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Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved 
neurotransmitter and modulator. Neurons utilizing serotonin have been identified 
in the central nervous systems of all vertebrates. In the central serotonergic 
system of vertebrate species examined so far, serotonergic neurons have been 
confirmed to exist in clusters in the brainstem. Although many serotonin-
regulated cognitive, behavioral, and emotional functions have been elucidated in 
mammals, equivalents remain poorly understood in non-mammalian vertebrates. 
The purpose of this review is to summarize current knowledge of the anatomical 
organization and molecular features of the avian central serotonergic system. 
In addition, selected key functions of serotonin are briefly reviewed. Gene 
association studies between serotonergic system related genes and behaviors in 
birds have elucidated that the serotonergic system is involved in the regulation 
of behavior in birds similar to that observed in mammals. The widespread 
distribution of serotonergic modulation in the central nervous system and the 
evolutionary conservation of the serotonergic system provide a strong foundation 
for understanding and comparing the evolutionary continuity of neural circuits 
controlling corresponding brain functions within vertebrates. The main focus 
of this review is the chicken brain, with this type of poultry used as a model 
bird. The chicken is widely used not only as a model for answering questions in 
developmental biology and as a model for agriculturally useful breeding, but also 
in research relating to cognitive, behavioral, and emotional processes. In addition 
to a wealth of prior research on the projection relationships of avian brain regions, 
detailed subdivision similarities between avian and mammalian brains have 
recently been identified. Therefore, identifying the neural circuits modulated by 
the serotonergic system in avian brains may provide an interesting opportunity for 
detailed comparative studies of the function of serotonergic systems in mammals.
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1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is an ancient signaling molecule (Hay-Schmidt, 
2000). Serotonin utilization is not only evolutionarily conserved in vertebrates and invertebrates 
of the animal kingdom; it has also been identified in plants (for further information, see the review 
by Erland et  al., 2016). In the animal kingdom, numerous studies have suggested that the 
neuromodulatory functions of serotonin are implicated in a wide range of processes, including 
cognition, behavior, and emotion, and that these associations are also evolutionarily conserved 
(Jacobs and Azmitia, 1992; Lucki, 1998; Kandel et al., 2000; Bacque-Cazenave et al., 2020). In 
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invertebrates, one of the most notable examples of the effects of 
serotonergic function on behavior is its effect on rapidly inducing 
notorious swarming and gregarious behavior in desert locusts 
(Schistocerca gregaria) (Anstey et al., 2009; Rogers and Ott, 2015). In 
vertebrates and especially humans, the serotonergic system has received 
much attention as a pharmacological target because it has been 
implicated in many brain functions associated with psychiatric disorders 
(Belmaker and Agam, 2008; Ravindran and Stein, 2010). Researchers 
have sought to understand, at the neural circuit level, the brain regions 
involved in mammalian cognitive, behavioral, and emotional 
processing, as well as the specific cells modulated by serotonin within 
these regions (Olivier, 2015; Strac et al., 2016; Yagishita, 2020). For 
example, the serotonergic system is implicated in the regulation of fear-
related behaviors in mammals by modulating the neural microcircuits 
of the amygdala via several serotonergic receptors (LeDoux, 2000; 
Deakin and Graeff, 2013; Duvarci and Pare, 2014; Janak and Tye, 2015; 
Tovote et al., 2015; Bocchio et al., 2016; Lawther et al., 2020). However, 
it remains to be  elucidated whether the neural circuits involved in 
cognitive, behavioral, and emotional processing, as well as their 
relationships with serotonergic modulation, are evolutionary conserved 
across vertebrates. To address this issue, it is necessary to clarify such 
neural circuits in a range of vertebrate animals other than mammals.

At the conceptual level, serotonergic systems display remarkable 
conservation across vertebrate species (Parent, 1981), suggesting 
evolutionary conserved roles in brain functions. However, the macro 
structure of vertebrate brains is diverse and lineage dependent, limiting 
the availability of information about which neural circuits are involved 
in cognition, behavior, and emotion (Pessoa et al., 2019). Birds represent 
unique model animals for elucidating the evolutionary continuity of the 
neural basis of cognition, behavior, and emotion because of the 
availability of information on several neural circuits associated with 
behaviors (Jarvis et al., 2005; Rosa Salva et al., 2015; Martinez-Garcia 
and Lanuza, 2018; Papini et al., 2019). As a result of the efforts of many 
scientific investigators over the years, the avian research community 
currently has access to a wealth of resources including behavior-related 
brain lesion data (Benowitz, 1980; Matsushima et  al., 2003), 
comprehensive brain region projection relationships (Axer et al., 2016; 
Herold et al., 2019; Stacho et al., 2020), a revised consensus on brain 
nomenclature (Reiner et al., 2004), and several excellent brain atlases 
(e.g., for chicken, Kuenzel and Masson, 1988; Puelles et al., 2018).

