art for UDSCs, 
and the future perspectives for their application in neurological 
diseases’ modeling and tentative therapeutic applications.

2. Current challenges in brain disease 
modeling and the emergence of stem 
cell research

Brain disorders represent a vast and intricate field within 
neuroscience, encompassing various categories of disorders, such as 
neurodegenerative, neurodevelopmental, cerebrovascular, infectious, 
tumoral, traumatic injury, and mental health disorders. Collectively, 
these disorders place a substantial demand on society’s capacity to 
overcome the economic and social burden (Thakur et al., 2016). In 
2014, approximately 100 million people in the United States were 

affected by a neurological disorder, with an estimated cost of almost 
789 trillion USD (Gooch et  al., 2017). In Europe, neurological 
disorders were the third most common cause of premature death and 
disability in 2017, and their negative societal impact is expected to 
increase with the aging population (Deuschl et al., 2020). Therefore, 
finding solutions to mitigate the impact of neurological diseases is 
becoming increasingly crucial. The key to discovering new, 
translational findings is the development of effective models to gain a 
comprehensive understanding of diseases and design successful 
therapeutic approaches. However, modeling brain-associated 
pathologies is challenging due to the wide range of underlying causes, 
symptoms, and the variability of cellular and molecular effects. Hence, 
there are various types of models available, each with its own 
advantages and limitations.

Evaluating the causes of brain disorders and experimenting with 
potential treatments frequently makes use of animal models, which 
are extensively employed in research (Dawson et al., 2018). Animal 
models offer advantages such as the ability to study hindrances in a 
living, dynamic system, accounting for the functional interplay of 
different cell types and even organs that are not represented in cellular 
models. In addition, animal models allow researchers to account for 
various factors, including environmental or dietary alterations. These 
models can be created by genetically inducing brain changes specific 
to a given neurological disorder through germinal or neural cell-
targeted mutations or pharmacologically inducing cellular 
degeneration using drug administration. Trauma can also be externally 
induced to simulate specific conditions. However, animal models have 
limitations. Human diseases that have complex etiologies or that are 
poorly understood may be misrepresented in animal models. Due to 
the way animal models are typically generated, diseases that do not 
naturally occur in animals may only be replicated by altering one of 
several intervening genes and overexpressing it. This may result in 
models that replicate the disease’s phenotype but not its underlying 
causes and induce the condition by mechanisms distinct from those 
at play in a real situation (McGraw et al., 2017). Another limitation of 
animal models is the limited genotypic variability of laboratory 
animals due to inbreeding, which can lead to a failure to represent the 
complexity of human genetic diversity. As a result, extrapolating 
results from animal models to humans may not always be successful, 
leading to the failure of clinical trials and the loss of considerable 
amounts of money, time, and lives. Even in the case of adequate 
representation, the high complexity of the human brain and its unique 
genetic and physiological dysfunctionality can lead to dissimilar 
therapeutic effects (Shen, 2016). In addition, animal models can 
be  costly due to the expenses associated with acquiring and 
maintaining them, as well as running experiments (Białoń and Wąsik, 
2022). Furthermore, modern societies are increasingly concerned 
about the ethical implications of using animals in scientific research. 
While ex vivo tissues from animals can also be used as a simplified 
model, they also require animal sacrifice.

An alternative approach to studying brain diseases involves using 
in vitro models based on human samples. While these models can also 
be expensive, techniques like 2D cell culture tend to be more cost-
effective than animal models. While these simplified models do not 
account for systemic responses that may be  involved in a specific 
disease, they do offer a more precise and focused characterization of 
cellular events. By using human cells, including patient-derived ones, 
researchers can study the disease in an autologous context. However, 
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it’s important to note that brain cells collected in specific conditions, 
namely primary cultures, are often only available at more advanced 
stages of the disease, resulting in a poorer understanding of the 
disease’s earlier stages (Eichmüller and Knoblich, 2022).

In recent years, research has made remarkable progress in using 
stem cells for both modeling and as platforms for discovering new 
drugs. Additionally, stem cells have enormous potential for therapeutic 
applications, such as replacing damaged or dysfunctional brain cells 
or promoting specific biological responses, such as angiogenesis (Ryu 
et al., 2016). Commonly used stem cells for brain disease modeling 
and/or therapy include ESCs, NSCs, MSCs, EPCs, and iPSCs. Through 
specific differentiation protocols, these cells can be used to obtain 
different types of brain cells (Gage and Temple, 2013; Appaix, 2014; 
Terrigno et al., 2018). Despite the immense potential of stem cells, it 
is critical to recognize that they also come with significant limitations 
as models, varying in degree. One of the most significant hurdles 
associated with stem cell use is the high cost and low yield of the 
intricate and multistep differentiation process necessary for creating 
brain cells, which can also require invasive sample collection 
techniques in certain cases (Fowler et al., 2020). Additionally, incorrect 
differentiation into brain cells can lead to inaccurate modeling of the 
disease and limit their potential for therapeutic use (Strano et al., 
2020). Moreover, there is a risk of tumorigenesis due to undesired 
mutations and potential teratoma formation in the cells generated 
through certain methods (Ganat et al., 2012). Another concern is the 
ethical considerations surrounding the use of embryonic stem cells, 
which require the destruction of human embryos. Despite these 
challenges, researchers are exploring novel types of stem cells to 
overcome these limitations and fully unlock the potential of stem cells 
for disease modeling and therapy.