In this review, we summarize the currently available information 
on avian brain serotonergic systems. This review consists of four 
sections. First, we briefly introduce well-studied serotonergic systems 
in the mammalian brain for comparison with those of birds. Second, 
we discuss the extent of homology between avian and mammalian 
brains. There is some controversy about the correspondence between 
bird and mammal brains, but here we focus on homologies. Third, 
we describe serotonergic systems in chicken brains, mainly based on 
our recent molecular dissection work in chicks (Fujita et al., 2019, 2020, 
2022a,b,c). Fourth, we briefly summarize the functions of serotonergic 
systems in bird brains, focused at the level of gene function.

2. A brief introduction to serotonergic 
systems in mammals

There are two independent serotonergic systems in mammals. On 
the one hand, the central serotonergic system functions as a central 

neurotransmitter, whereas on the other the peripheral serotonergic 
system works as a peripheral signaling molecule. The proportion of 
serotonin contained in the central nervous system is small; most 
serotonin is located in the gut, where it contributes to important 
physiological functions such as motility, secretion, and vasodilation 
(Erspamer, 1937; Erspamer and Asero, 1952; Spohn and Mawe, 2017). 
Importantly, the central and peripheral serotonergic systems are 
completely independent, since serotonin molecules cannot cross the 
blood–brain barrier (Xu et al., 2014; Mosienko et al., 2020).

In the central nervous system, serotonergic neurons are present in 
cell groups in the raphe nuclei of the brainstem. Cell groups containing 
serotonergic neurons have historically been called groups B1–B9 
(Dahlstroem and Fuxe, 1964; Soiza-Reilly and Gaspar, 2020). Among 
these serotonergic cell groups, the dorsal raphe (DR: B6 and B7) and 
median raphe (MR: B5 and B8) provide ascending innervation to the 
forebrain and midbrain (Figure  1A; Olivier, 2015; Cohen and 
Grossman, 2020; Soiza-Reilly and Gaspar, 2020). Given that the neural 
projections from the DR and MR cover almost all areas of the 
forebrain, including the amygdala, nucleus accumbens (NAc), bed 
nucleus of the stria terminalis (BNST), olfactory bulb (OB), prefrontal 
cortex (PFC), hippocampal formation (HF), and periaqueductal gray 
(PAG) (Figure  1A), and are involved in the regulation of many 
cognitive, behavioral, and emotional states and processes such as 
learning, reward, aggression, impulsivity, anxiety, and mood, the DR 
and MR serotonergic systems have been the subjects of intensive 
research (Olivier, 2015; Lawther et al., 2020; Liu et al., 2020; O'leary 
et al., 2020; Yagishita, 2020; Awasthi et al., 2021; Beyeler et al., 2021).

In the serotonergic neuron, serotonin is synthetized in a 
two-step process: conversion of the amino acid tryptophan (Trp) to 
5-hydroxytryptophan (5-HTP), and subsequent decarboxylation of 
5-HTP to 5-HT (serotonin). The first, rate-limiting step is mediated 
by tryptophan hydroxylase 2 (Tph2) (Walther et al., 2003; Walther 
and Bader, 2003). The second step is mediated by the aromatic 
amino acid decarboxylase (Aadc), also called DOPA decarboxylase 
(Ddc) because it is involved in dopamine biosynthesis. The 
synthesized serotonin is then stored in secretory vesicles by 
vesicular monoamine transporter 2 (Vmat2) and the vesicles later 
transport serotonin to the presynaptic terminal for release 
(Schuldiner et al., 1995). The serotonin released in the synaptic cleft 
is taken up by the presynaptic neuron through the serotonin 
transporter (Sert), which is encoded by the solute carrier family 6 
member 4 (Slc6a4) gene (Hoffman et al., 1991; Lesch et al., 1993). 
After the reuptake of serotonin into the serotonergic neurons, 
monoamine oxidase A (Maoa) catalyzes the oxidative deamination 
of 5-HT (Youdim et al., 2006). Among the proteins involved in 
serotonin synthesis, storage, release, uptake, and degradation, Ddc, 
Vmat2, and Maoa are involved in non-serotonin monoaminergic 
neuron processes and are thus expressed in both serotonergic and 
non-serotonergic neurons (Lein et al., 2007; Ng et al., 2009, 2010). 
In contrast, Tph2 and Sert are useful as molecular markers of 
serotonergic neurons because they function exclusively in the 
serotonergic neurons at least in the central nervous system of adult 
mammals. It should be noted that Sert is transiently expressed in 
non-serotonergic neurons in several brain regions during 
development (Lebrand et al., 1996; Narboux-Nême et al., 2008). In 
addition, the released serotonin acts on its downstream targets 
through multiple receptors called 5-HT receptors (5-HTRs) which 
exist on the cell membrane. To date, 14 distinct receptors have been 
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identified and classified into seven groups, namely 5-HTR1 to 
5-HTR7, based on their functional, structural, and biochemical 
characteristics. All 5-HTRs are G protein-coupled receptors 
(GPCRs) except for 5-HTR3 family members, which are ligand-
gated ion channels (Hannon and Hoyer, 2008; Marin et al., 2020). 