Within the scope of novel disease modeling and treatment 
feasibility and to overcome several drawbacks, UDSCs are gaining 
increasing interest. They constitute a comprehensive in vitro cellular 
model and can be  safely and easily isolated from patients’ urine 
samples. UDSCs are part of the group of body fluid-derived stem cells 
(BFDSCs). They offer an alternative to solid tissue-derived stem cells 
by also presenting characteristics of stemness, including self-renewal 
properties, the expression of stem cell surface markers, and multi-
differentiation potential (Huang et al., 2023). BFDSCs encompasses 
different cell types that can be obtained from diverse sources, such as 
urine (Lang et al., 2013), synovial fluid (Li F. et al., 2020), menstrual 
fluid (Bozorgmehr et al., 2020), umbilical cord blood (Nguyen et al., 
2022), peripheral blood (Pouryazdanpanah et al., 2018), breast milk 
(Mane et al., 2022), among others. In comparison with solid tissue-
derived stem cells, BFDSCs collection is less invasive, and their 
isolation tends to be  simpler. It bypasses the commonly used 
enzymatic digestion, which is otherwise applied to separate the 
desired cells from the extracellular matrix, using instead 
straightforward methods such as centrifugations to isolate the target 
cells fraction (Jia et al., 2018; Liu et al., 2018; Huang et al., 2023). 
Importantly, BFDSCs have shown significant therapeutic potential, 
aligning with their intrinsic biological properties. Urine sample 
collection is easy, fast, painless, and non-invasive, making it a safe 
method for obtaining UDSCs in relatively high numbers (Shi et al., 
2022). Additionally, UDSCs can be  obtained daily (limited by 
menstruation), from both healthy individuals and patients, regardless 
of their gender, without major ethical concerns. Furthermore, the 
isolation and maintenance of UDSCs are associated with significantly 

lower costs, adding to the appeal of using these cells. These advantages 
are not only applicable when compared to other sources of BFDSCs, 
such as those derived from breastmilk, umbilical cord blood, 
menstrual blood, or peripheral blood, but also when compared to 
alternative sources of stem cells, like adipose tissue or bone marrow 
mesenchymal stem cells, which may lack at least one of the 
aforementioned benefits. Among BFDSCs, UDSCs attributes make 
them an attractive option for diverse applications in precision 
medicine, in vitro pharmacological tests, regenerative medicine, and 
disease modeling (Bento et al., 2020).

3. Characterization of UDSCs

Urine includes different cell types, broadly classified as urine-
derived cells, encompassing several cellular subpopulations such as 
podocytes and epithelial cells from the renal tubules, nephrons, 
ureters, bladder, and urethra and, among others, a fraction of stem 
cells (Arcolino et al., 2015; Manaph et al., 2018). Those stem cells 
(UDSCs) represent a minor portion of urine-derived cells. UDSCs 
exhibit mesenchymal stromal cell (MSC)-like properties (Zhang et al., 
2008) and have the ability to proliferate and to differentiate into 
various cell lineages (Bento et al., 2020). UDSCs express MSC surface 
markers including CD24, CD44, CD73, CD90, and CD105 (Dominici 
et al., 2006; Lv et al., 2014), the pluripotent stem cell markers POU5F1, 
as well as Sox2, c-Myc, among others like the ESCs markers SSEA4, 
TRA 1–60, TRA 1–81, common to pluripotent stem cells (Dominici 
et al., 2006; Manaph et al., 2018). They are also characterized by the 
lack of expression of the hematopoietic surface markers CD14, CD20, 
CD34, and CD45 (Culenova et al., 2019, 2021; Figure 1).

The biological origins and the specific mechanisms underlying the 
generation and shedding of UDSCs are still unclear. It was proposed 
that they can be biosynthesized in the proximal and distal convoluted 
tubules in nephrons, in the renal cortex and papilla, in the ureter, 
urethra, and bladder (Dörrenhaus et al., 2000; Bharadwaj et al., 2013; 
Bento et al., 2020). In addition, they are possibly shed into urine as 
part of the process of physiological tissue reparation and turnover 
(Dörrenhaus et al., 2000; Zhang Y. Y. et al., 2001; Zhang Y. et al., 2008).

UDSCs can be isolated from the excreted urine (non-invasive) or 
collected with a catheter from the upper urinary tract (invasive) of 
healthy subjects or patients of all ages (Zhang et al., 2008; Bharadwaj 
et al., 2011). Despite urine normally being a sterile fluid while stored 
in the body, contaminations may happen sporadically, such as through 
exposure to a contaminated environment at the moment of collection 
or in the presence of a urinary tract infection, which most frequently 
occurs in women (Lang et al., 2013). Additionally, still within the 
biological system, cells may be exposed to excretion products naturally 
occurring in urine such as the metabolic waste molecules ammonia, 
urea and creatinine, the breakdown products of drugs, among others 
(Bouatra et al., 2013). However, to mitigate these shortcomings, a 
washing step in the isolation procedure with an antimicrobial solution 
(Manaph et  al., 2018), such as phosphate buffered saline solution 
enriched with antibiotics (Kim et al., 2020), may be carried out to 
remove possible contaminants and further help remove vestiges of 
urine in cell culture, along with the toxic metabolites that may 
be present therein.

Due to their characteristic of being plastic-adherent in the absence 
of coating, UDSCs can be easily separated from other urinary-derived 
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cells in culture. During a medium change, the remaining cells are 
washed away, leaving behind only the adherent UDSCs in culture 
(Culenova et al., 2021), without the need of special substrates. Of note, 
a single urine collection (~70 mL) yields an average of 3 millions 
UDSCs which can be frozen (in passage 3, p3), and then thawed and 
expanded for use in experiments. In this sense, Bharadwaj and 
colleagues (Bharadwaj et  al., 2011) evidenced that the maximum 
population doublings of UDSCs derived from the upper urinary tract 
was 56.7, corresponding to a maximum passage of p14 (Bharadwaj 
et  al., 2011), being, in practice, used until p6 for experiments. 
Importantly, UDSCs maintain their proliferation, self-renewal and 
multi-differentiation capacity following storage at 4°C for 24 h, thus 
enabling their handling in batches and improving the efficacy of their 
processing (Lang et al., 2013). Moreover, the isolation and culture of 
UDSCs are cost-effective in comparison with other stem cells. UDSCs 
can be at least half the price and up to seven times cheaper than other 
stem cells regarding their obtention and maintenance, namely due to 
costs inherent to sample collection of the latter, which often require 
the need of specialized invasive medical procedures and posterior 
requirement of expensive substrates for cell culture (Manaph et al., 
2018). Notably, these cells present a low immunogenicity (Guan et al., 
2014), and absence of tumorigenicity (Zhang et al., 2008; Bharadwaj 
et al., 2011; Chun et al., 2012; Bharadwaj et al., 2013; Lee et al., 2013).

When in culture and still in a stem cell state, UDSCs present a 
“spindle,” “rice-grain” or “cobblestone” shape (Bharadwaj et al., 2011; 
Lang et al., 2013; Schosserer et al., 2015; Chen C. Y. et al., 2018; Wan 
et al., 2018). The morphology of the cells can differ slightly depending 

on their origin along the urinary tract. According to Chen A. J. et al., 
(2020) and UDSCs obtained from the renal mesenchyme have a 
spindle-like morphology, while cells originated in the nephron tubules 
are thought to be  the ones with a rice-like shape. In addition, 
numerous studies have highlighted differences between these two 
morphologically distinct cell types in terms of their expression of cell 
surface markers, motility, proliferative capacity, and longevity in 
culture (Zhou et al., 2012; Chen A. J. et al., 2020; Shi and Cheung, 
2021). Under in vitro experimental conditions, both cell types express 
the stemness-related markers POU5F1 and c-Myc. However, cells 
from renal mesenchyme origin (spindle-like cells) present enhanced 
motility and proliferation rate (Chen A. J. et al., 2020).

Importantly, UDSCs are characterized by a multipotential of 
differentiation and can be  directly differentiated into cells 
representative of the three germ layers, such as neurons (Bharadwaj 
et al., 2013; Guan J. J. et al., 2014; Kang et al., 2015; Kim et al., 2018; 
Xu et al., 2019; Liu et al., 2020), hepatocytes-like cells (Zhou et al., 
2020), osteocytes, adipocytes, chondrocytes (Guan J. J. et al., 2014), 
cardiomyocytes (Guan X. et al., 2014), endothelial cells (Bharadwaj 
et al., 2013; Kang et al., 2015) and skeletal myogenic cells (Liu et al., 
2013). Moreover, UDSCs have the capacity to differentiate into renal 
cells, podocytes and tubular epithelial cells (Lazzeri et al., 2015), an 
important feature for their potential for renal repair (Figure 1). This 
fact suggests a degree of pluripotency, although the true extent of this 
characteristic is still not fully comprehended. The complete range and 
full extent of their biological functions are still being debated, however, 
their role in the promotion of tissue regeneration, replacement, and 

FIGURE 1

Characterization and differentiation potential of UDSCs. UDSCs can be isolated from the urine of healthy subjects or patients of all ages and have a 
similar phenotype to mesenchymal stroma cells (MSC). UDSCs express MSC surface markers, pluripotent and embryonic stem cell markers. UDSCs 
evidence a certain degree of pluripotency and can be directly differentiated into cells of the three germ layers: neurons, hepatocytes-like cells, 
osteocytes, adipocytes, chondrocytes, cardiomyocytes, endothelial cells and skeletal myogenic cells, renal cells, podocytes and tubular epithelial cells. 
ESC, embryonic stem cell; PSC, pluripotent stem cell. Created with BioRender.com.
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immunomodulation is already scientifically recognized (Zhang et al., 
2014; Wu et al., 2021).

For all these reasons, UDSCs may be employed to perform in vitro 
pharmacological tests, in disease modeling approaches, in regenerative 
medicine procedures, and for precision medicine (Bento et al., 2020).

4. Direct conversion of UDSCs into 
neuronal cells

The ideal model for studying the complexity of human brain 
diseases should be a reliable platform that can be easily obtained from 
every patient, without requiring invasive procedures or raising major 
ethical concerns. It should be capable of producing consistent results 
and accurately reflecting the genetic and epigenetic background of a 
specific disease, all while being cost-effective and efficient. Building 
such a model is a huge challenge. However, certain emerging cellular-
based platforms, such as UDSCs, offer promising opportunities for 
this purpose. Research efforts are currently underway to 
comprehensively understand their capabilities and limitations as a 
neurological model, including exploring various strategies for their 
direct differentiation into neuronal cells. This section presents a 
discussion of the relevant studies published in this area, providing 
details on the different protocols (Table 1) and the specific role of each 
compound in the differentiation media (Table 2).

Several scientific reports have demonstrated the successful direct 
conversion of UDSCs into various cell types across different germline 
lineages. For instance, hepatocyte-like cells have been achieved (Zhou 
et al., 2020), along with the differentiation into osteocytes, adipocytes, 
and chondrocytes (Guan J. J. et  al., 2014). Furthermore, different 
authors have accomplished the direct conversion of UDSCs into 
neuron-like cells using various approaches, resulting in cells with 
distinct characteristics (Bharadwaj et al., 2013; Guan J. J. et al., 2014; 
Kang et al., 2015; Kim et al., 2018; Xu et al., 2019; Liu et al., 2020).

In 2013, Bharadwaj and colleagues (Bharadwaj et al., 2013) used 
a multistep protocol to achieve the differentiation of UDSCs into 
neuron-like cells. At D3 (maximum days in culture), cells had already 
undergone morphological changes, including the emergence of 
extensions and processes. Forty % of cells in culture were expressing 
nestin, and NF200 (neurofilament 200), characteristic markers of 
neural progenitor cells (NPCs) and neuronal cells, respectively. This 
differentiation success rate indicates that there was still room for 
efficiency enhancement of the neuronal differentiation process, along 
with improved neuronal maturation (Bharadwaj et al., 2013).

The following year, another study achieved the transformation of 
UDSCs into NPCs (Guan J. J. et al., 2014). At D12, cells differentiated 
from UDSCs were expressing the Sox2 and Nestin (markers of NPCs) 
in higher levels than NSE (neuron-specific enolase) and β-III-tubulin, 
both neuronal markers. It is relevant to highlight that at D12, the 
maximum number of days that the authors maintained cells in culture, 
β-III-tubulin expression was residual, indicating that the obtained 
neuron-like cells were in an early stage of neuronal differentiation. 
Additionally, in this study, UDSCs were transplanted into a rat brain, 
being able to survive and migrate while expressing proteins 
characteristic of a neuronal phenotype, demonstrating the potential 
of UDSCs to differentiate into neuronal-like cells in the brain.

In another study (Kang et al., 2015), the capacity of UDSCs to 
differentiate into neuron-like cells was compared to the one from 

adipose tissue stem cells (ADSCs). The authors found that UDSCs 
have a better neurogenic differentiation rate than ADSCs, suggesting 
that these cells are more suitable to be converted into neurons (Kang 
et al., 2015).