An overview of the characteristic molecular mechanisms of 
serotonergic neurons described above is presented in 
Figures  1B,C. In terms of molecular components, the 
monoaminergic (including serotonergic) systems are thought to 
be largely conserved in vertebrates (Yamamoto and Vernier, 2011).

FIGURE 1

Localization and broad brain projections of the dorsal raphe and median raphe nuclei in the mammalian central serotonergic system and the 
molecular characteristics of serotonergic neurons. (A) Serotonergic neurons of the central serotonergic system are localized to the raphe nuclei of the 
brainstem, and the DR and MR send extensive projections throughout the forebrain and midbrain. The model diagram represents a sagittal section of a 
rodent, and it should be noted that the projected brain regions may not all be observable on the same sagittal plane. Arrows indicate the presence of 
projections. BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; DR, dorsal raphe nucleus; HF, hippocampal formation; MR, median 
raphe nucleus; NAc, nucleus accumbens; OB, olfactory bulb; PAG, periaqueductal gray; PFC, prefrontal cortex. (B) In serotonergic neurons, serotonin 
is synthesized by the hydroxylation of tryptophan by tryptophan hydroxylase 2 (TPH2) followed by decarboxylation by DOPA decarboxylase (DDC). 
Serotonin is packaged into storage vesicles by vesicular monoamine transporter 2 (VMAT2) and released into the synaptic cleft. The released serotonin 
is mediated by serotonin receptors (5-HTR1 to 5-HTR7) present on the membranes of presynaptic and postsynaptic neurons, and signals are 
transmitted to cells. Serotonin in the synaptic cleft is taken up by serotonin transporter (SERT) and degraded by monoamine oxidase A (MAOA). 
(C) Summary table of characteristic genetic influences of serotonergic neurons schematized in panel (B).
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3. The avian brain

The field of comparative neuroscience has revealed that the basic 
organization of the brain is shared across vertebrates. The vertebrate 
brain consists of the forebrain, midbrain, and hindbrain. Although the 
midbrain and hindbrain tend to be  relatively well conserved, the 
forebrain has undergone major evolutionary changes. The 
telencephalon, which occupies most of the forebrain, can be divided 
into the pallium and subpallium (Striedter, 2005). In the avian 
pallium, the dorsal ventricular ridge (DVR), which consists of the 
mesopallium, nidopallium, and arcopallium, is a large proportion of 
the entire brain (Figure 2; Aboitiz et al., 2003; Molnár, 2011). The 
macro structure of the adult avian pallium looks quite different from 
that of mammals, making it difficult to understand its correspondence 
with the adult mammalian pallium, a historically controversial subject 
(Karten, 1997; Puelles, 2001; Jarvis et al., 2005). Regarding the macro 
structural differences between the adult pallium of birds and 
mammals, for example, while most mammalian cortex exhibits a 
six-layered structure, most superficial areas of avian pallium appear to 
lack an obvious layered structure and are instead organized into 
clusters of neurons (nuclei) (Karten, 2015). In order to investigate 
whether the neural circuits processing specific cognitive, behavioral, 
emotional processes are evolutionarily conserved or not, it is necessary 
to understand the homology of brain regions between birds 
and mammals.

One of the most commonly used methods to study homology is 
to compare expression regions of genes that are highly conserved in 
broad animal phyla during early development. Such research has led 
to the creation of a field referred to as evolutionary developmental 
biology (Evo-Devo), and one of the best-known discoveries in this 
field is that many of the key genes involved in developmental 
patterning, called ‘toolkit genes,’ are conserved across all bilaterally 
symmetric animal phyla. These toolkit genes consist of a small set of 
master regulatory genes, including transcription factors and signal 
transduction molecules (Carroll, 2008; Carroll et al., 2013). Studies 
have been performed to elucidate homologous regions of vertebrate 
pallium by combining expression regions of regulatory genes 
conserved in vertebrates in morphogenesis at early embryonic stages 
and morphological landmarks (Fernandez et al., 1998; Puelles et al., 
2000). Currently, the embryonic pallium has been divided into four 
(Puelles et al., 2017) or six (Desfilis et al., 2018) components, it has 
been clarified that pallium derivatives correspond to adult brain 
regions. Here, we  refer to the proposed pallium divisions as the 
medial, dorsal, dorsolateral/lateral, and ventral/ventrocaudal pallial 
divisions (Pessoa et al., 2019). The brain structures derived from each 
component of the pallium in birds and mammals have been proposed 
as follows: the medial pallium gives rise to the hippocampal formation 
in birds and mammals; the dorsal pallium gives rise to the 
hyperpallium in birds and the neocortex in mammals; the dorsolateral/
lateral pallium give rise to the mesopallium in birds and the claustro-
insular region, orbitofrontal cortex rostrally, and perirhinal/lateral 
entorhinal cortex caudally in mammals; and the ventral/ventrocaudal 
pallium give rise to the arcopallium and nidopallium in birds and the 
olfactory cortex and pallial amygdala, which is part of amygdala, in 
mammals (Puelles, 2001; Moreno and González, 2006; Medina and 
Abellán, 2009; Puelles et al., 2017; Medina et al., 2017a; Desfilis et al., 
2018). Depending on the species, pallium-derived brain structures 
may undergo different developmental trajectories after late 

development and may acquire a different cytoarchitecture, 
neurochemical features, and connectivity (Puelles and Medina, 2002; 
Striedter, 2005; Medina et  al., 2017a). Therefore, it is difficult to 
understand the homology of brain regions between different species 
by comparing the properties of the adult traits and terminal functional 
molecules alone. The results of recent single-cell RNA sequencing 
analyses strongly support the homologous relationship between the 
avian and mammalian brain regions described above, based on 
similarities such as the combinatorial profiles of transcription factors 
that determine cell properties (Tosches et  al., 2018; Colquitt 
et al., 2021).

In addition, homologies are beginning to reveal correspondences 
between subdivisions of avian and mammalian brain structures. Here, 
we briefly discuss the current state of two structures recognized for 
their important contributions to cognitive, behavioral, and emotional 
processing: the hippocampal formation (HF) and amygdala (Figure 2).

We first discuss HF. All mammalian HFs are well conserved for 
macroscopic histological features (Hevner, 2016). They are composed 
of similarly complex and intertwined three-layered subdivisions, 
known as the Ammon’s horns or Cornu ammonis (CA) fields 1 (CA1), 
CA2, CA3, dentate gyrus (DG), and the subiculum (Hevner, 2016; 
Medina et  al., 2017a). As a connection relationship within such 
subdivisions of HF, a neural circuit called “trisynaptic circuit” is 
considered to be  important. The trisynaptic ciruit involves 
subdivisions of the entorhinal cortex (EC), DG, CA3, and CA1, and 
consists of projections from EC to DG, DG to CA3, and CA3 to 
CA1(Sloviter and Lomo, 2012). Among these projections, the DG to 
CA3 projection is called the “mossy fiber” and is a well known 
anatomical landmark of the HF. On the other hand, avian HFs occupy 
a large area of the caudal surface of the pallium with a high density of 
neurons, with a layered structure that is not readily observable macro-
anatomically and subdivision that is similarly not clearly observable 
(Atoji and Wild, 2006; Herold et  al., 2015; Striedter, 2016). 
Furthermore, the mossy fiber-like structures seen in the mammalian 
DG have not been found in avian HF (Faber et al., 1989; Montagnese 
et al., 1993, 1996; Tombol et al., 2000; Herold et al., 2014). To date, 
several subdivisions have been proposed for avian HFs, using several 
methods and criteria, such as histology, immunohistochemistry, 
projection relationships, and developmental origin (Kuenzel and 
Masson, 1988; Atoji and Wild, 2004, 2006; Suarez et al., 2006; Gupta 
et al., 2012; Abellan et al., 2014; Herold et al., 2014; Atoji et al., 2016; 
Medina et al., 2017a; Puelles et al., 2018). However, there is controversy 
over homologous regions within avian HFs for mammalian DG and 
CA fields, and it is difficult to say that a one-to-one correspondence 
between avian HFs and mammalian HFs have been established for 
subdivision within HFs (Atoji and Wild, 2004, 2006; Kempermann, 
2012; Abellan et al., 2014; Herold et al., 2014; Atoji et al., 2016; Hevner, 
2016; Striedter, 2016; Medina et al., 2017a). Briefly, there are three 
possibilities for homology with subdivisions of mammalian HFs for 
the subdivision of avian HFs. A first possibility is that the V-shaped 
complex (V) in the avian HF corresponds to the mammalian DG 
(Atoji and Wild, 2004; Suarez et al., 2006; Gupta et al., 2012; Herold 
et al., 2014; Atoji et al., 2016; Puelles et al., 2018). A second possibility 
is that the dorsal medial region (DM) in the avian HF corresponds to 
the mammalian DG (Montagnese et al., 1996; Szekely, 1999). A third 
possibility is that the avian HF does not have a homolog of the 
mammalian DG. The underlying idea is that it has been so long since 
birds and mammals diverged that it is difficult to compare HF 
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subdivisions between birds and mammals in the first place. In other 
words, the idea is that the DG is a uniquely acquired trait of 
mammalian HF (Hevner, 2016; Striedter, 2016). Recently, neurons 
with a function similar to “place cells” that selectively fire when 
passing through a specific place have been identified in the HF of birds 
(Payne et  al., 2021). In mammals, place cells are recognized as 
pyramidal neurons in the CA1 and CA3 as well as granule cells in the 
DG of the trisynaptic circuit (O'Keefe and Dostrovsky, 1971; Muller 

et al., 1987; Jung and Mcnaughton, 1993; Wilson and Mcnaughton, 
1993). This finding raises the possibility that a neural circuit 
corresponding to the trisynaptic circuit exists in the HF of birds. The 
current state of the avian HF, especially in chickens, was recently 
reviewed (see Morandi-Raikova and Mayer, 2022).