Later, in 2018, Kim and colleagues (Kim et al., 2018) optimized a 
protocol to obtain mature neurons from UDSCs recurring to laminin 
coating and/or treatment with platelet-derived growth factor BB 
(PDGF-BB). After 14 days of neuronal induction, the authors observed 
an increase in the expression of early neuronal differentiation markers 
(nestin and β-III-tubulin) and mature neuronal cells [NeuN 
(hexaribonucleotide binding protein-3 or Fox-3), MAP2 (microtubule-
associated protein 2), and NF-M (neurofilament marker)] in the 
PDGF-BB treated UDSCs cultured on laminin-coated plates. This 
suggests a synergistic effect between laminin and PDGF-BB to 
promote a higher degree of neuronal maturity.

A more recent investigation (Xu et  al., 2019) pursued the 
differentiation of UDSCs into neuron-like cells through a distinct 
methodology. The study employed a direct reprogramming two-step 
neuronal induction approach, utilizing seven small molecules and 
growth factors. By establishing this protocol the authors were able to 
obtain a higher degree of neuronal maturation and conversion 
efficiency when compared to the previous reports. The alteration of the 
UDSCs morphology into a more neuron-like morphology was 
observed early in the application of the protocol, being visible after 24 h 
of NIM application. At D5, 58% of cells expressed β-III-tubulin. At 
D17, cells depicted a more extended neurite outgrowth with dendrite-
like structures and apart from β-III-tubulin, also expressed MAP2, 
NeuN, Tau, SYN (synapsin), and NF-01, being negative to GFAP (glial 
fibrillary acidic protein). The expression of these neuronal markers and 
neuronal morphology was maintained through D30. At D17, the 
authors further characterized the neuronal type generated using this 
protocol and confirmed its glutamatergic nature, as evidenced by the 
expression of the glutamatergic marker glutamate. Additionally, 
markers associated with other neuron types, such as GABA (gamma-
aminobutyric acid), HB9 (homeobox HB9), and TH (tyrosine 
hydroxylase), were rarely detected. To assess the functionality of the 
neurons derived from UDSCs, whole-cell patch-clamp recording was 
employed. Following the complete differentiation process, cells at D17 
exhibited partial electrophysiological properties, displaying both 
outward and inward currents. However, neither at D17 nor at D47 
were the cells able to generate action potentials. The study conducted 
by Xu and colleagues (Xu et  al., 2019) represented a significant 
advancement in establishing a neuronal differentiation protocol for 
converting UDSCs. However, the successful conversion of UDSC into 
functional neurons has not yet been accomplished, underscoring the 
pressing requirement for additional research in this field.

Another differentiation approach, also recurring to small 
molecules, was performed by Liu and collaborators (Liu et al., 2020), 
who obtained neuron-like cells, with a discernible subset exhibiting 
GABAergic characteristics. By D6 cells were expressing the neuronal 
markers Tuj-1, MAP2, Tau, and PSA-Ncam (polysialylated neuronal 
cell adhesion molecule). At D14, a small subset of cells exhibited 
GABA positivity, indicative of GABAergic neurons. There was also no 
evidence of ChAT- or TH-positive cells (cholinergic or dopaminergic 
neurons, respectively), despite the majority of cells expressing typical 
neuron-specific genes such as Tau, MAP2, Ncam, and NeuN. The 
authors did not assess glutamate expression, unlike in the previous 
study, making it difficult to comprehend the similarities and differences 
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TABLE 1 Protocols of UDSCs transdifferentiation into neurons.

References UDSCs Passage 
and number of 
cells

Days in 
Culture

Media Supplements and 
Growth factors

Small molecules or/and 
compounds

Bharadwaj et al. 

(2013)

Expansion - Day 0 KSFM and EFM (1:1) FBS (5%)

Passage unk.; 6.000 

cells/cm2

Day 0 DMEM FBS (20%), bFGF (10 ng/mL)

Day 1–3 DMEM DMSO (2%), butylated hydroxyl-

anisole (200 μM), insulin (5 μg/mL); 

human transferrin (4 μg/mL), 

selenium (4.2 ng/mL), KCl (25 mM), 

valproic acid (2 mM), forskolin 

(10 μM), hydrocortisone (1 μM)

Guan J. J. et al. 

(2014)

gelatin-coated 24-well 

plates

DMEM FBS (2%), hEGF (10 ng/mL), 

PDGF (2 ng/mL), TGF-β (1 ng/

mL), bFGF (2 ng/mL)

Cortisol (0.5 μM), adrenaline (549 ng/

mL), transferrin (20 μg/mL), insulin 

(25 μg/mL), triiodothyronine (50 ng/

mL), L-glutamine (un. conc.)

P4, polystyrene-coated 

plate, 30–50% 

confluence

Day 0–12 DMEM/F12 B27 (2%), NEAA (non-essential 

amino acids, 1%), bFGF (40 ng/

mL), hEGF (20 ng/mL)

L-glutamine (1%), insulin-transferrin-

selenite (1%)

Kang et al. (2015)

Expansion, 100-mm 

culture plates

KSFM, DMEM/F12 

and DMEM high 

glucose (2:1:1)

Penicillin (100 U/mL), 

streptomycin (1 mg/mL), EGF 

(5 ng/mL), BPE (50 ng/mL)

Cholera toxin (30 ng/mL)

Passage unk.; 1 × 105 

cells/well in 24-well 

plates, 80% confluence

Day 0–7 NeuroCult 

differentiation Kit

Kim et al. (2018)

Expansion

KSFM, DMEM (high 

glucose) and DMEM/

F12 (2:1:1)

FBS (5%), PS (1%), BPE (25 ng/

mL), EGF (7.5 ng/mL)

Hydrocortisone (0.2 ng/mL), insulin 

(2.5 ng/mL), transferrin (2.5 μg/mL), 

triiodothyronine (100 μM), adenine 

(90 μM), cholera toxin (19.2 ng/mL)

P4, 80% confluence; 

laminin-coated dishes 

(5 μg/cm2)

Day 0–14 DMEM/F12 B27 (2%), nonessential amino 

acids (1%), PDGF-BB (5 ng/mL)

L-glutamine (1%), and retinoic acid 

(10 mM)

Xu et al. (2019)

Expansion

SingleQuot Kit CC-

4127 Renal Epithelial 

Cell Growth Medium 

(REGM), DMEM/F12

FBS (10%), NEAA (0.1 mM), 

GlutaMAX (1 mM), and PS (unk. 

Conc.)