We second discuss the amygdala. The mammalian amygdala is a 
brain region composed of a heterogeneous assembly of nuclei derived 
from both the subpallial nuclei and pallial nuclei. The amygdala has 

FIGURE 2

Schematic drawings of the structure of the avian telencephalon and its correspondence with the mammalian telencephalon. The avian telencephalon 
contains the pallium and subpallium. The largest portion of the pallium is the dorsal ventricular ridge (DVR) consisting of the mesopallium (M), 
nidopallium (N), and arcopallium (A). Schematic representations of hemisphere sections are shown above, with section levels according to the atlas of 
Kuenzel and Masson (1988). A schematic diagram of the brain structures of a chicken (as an example of an avian brain) and mouse (as an example of a 
mammalian brain) is shown. Portions considered to be homologous regions are indicated by the same color code. Green indicates the HF, magenta 
indicates the BLA, and orange indicates the CeA in the brains of both birds and mammals. A, arcopallium; BLA, basolateral amygdala; CA1, cornu 
ammonis field 1, CA2, cornu ammonis field2; CA3, cornu ammonis field 3; CeA, central nucleus of the amygdala; D, diencephalon; DG, dentate gyrus; 
DL, dorsal lateral region; DM, dorsal medial region; H, hyperpallium; HF, hippocampal formation; M, mesopallium; N, nidopallium; S, striatum; V, 
V-shaped complex.
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been investigated as one of the regions responsible for processing 
emotions, including learned fear (LeDoux, 2000; Medina et al., 2017b; 
Martinez-Garcia and Lanuza, 2018). Under laboratory conditions, the 
critical neural microcircuits responsible for learned fear have been 
revealed using Pavlovian fear conditioning paradigms. Among the 
subdivisions of the amygdala, the lateral nucleus (LA), basal nucleus 
(BA), and basomedial (BM) nucleus together constitute such a neural 
circuit with the involvement of the basolateral complex of the 
amygdala (BLA). In this circuit, the LA receives sensory projections 
from outside of the amygdala and projects to the BA, which projects 
to the central nucleus of the amygdala (CeA) to provide output to the 
brainstem (LeDoux, 2000; Duvarci and Pare, 2014; Janak and Tye, 
2015; Tovote et al., 2015).

On the other hand, it has been proposed that regions homologous 
to the avian pallial amygdala are the arcopallium and nidopallium, as 
described above, but there is no consensus among the avian 
research community.

Historically, the homologous region of the avian pallial amygdala 
has often been referred to as the arcopallium, and in recent years the 
avian amygdala tends to be  treated as the arcopallium/amygdala 
complex, which combines the arcopallium, posterior pallial amygdala, 
nucleus taeniae of the amygdala (TnA), and subpallial amygdaloid 
area (Herold et al., 2018). Regarding the nidopallium, previous studies 
have functionally associated it with the mammalian PFC, so few 
attempts have been made to associate the nidopallium with the 
mammalian amygdala (Karten, 1997, 2013; Güntürkün, 2005; Butler 
et al., 2011; Dugas-Ford et al., 2012; Herold et al., 2018). Although no 
previous studies using the Pavlovian fear conditioning paradigm have 
been conducted to examine the functions involved in the arcopallium 
and nidopallium, several studies using the pigeon appetite 
conditioning paradigm have been conducted to implicate parts of the 
arcopallium and nidopallium in extinction learning (Lissek and 
Güntürkün, 2005; Lengersdorf et al., 2014, 2015; Starosta et al., 2017; 
Gao et al., 2018, 2019a,b; Güntürkün et al., 2020). In avian, the medial 
and central amygdaloid structures and output projections from 
amygdala have been unveiled (Abellán and Medina, 2009; Vicario 
et al., 2014; Hanics et al., 2017).

In summary, the crude homology between avian and mammalian 
pallium is grossly apparent. However, the correspondence between 
brain structural subregions remains unclear due to the divergence of 
adult brain morphology. In the future, the development of single-cell 
transcriptomics that traces the developmental processes of avian 
pallium will clarify the homology between the brain subregions of 
birds and mammals. In addition, a future task is to clarify the extent 
to which neural circuits between homologous regions of the brains of 
birds and mammals share common cognitive, behavioral, and 
emotional functions.

4. Molecular dissections of the 
serotonergic system in the chick brain

The central serotonergic system of vertebrates has a conserved 
form in which serotonergic neurons reside in the raphe nuclei of the 
brainstem, where the DR and MR send neuronal projections 
throughout the forebrain and midbrain (Parent, 1981). The 
distribution of serotonergic neurons in the central serotonergic system 
of vertebrates other than mammals has been identified to an extent. 

In fish, for example, the locations and projections of serotonergic 
neurons have been comprehensively described by generating a 
transgenic zebrafish line expressing GFP under control of the 
regulatory elements of pet1, referred to as the serotonergic neuron 
specific marker gene of the raphe (Lillesaar et al., 2009). In addition, 
the distribution and function of serotonergic neurons in fish have 
already been reviewed (Lillesaar, 2011). In amphibians, the 
organization of central serotonergic neurons has been described in 
several species, including salamander (Dubé and Parent, 1982; 
Clairambault et al., 1994; Dicke et al., 1997) and frog (van Mier et al., 
1986; Bhat and Ganesh, 2023). In reptiles, the location of serotonergic 
neurons has been described in several species, such as turtle (Ueda 
et al., 1983), lizard (Smeets and Steinbusch, 1988), snake (Challet 
et  al., 1991), and crocodile (Rodrigues et  al., 2008). In birds, the 
distribution of serotonergic neurons has been described in multiple 
species, including chicken (Ikeda and Goto, 1971; Dube and Parent, 
1981; Parent, 1981; Yamada, 1984), pigeon (Fuxe and Ljunggren, 1965; 
Challet et al., 1996; Meneghelli et al., 2009), and quail (Cozzi et al., 
1991). In the vertebrates examined previously, the presence of 
serotonergic neurons as cell groups in the brainstem, specifically the 
DR and MR, has been confirmed. However, for many non-mammalian 
vertebrates, the anatomical information is not well organized, and 
hence the one-to-one correspondence with mammalian nuclei is not 
always obvious. In addition, to the best of our knowledge, detailed 
properties such as the molecular characteristics of the central 
serotonergic system neurons of non-mammalian vertebrate remain 
largely unknown. Furthermore, our understanding of the distribution 
of neurons that are modulated by serotonin (that is, those expressing 
5-HTRs) in non-mammalian vertebrae is limited. Therefore, using the 
chicken (Gallus gallus domesticus) as an avian model, which is easy to 
manage, we attempted to molecularly elucidate the central serotonergic 
system of the DR and MR. Below, we summarize the details of the 
distribution of serotonergic neurons in the DR and MR and the 
molecular heterogeneity of serotonergic neurons (Fujita et al., 2022b). 
We also summarize the expression regions of most 5-HTR genes in the 
telencephalon (Fujita et  al., 2020, 2022a), and the potential for 
serotonergic regulation of the dopaminergic system (Fujita et  al., 
2022c). All data presented below are based on results from post-
hatched day 1 (P1) chick brain samples in controlled growing 
conditions (Yamaguchi et al., 2008a,b). The histological terminology 
used in these studies, and the histological atlas primarily used, is the 
terminology of the avian brain nomenclature consortium (Reiner 
et al., 2004), and the atlas of Kuenzel and Masson (1988), respectively. 
In addition, the atlas of Puelles et al. (2018) was also used for the 
histological position of several brain structures.

4.1. The distribution and heterogeneity of 
the serotonergic neurons in the chick DR 
and MR

Previous studies have described the anatomical position of the 
raphe nuclei (Kuenzel and Masson, 1988; Puelles et al., 2018), the 
distribution of monoamines based on fluorescence histochemistry 
(Ikeda and Goto, 1971; Dube and Parent, 1981; Parent, 1981), and the 
distribution of serotonergic neurons based on immunohistochemistry 
using an anti-serotonin antiserum (Yamada, 1984), as well as 
information about their developmental processes (Wallace, 1985; Sako 
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et al., 1986; Okado et al., 1992; Huang X. et al., 2019) in chicken. 
Several studies have used chickens to describe the distribution of the 
brainstem cell groups containing cells with characteristics of 
serotonergic neurons. In addition, based on their anatomical position, 
possible correspondences between these chick cell groups and 
mammalian serotonergic cell groups have been proposed (Ikeda and 
Goto, 1971; Dube and Parent, 1981; Yamada, 1984). However, in the 
above-mentioned studies, the serotonergic cell groups were without 
consideration of the mammalian serotonergic cell groups, and hence, 
the group numbers do not necessarily match between mammals and 
birds. Therefore, we used the terms chicken DR and MR as follows: 
the DR for “B5” (Ikeda and Goto, 1971), “Group 5” (Yamada, 1984), 
and “DR nucleus” (Puelles et al., 2018); and the MR for “B6” and “B7” 
(Ikeda and Goto, 1971), “Group 6” and “Group 10” (Yamada, 1984), 
“rhombomere 1 median raphe nucleus (r1MnR),” “rhombomere 2 
median raphe nucleus (r2MnR),” and “caudal linear nucleus of the 
raphe (CLi)” (Puelles et al., 2018).