P4-P5, matrigel-coated 

(1%) 24-well plates 

(20000–30,000 cells/

well)

- Day 2 SingleQuot Kit CC-

4127 Renal Epithelial 

Cell Growth Medium 

(REGM), DMEM/F12

FBS (10%), NEAA (0.1 mM), 

GlutaMAX (1 mM), PS (un. conc.)

Day 0–7 DMEM/F12 EGF (50 ng/mL), FGF10 (100 ng/

mL)

Nicotinamide (0.5 mM), Y27632 

(10 μM), A8301 (5 μM), CHIR99021 

(3 μM), TTNPB (1 μM), forskolin 

(5 μM); valproic acid (0.5 mM), 

sodium butyrate (0.1 mM)

Day 7–17 DMEM/F12 and 

Neurobasal medium 

(1:1)

N2 (0.5%), B27 (1%), PS (unk. 

Conc.), bFGF (20 ng/mL), BDNF 

(20 ng/mL), GDNF (20 ng/mL), 

NT3 (20 ng/mL)

cAMP (100 μM), Y27632 (10 μM), 

A8301 (5 μM), CHIR99021 (3 μM), 

TTNPB (1 μM), forskolin (5 μM), 

vitamin C (0.2 mM)

DMEM/F12 and 

Neurobasal medium 

(1:1)

N2 (0.5%), B27 (1%), PS (unk. 

Conc.), BDNF (20 ng/mL), GDNF 

(20 ng/mL), NT3 (20 ng/mL)

(Continued)
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between the neuron-like cells generated using these two protocols. 
Furthermore, the resultant cells displayed voltage-gated channels for 
Na+ and K+, characteristic of excitable cells, but lacked Ca+ currents, 
thereby failing to generate action potentials. Based on these findings, 
it can be concluded that the conversion of UDSCs in both studies (Xu 
et al., 2019; Liu et al., 2020) did not result in fully matured neurons.

Similar to the potential of UDSCs to differentiate into neuron-like 
cells, other cells found in urine hold valuable clinical applications as an 
important source for the conversion into neuronal cells and disease 
modeling. In line with this, various studies have reported the generation 
of disease-related neuronal cells through the reprogramming of urine 
cells. These methodologies aim to achieve neuronal cells through direct 
differentiation, or through urine cells reprograming into iPSCs for 
further neuronal differentiation; and involved the use of retroviruses 
(Zhang et  al., 2016), episomal vectors (Liu et  al., 2020), or a 
reprogramming medium supplemented with small molecules (Yi et al., 
2018). Thus, small molecules can be used to differentiate urine-derived 
renal cells into neuron-like cells showing neuron-specific genes 
expression and voltage gated Na+ and K+ currents (Liu et al., 2020). 
Similarly, Zhang and colleagues were able to obtain induced-neurons 

expressing multiple neuron-specific proteins and capable of generating 
action potentials from urine cells from control individuals and Wilson’s 
disease patient, through the overexpression of the transcription factors 
Ascl1, Brn2, NeuroD, c-Myc, and Myt1l (Zhang et al., 2016). Importantly, 
iPSCs obtained from urine sample can be used to generate extended 
pluripotent stem cells (EPSCs) which could then be differentiated to 
neuronal progenitor cells (Hao et al., 2023). Moreover, urine-derived 
iPSCs previously reprogramed can also be differentiated into functional 
motor neurons capable of forming neuromuscular junctions in 
co-cultures with muscle cells (Yi et al., 2018). In the same line, urine-
derived iPSCs from Down Syndrome individuals have been used to 
obtain cells differentiated into glutamatergic neurons (Lee et al., 2017). 
Furthermore, in a recent breakthrough, Teles e Silva and colleagues 
demonstrated the pioneering use of urine-derived iPSCs in producing 
human cerebral organoids to model Down Syndrome for the first time 
(Silva AL et  al., 2023). Of note, these cerebral organoids faithfully 
replicate early features of human cortical development, encompassing 
the organization of neural progenitor zones, programmed differentiation 
of both excitatory and inhibitory neurons, and the presence of upper and 
deep-layer cortical neurons, along with astrocytes (Silva AL et al., 2023). 

References UDSCs Passage 
and number of 
cells

Days in 
Culture

Media Supplements and 
Growth factors

Small molecules or/and 
compounds

Liu et al. (2020)

Isolation to colonies

3 days DMEM/F12 FBS (10%), PS (1%), Renal 

Epithelial Cell Growth BulletKit 

(0.1%)

~ Days Renal Epithelial Basal 

Medium (REBM)

FBS (1%), PS (1%), Renal 

Epithelial Cell Growth BulletKit 

(0.1%)

Expansion
~ Days KSFM: DMEM/F12 

(1:1)

FBS (10%), PS (1%), BPE (50 μg/

mL), EGF (10 ng/mL)

Adenine (1.8 × 10−4 M)

P3. matrigel-coated 

wells, 1 × 104 cells/cm2

Day 0 Neurobasal medium B27 (2%), N2 (1%), PS (1%) L-glutamine (1%), cAMP-Na 

(100 μM), VPA (4 μM), CHIR99021 

(3 μM), Repsox (1 μMr), Forskolin 

(10 μM), SP600125 (10 μM), GO6983 

(5 μM), Y-27632 (10 μM), IBET151 

(2 μM), Isoxazole 9 (20 μM), retinoic 

acid (10 μM), QVD-OPh (5 μM), 

vitamin C (0.2 mM)

Day 3 Neurobasal medium B27 (2%), N2 (1%), PS (1%), with 

BDNF (20 ng/mL), GDNF (20 ng/

mL), IGF (20 ng/mL), NT3 (20 ng/

mL)

L-glutamine (1%), cAMP-Na 

(100 μM), VPA (4 μM), CHIR99021 

(3 μM), Repsox (1 μMr), Forskolin 

(10 μM), SP600125 (10 μM), GO6983 

(5 μM), Y-27632 (10 μM), IBET151 

(2 μM), Isoxazole 9 (20 μM), retinoic 

acid (10 μM), QVD-OPh (5 μM), 

vitamin C (0.2 mM)

Day 11–14 Neurobasal medium B27 (2%), N2 (1%), PS (1%), 

BDNF (20 ng/mL), GDNF (20 ng/

mL), IGF (20 ng/mL), NT3 (20 ng/

mL)

L-glutamine (1%)

BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast growth factor; BPE, brain pituitary extract; conc, concentration; DMEM, Dulbecco’s Modified Eagle Medium; DMSO, 
dimethyl sulfoxide; EFM, embryonic fibroblast medium; EGF, epidermal growth factor; FBS, fetal bovine serum; FGF10, Fibroblast Growth Factor 10; KSFM, keratinocyte serum-free medium; 
hEGF, human epidermal growth factor; NT3, neurotrophin-3; PDGF, platelet-derived growth factor; PS, penicillin/streptomycin; TGF-β, transforming growth factor beta; unk., unknown.