First, the distribution of cell bodies of serotonergic neurons in the 
brainstem, including the chicken DR and MR, was analyzed using in 
situ hybridization (ISH) to determine the gene expression distribution 
of the chicken orthologues of the mammalian serotonergic neuron 
markers TPH2 and SERT (Fujita et al., 2022b). TPH2- and SERT-
expressing cells were found to be densely distributed in a lateral spread 
form from the mesencephalon to the medulla oblongata in the DR 
(equivalent to A2.0 to A1.0 in the Kuenzel and Masson Atlas). In the 
MR, they were found to be  distributed slightly more towards the 
mesencephalon side than the DR (equivalent to A2.4 to A1.0 in the 
Kuenzel and Masson Atlas) from the mesencephalon to the medulla 
oblongata (Fujita et  al., 2022b). A comparison of the expression 
patterns of these genes using serial sections of the brainstem showed 
a well-matched distribution (Fujita et al., 2022b), which corresponded 
well with the distribution of serotonergic neurons described in 
previous studies (Ikeda and Goto, 1971; Dube and Parent, 1981; 
Yamada, 1984), suggesting that these two genes are useful markers for 
specifically visualizing serotonergic neurons in chick brains. There is 
considerable heterogeneity among serotonergic neurons between and 
within the DR and MR in relation to multiple aspects, including their 
developmental origin, connectivity, electrophysiological properties, 
molecular organization, and behavioral functions in mammals (Calizo 
et al., 2011; Alonso et al., 2013; Okaty et al., 2019, 2020; Ren et al., 
2019; Huang K. W. et al., 2019; Soiza-Reilly and Gaspar, 2020). In 
addition, developmental and projection target heterogeneity of 
serotonergic neurons also exist in fish (Gaspar and Lillesaar, 2012), 
suggesting that the existence of heterogeneity in serotonergic neurons 
is evolutionarily conserved in vertebrates. As an example of the 
molecular heterogeneity of serotonergic neurons, such neurons are 
known to express 5-HTRs on their own and are subject to serotonergic 
modulation (Beyeler et al., 2021; De Deurwaerdere and Di Giovanni, 
2021). There is heterogeneity between and within the DR and MR in 
which 5-HTR is expressed in each serotonergic neuron (Okaty et al., 
2019, 2020; Ren et al., 2019; Huang K. W. et al., 2019).

Moreover, the expression of most 5-HTR orthologues was 
examined in the chick DR and MR. This revealed that 5-HTR1A, 
5-HTR1B, 5-HTR1D, 5-HTR1E, and 5-HTR5A were differently 
expressed in chick DR and MR serotonergic neurons with partial 
overlap, indicating the heterogeneity in chick serotonergic neurons 
(Fujita et al., 2022b). Furthermore, the set of 5-HTRs expressed in the 
serotonergic neurons of chicken DR and MR is similar to that of the 

mammalian DR and MR, suggesting that the molecular organization 
of serotonergic neurons is evolutionarily conserved. The exception is 
that the set of 5-HTRs in the genome is not strictly identical from 
species to species, notable examples are the absence of orthologues in 
the genome: 5-HTR5B is absent from the chicken genome 
(International Chicken Genome Sequencing Consortium, 2004) and 
5-Htr1e is absent from the mouse genome (Vilaró et  al., 2020). 
Evolutionary conservation of the molecular organization of 
serotonergic neurons is also supported by studies showing similarities 
in gene expression during brainstem development in chickens and 
mice (Cambronero and Puelles, 2000; Alonso et al., 2013; Watson 
et al., 2019). In the future, further research is needed to clarify the 
heterogeneity, including projection destination preferences and their 
electrophysiological heterogeneity, in avian DR and MR serotonergic 
neurons in order to better understand the degree of conservation of 
the serotonergic system.

4.2. Expression of 5-HTRs in the chick 
telencephalon

Little is known about the distribution of neurons that are 
modulated by serotonin in the avian telencephalon. To date, for 
example, the site of action of 5-HTR1A in the pigeon brain has been 
studied using the selective radioligand [3H]-8-hydroxy-2-(di-n-
propylamino)tetralin ([3H]-8-OH-DPAT) for 5-HTR1A (Dietl and 
Palacios, 1988; Waeber et  al., 1989; Herold et  al., 2012, 2014; dos 
Santos et  al., 2015; Herold et  al., 2018). We  have previously 
comprehensively examined the expression regions of the above 5-HTR 
orthologues in the chick whole telencephalon (Fujita et  al., 2020, 
2022a). Notably, the strongest and most widespread signals, including 
strong signals in the striatum, were obtained from 5-HTR1B, while 
5-HTR1A and 5-HTR3A had a sparse distribution of expressing cells 
in all brain regions examined. These expression patterns appear to 
be  similar to those characteristic of 5-HTR1A, 5-HTR1B, and 
5-HTR3A expression patterns in the mouse brain (Lein et al., 2007; Ng 
et  al., 2009, 2010). Therefore, in order to compare the gross 
characteristics of the brain regions where serotonin regulation occurs 
in birds and mammals, we summarized the 5-HTR expression regions 
in the chick brain and existing information about 5-HTR expression 
data in mice (Lein et al., 2007; Ng et al., 2009, 2010; Vilaró et al., 2020). 
A comparison of the information with a focus on homologous regions 
is shown in Figure  3A. From the ventral pallium/ventrocaudal 
pallium-derived brain structures, the arcopallium and nidopallium in 
chicks and the olfactory cortex and pallial amygdala in mice showed 
the most commonality in the presence or absence of the detection of 
5-HTR family genes. This fact is consistent with the widely accepted 
fact that the avian arcopallium is homologous and functionally 
conserved with part of the mammalian pallial amygdala (Medina 
et al., 2017b; Martinez-Garcia and Lanuza, 2018), and suggests that 
there are molecular commonalities in serotonergic regulation between 
birds and mammals. However, for DP-derived brain structures, the 
hyperpallium in chicks and neocortex in mice, opposite features were 
observed (Figure 3A). For example, the orthologues of 5-HTR2A and 
5-HTR2C have characteristic expression patterns in the mammalian 
neocortex; however, no significant signal was detected in the chick 
hyperpallium (Fujita et al., 2020). Given that the neocortex is a highly 
specialized brain structure only in mammals, such a result does not 
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FIGURE 3