TABLE 1 (Continued)
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Important hallmarks have been achieved, namely the obtention of 
mature neurons or neurons carrying the phenotype of a specific diseases. 
As such, studies of this nature might provide some insights that could 

prove useful in guiding future works that aim to achieve disease models 
of neurological diseases based on UDSCs due to the close nature 
between them (Figure 2).

TABLE 2 Core compounds used among the existing protocols for the differentiation of UDSCs into neuron-like cells and main functions.

Compound Biological effect

A8301
Inhibitor of the TGF-β pathway (Tojo et al., 2005), involved in cell growth, differentiation, development, immune response, tissue homeostasis and the 

determination of the neural fate (Wang et al., 2016)

BDNF
Neurotrophic factor. Promotes the differentiation of NPCs into specific neuronal lineages and neuronal maturation (Bartkowska et al., 2007; Colucci-

D’amato et al., 2020)

bFGF Promotor of growth, survival, and regulation of neurogenesis (Li et al., 2022)

BHA Antioxidant used to prevent cell damage due to oxidative stress during the induction process (Delanghe et al., 2021)

cAMP Intracellular signaling molecule. Induces neuronal differentiation, maturation, and survival (Hansen et al., 2000; Li et al., 2000; Lepski et al., 2013)

CHIR99021
Inhibitor of GSK3β, whose inactivation leads to the activation of the canonical Wnt signaling pathway, which plays a key role in neural development 

and differentiation (Huang et al., 2017)

EGF Promotor of cell expansion, survival and differentiation (Li et al., 2022)

FGF10 Promotor of neurogenesis initiation; regulator of cell proliferation (Sahara and O’Leary, 2009; Guillemot and Zimmer, 2011)

Forskolin
Activator of adenylate cyclase (Alasbahi and Melzig, 2012), promoting gene expression modulation and neuronal differentiation (Thompson et al., 

2019)

GDNF
Neurotrophic factor inducing NPCs differentiation into specific neuronal lineages, damaged neurons regeneration, and neuronal maturation (Cortés 

et al., 2017)

GO6983 Inhibitor of PKC, related to the modulation of stem cell pluripotency (Rajendran et al., 2013)

Hydrocortisone Modulator of neurogenesis, neuronal maturation (Aden et al., 2011; Odaka et al., 2017)

IBET151 Inhibitor of proteins of the BET family, related to the regulation of gene expression, improving the rate of reprogramming (Li et al., 2015; Wu et al., 2015)

IGF Growth factor, involved in regulation of neurogenesis and synaptogenesis (Nieto-Estévez et al., 2016)

Insulin Inductor of a metabolism prone for cell growth and development

Isoxazole9
GSK-3β inhibitor (Sayed et al., 2023). Trigger of calcium influxes (Koh et al., 2015). These lead to the promotion of the transcription of genes involved 

in neuronal differentiation and maturation

L-Glutamine Promotor of cell survival and growth. Precursor for the synthesis of glutamate (Bak et al., 2006; Yoo et al., 2020)

Laminin Substrate for cell migration and attachment, promoter of neurite outgrowth and axonal guidance (Mruthyunjaya et al., 2010)

NaB
Inhibitor of histone deacetylase which facilitate gene expression, promoting neuronal differentiation (Jaworska et al., 2019) and attenuation neuronal 

apoptosis (Zhou et al., 2021)

Nicotinamide
Inductor of the expression of neuronal markers, neuroprotector, selective kinase inhibitor, and suppressor of the expression of meso-endoderm markers 

(Meng et al., 2018)

NT-3 Neurotrophic factor, Wnt/β-catenin signaling pathway modulator. Promotes neuronal differentiation of NPCs (Yan et al., 2021)

PDGF Neurotrophic factor and promotor of cell survival involved in NPCs differentiation (Funa and Sasahara, 2014)

QVD-OPh Inhibitor of caspases, anti-apoptotic (Kuželová et al., 2011)

Repsox TGF-β pathway inhibitor. Increases neuroepithelial markers levels and promotes neuronal differentiation (Li and Huang, 2019)

Retinoic acid Metabolic product of vitamin A involved in NPCs differentiation into specific types of neurons (Maden, 2007)

SP600125
Inhibitor of the c-Jun N-terminal kinase (JNK) signaling pathway. This leads to a reduction in stemness and promotes cellular differentiation (Semba 

et al., 2020)

Selenium Oxidative stress and other damaging factors protector (Van et al., 2003)

Transferrin Neuroprotector, part of the antioxidant defense system, iron metabolism (Van et al., 2003)

TTNPB Agonist of RA receptor subtype important for ensuring stem cell reprogramming into neuronal-like cells (Das and Pethe, 2021)

Valproic Acid
Inhibitor of histone deacetylase, leading to changes in chromatin structure and gene expression that favor neuronal differentiation (Phiel et al., 2001; 

Vukićević et al., 2015)

Vitamin C
Neuroprotective effects, antioxidant (May, 2012), enhancer of the expression of genes involved in neurogenesis, maturation, and neurotransmission 

(Shin et al., 2004)

Y27632
Rho-kinase inhibitor, which indirectly inhibits the ERK signaling pathway promoting stem cells survival and differentiation (Kamishibahara et al., 

2016; Fu et al., 2018)
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5. UDSCs-based approaches to brain 
disease therapy

5.1. UDSCs in vivo transplantation

The therapeutic potential of UDSCs for neurological diseases 
remains relatively unexplored, yet the limited findings obtained thus far 
hold promise. UDSCs engraftment or their secretomes have shown to 
be effective mostly in preclinical reports of renal and bladder diseases, 
such as acute kidney injury (Li X. et al., 2020), renal acute tubular injury 
(Grange et al., 2020) or bladder fibrosis (Wu et al., 2023), evidencing a 

consistent tissue (Li F. et al., 2020; Li X. et al., 2020) regeneration effect, 
mainly through their pro-angiogenic, anti-apoptotic and anti-
inflammatory effects (Grange et al., 2020; Li F. et al., 2020; Li X. et al., 
2020 Wu et al., 2023), over the living afflicted tissues. Within the field of 
neurological disorders, very few studies of UDSCs in vivo preclinical 
engraftment have been performed. Nevertheless, in the ones available in 
the literature, transplanted UDSCs have been shown to have multiple 
differentiation potential, chemotaxis ability, and an undeniable functional 
recovery and cellular neuroprotective effect. In more detail, UDSCs, 
when embedded in hydrogel scaffolds and transplanted into rat’s 
craniotomy-lesioned motor cortex, survive at least 3 weeks and present 

FIGURE 2

UDSCs-induced neuronal differentiation and brain disease applications. UDSCs isolated from the urine can be directly converted into neuron-like cells 
divided into different neuronal type depending on their specific markers (motor, glutamatergic, gabaergic or cholinergic). UDSCs-derived neurons may 
be employed in disease modeling approaches, to perform in vitro pharmacological tests, and for precision medicine. ChAT, Choline acetyltransferase; 
EVs, extracellular vesicles; GABA, gamma-aminobutyric acid; HB9 homeobox HB9; MAP2, microtubule-associated protein 2; NeuN, 
hexaribonucleotide binding protein-3; NFM, neurofilament marker; NF200, neurofilament 200; NPCs, neural progenitor cells; PSA-Ncam 
(polysialylated neuronal cell adhesion molecule); SYN, synapsin. Created with BioRender.com.

https://doi.org/10.3389/fnmol.2023.1229728
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://BioRender.com


Cavaleiro et al. 10.3389/fnmol.2023.1229728

Frontiers in Molecular Neuroscience 10 frontiersin.org

full in vivo differentiation potential into astrocyte resembling morphology 
cells, expressing neurogenesis-related markers such as GFAP, β-III-
tubulin, and nestin. Importantly, transplanted cells were found not only 
surrounding the lesion site, but also functionally integrating hippocampus 
neural tissue, thus demonstrating migration abilities (Guan J. J. et al., 
2014). In the context of spinal cord injury (SCI), in comparison with the 
control group, the transplant of UDSCs promoted motor functional 
recovery in a rat model of SCI (Chen H. et al., 2018). Additionally, the 
authors showed that the injection of UDSCs in conjugation with 
chondroitinase ABC, an enzyme involved in axon regeneration (Day 
et  al., 2020), generated a synergistic effect on faster motor function 
recovery of the lesioned animals (Chen H. et al., 2018). Later, Muir and 
collaborators evidenced that functional recovery observed in the 
hUDSCs+ ChABC animals engrafted group was related to the increase 
mRNA expression levels of BDNF and nerve growth factor (NGF), both 
neuroprotective neurotrophins (Muir et  al., 2017), and previously 
described as involved in post-lesion tissue repair (Hasan et al., 2017).

Importantly, UDSCs have a significant advantage over other stem 
cells, such as the absence of undesired immune response (le Blanc 
et al., 2003; Chun et al., 2012; Guan et al., 2015; Kang et al., 2015; Wu 
et al., 2018; Bento et al., 2020) and teratoma formation (Zhang et al., 
2008; Bharadwaj et al., 2011; Chun et al., 2012; Bharadwaj et al., 2013; 
Lee et  al., 2013). In particular, UDSCs, do not express HLA-DR 
glycoproteins (le Blanc et al., 2003; Guan et al., 2015; Kang et al., 
2015; Chen L. et al. 2018; Wu et al., 2018; Bento et al., 2020) until 
around p7 in vitro, often responsible for triggering transplant 
rejection, as happening with hematopoietic (Gabbianelli et al., 1987; 
Park and Seo, 2012) and adipose stem cells (Dam et al., 2021). In 
addition, UDSCs isolated from healthy subjects, which retained a 
normal karyotype in vitro, did not induce an adverse response and 
scaffold rejection after transplantation into an animal model of 
traumatic brain injury (Guan J. J. et al., 2014).

By bridging the bench with the bedside, animal models provided 
direct evidence of the feasibility of transplanted stem cells’ 
regenerative properties, therefore, anticipating the efficacy and safety 
of specific clinical procedures. The existent studies using animal 
models and grafting strategies emphasize the necessity of exploring 
the therapeutic potential of UDSCs and the underlying cellular and 
molecular mechanisms in different neuropathological contexts.

5.2. UDSCs secretome-based approaches 
to brain diseases therapy

Similarly, to the therapeutic effects in the scope of direct UDSCs 
transplantation, preclinical studies employing UDSCs-derived 
secretome also show promising results for the treatment of brain 
disorders. UDSCs-related secretomes’ regenerative and 
immunomodulatory properties arose in several diseases, from 
urological (Grange et al., 2020; Li X. et al., 2020; Wu et al., 2023) to 
diabetic wound healing (Zhao et al., 2018). Several authors hypothesized 
that UDSCs therapeutic may depend on these cells’ ability to secrete 
various bioactive cargoes. Among them, we can highlight miRNAs, 
such as miR-26a (Ling et  al., 2020), related to neurogenesis 
enhancement; miR-21-5p (Nasci et al., 2019) and miR-26a-5p (Wan 
et al., 2022), both involved in cell proliferation; growth factors such as 
VEGF (Jiang et al., 2016), IGF-1 and EGF (Zhu et al., 2018); DMBT1 
and TIMP1 proteins (Chen C. Y. et al., 2020), angiogenin (Jiang et al., 
2016), Klotho protein (Grange et al., 2020) and matrilin-3 (MATN3) 

(Zidan et al., 2021). Importantly, these biomolecules act as paracrine 
factors over recipient cells (He et al., 2018), exerting regulatory effects 
in several cellular mechanisms, including proliferation, differentiation, 
cell fate and survival, neuroprotection, neurogenesis, angiogenesis, and 
tissue regeneration. A great amount of these studies encompass the use 
of exosomes, a group of cup-shaped extracellular vesicles (EVs) (Guo 
et al., 2021), identifiable in biofluids and that shuttle multiple bioactive 
cargos, able to influence recipient cells. Therefore, we will focus in this 
section on the therapeutic use of UDSCs- derived EVs.

UDSCs have been also associated with the release of 
heterogeneous EVs, ranging from microvesicles (150 nm to 1 μm) to 
exosomes (60 to 150 nm) (Zidan et al., 2021). Importantly, like in the 
case of other EVs, the content of UDSCs-derived EVs often reflects 
their origin and the pathophysiological environment in which they 
were generated (Arcolino et al., 2015). Additionally, EVs from healthy 
UDSCs may be used for therapeutic purposes.

Anti-inflammatory properties of UDSCs-secreted EVs have 
been assessed, opening new possibilities for their therapeutic use in 
immunodeficiency scenarios (Zidan et  al., 2021). Particularly, 
UDSCs-derived exosomes have been shown to contain 
immunomodulatory molecules such as the cytokines TGF-β1 (Jiang 
et  al., 2016), B-cell activating factor (BAFF), A proliferation-
inducing ligand (APRIL), interleukin-6 (IL–6), and the CD40 ligand 
protein (CD40L), which stimulate B cells to initiate the immune 
response without T cell proliferation stimulation, possibly due to the 
presence of immunosuppressive cytokines and miRNAs, such as 
miRNA146–5p (Zidan et al., 2021). Furthermore, miR-146a-5p has 
been identified to target the interleukin-1 receptor-associated kinase 
1 (IRAK1) mRNA, which degradation results in nuclear factor 
(NF)-κB signaling inhibition (Li X. et al., 2020). Downregulation of 
IRAK1 may also be  involved in the modulation of the 
phosphoinositide 3-kinase (PI3K)/Akt and the mitogen-activated 
protein kinase (MAPK) pathways, leading to a decrease in apoptosis 
and inflammatory cytokines in podocytes (Zhang et al., 2018).

Although studies are scarce, some articles demonstrate the benefits 
of using EVs from UDSCs, most notoriously exosomes, to improve 
some brain-related disorders. For instance, in a rat model of ischemic 
stroke, direct intravenous injection of exosomes derived from human 
UDSCs, 4 h after stroke induction, resulted in a reduction of infarct 
volume and enhancement of the subventricular zone (SVZ) endogenous 
neurogenesis, via miR-26a/HDAC6 signaling pathway activation, 
suggesting the neuroprotective effect of those EVs (Ling et al., 2020). 
Moreover, in a mouse model of Rett Syndrome, administration of 
UDSCs-derived exosomes improved the motor coordination, 
cognition, and behavioral symptoms presented by the animals (Pan 
et al., 2021). Importantly, this effect was related to the enhancement of 
neurogenesis in the SVZ, resulting from the integration of EVs enriched 
in miR-21-5p by the neural stem cells. miR-21-5p, a regulator of cell 
proliferation, mitochondrial respiration, and angiogenesis (Nasci et al., 
2019) further inhibited the EPha4/TEK axis, resulting in neurogenesis 
enhancement, as evidenced by the increased expression of β-III-tubulin 
and DCX (doublecortin) (Pan et  al., 2021). Following spinal cord 
injury, UDSCs-derived exosomes induce motor neurons functional 
recovery, concomitantly with local endothelial cells microvessel 
regeneration through ANGPTL3 (Angiopoietin-like 3)-mediated 
PI3K/AKT signaling pathway activation (Cao et  al., 2021), which 
promotes angiogenesis process (Jiang et al., 2019). Additionally, Dan 
and colleagues recently suggested that UDSCs-derived exosomes 
prevented apoptosis of aging retinal ganglion cells (RGCs) (Dan et al., 
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2023). The authors exposed aging RGCs to UDSCs conditioned 
medium and observed the promotion of cell survival and proliferation 
(Dan et  al., 2023). However, since the authors did not analyze the 
presence of exosomes in the culture medium used, it is not possible to 
assure that those were the mediators in the effects observed.

Overall, UDSCs-related therapies, whether they depend on a cell 
transplant or cell-derived secretome treatment, have shown 
promising results, both leading to tissue repair. Effects depend mainly 
on the activation of regeneration-associated signaling pathways, 
along with immunomodulatory properties, showing promise within 
this scope for future studies.

6. Future perspectives

UDSCs can be  safely and easily isolated from patients’ urine 
samples, expanded in vitro, and differentiated into different cell types, 
including neuron-like cells (Bharadwaj et al., 2013; Guan J. J. et al., 
2014; Kang et al., 2015; Xu et al., 2019; Liu et al., 2020). However, they 
still present some limitations due to difficult culturing conditions such 
as exposition to a wide range of contaminants (e.g., infections), as well 
as metabolic waste products, which can potentially affect them. Some 
of these disadvantages should be overcome by improving the current 
methodological procedures or developing new ones.

Despite being in its nascent stages, the study of UDSCs elicits 
optimism, primarily rooted in promising preclinical research showcasing 
their biocompatibility, engraftment, and in vivo differentiation potential. 
As stated in section 5, preclinical studies evaluating the therapeutic 
properties of UDSCs have been exclusively conducted in small animal 
models. Thus, further investigations are imperative to scrutinize UDSCs 
post-injection reprogramming prowess and functional efficacy.

Patient UDSCs, and specifically their derived EVs, can 
be engineered to carry specific cargo that will exert a neuroprotective 
activity over targeted cells or, the attenuation of disease-related 
dysfunctional signaling pathways (Drago et  al., 2013). The direct 
delivery of these cargo and its amplification through the control 
induced-expression of surface antibodies, to be recognized by specific 
cell types (Bryniarski et al., 2013) renders a new field to be exploited.

7. Conclusion

UDSCs are notorious for their ease, non-invasive process of 
obtention, able to be simply isolated from any patient’s urine, without 
major ethical concerns, which makes them a promising alternative to 
other cell types that can be used for the modeling of neurological 
disorders and theranostics. Preclinical reports provide evidence of the 
therapeutic and modeling potential of these cells and their secretome 

for a multitude of central nervous system-related disorders. UDSCs 
may be directly reprogrammed into the desired cell type, without the 
need for pluripotency induction as for iPSCs. Importantly, UDSCs 
may differentiate in vitro and in vivo into neuronal cells and evidence 
immunomodulatory and neuroreparative properties. Thus, UDSCs 
hold great promise as a research field for the development of new 
brain therapies that could enhance the quality of life for patients with 
neurological diseases.
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