Summaries of 5-HTRs expression information in the chicken pallium. Tables summarizing the pallium (A) and HF subdivisions (B) in context of whether 
the 5-HTR family genes (and their orthologs) are present in chicken and mouse genomes. The brain structures derived from each pallium is as follows: 
the MP gives rise to the HF in birds and mammals; the DP gives rise to the hyperpallium in birds and the neocortex in mammals; the DLP/LP gives rise 
to the mesopallium in birds and the claustro-insular region, orbitofrontal cortex rostrally, and perirhinal/lateral entorhinal cortex caudally in mammals; 
and the VP/VCP gives rise to the arcopallium and nidopallium in birds and the olfactory cortex and pallial amygdala in mammals (Puelles, 2001; 
Moreno and González, 2006; Medina and Abellán, 2009; Puelles et al., 2017; Medina et al., 2017a; Desfilis et al., 2018). Please refer to the main text for 
more details on pallium homology. “○” indicates that it has been detected, “–” indicates that it has not been detected, and “×” indicates that it does not 
exist in the genome or has not been examined. These data are based on Fujita et al. (2020, 2022a) for chickens and on expression information from 
previous studies, including parts confirmed using the Allen brain atlas (Lein et al., 2007; Ng et al., 2009, 2010; Tanaka et al., 2012; Luo et al., 2019; Vilaró 
et al., 2020). The background colors in the table of panel (A) represent the following: magenta, common detection or non-detection in chicken and 
mouse; blue, divergent results between chicken and mouse; and light gray, comparison not possible because an “×” is included in one of the genomes. 
Note that the data for chickens were obtained by the chemical coloring in situ hybridization method, and the detection methods for mice are not 
necessarily the same. (C) Schematic representation of neuronal information with characteristic combinations of 5-HTRs expression in the chicken 
telencephalon. Purple indicates APHre, brown indicates ICo, red indicates AD, and gray indicates TnA. AD, dorsal arcopallium; APHre, ectopic part of 
the rostral area parahippocampalis; CA1, cornu ammonis field 1, CA3, cornu ammonis field 3; DG, dentate gyrus; DL, dorsal lateral region; DLP/LP, 
dorsolateral pallium/lateral pallium; DM, dorsal medial region; DP, dorsal pallium; GCL, granule cell layer; ICo, intercalated core nucleus; MP, medial 
pallium; PCL, pyramidal cell layer; TnA, nucleus taeniae of the amygdala; V, V-shaped complex; VP/VCP, ventral pallium/ventrocaudal pallium.
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deserve to be surprising. On the other hand, there is a consensus about 
the homology of the MP-derived HFs in both birds and mammals 
(Reiner et  al., 2004; Herold et  al., 2015; Striedter, 2016), and the 
ancient origin of HFs has been strongly corroborated by tissue 
dissected bulk transcriptome study (Belgard et al., 2013) and recent 
single-cell transcriptome study (Tosches et al., 2018). We compared 
the functions of each subdivision between avian and mammalian HFs 
from the viewpoint of the molecular basis of serotonin regulation, but 
there was no clear correspondence (Figure 3B).

In the mammalian HF, a large number of glutamatergic excitatory 
neurons are distributed in the DG granule cell layer, CA3 pyramidal 
cell layer, and CA1 pyramidal cell layer, which have high cell densities, 
and it is widely recognized that neuron populations in these layers 
constitute a trisynaptic circuit (Sloviter and Lomo, 2012; Hevner, 2016; 
Medina et al., 2017a). On the other hand, in general and except for 
developmental processes, cell types in avian HFs are not well 
understood at the molecular level, making it difficult to compare cell 
types with mammalian cell types. Some neuronal markers, such as 
calbindin, CaMKII, and DCX, which are used from a neurochemical 
point of view and in immunohistochemistry, are also used in the avian 
HF (Suarez et al., 2006; Melleu et al., 2013; Herold et al., 2019; Rook 
et  al., 2023). A particularly interesting study using HF cell type 
markers by Atoji et al. (2016) showed that the orthologue of the DG 
granule cell population marker, prox1, was not only available as a 
developmental chicken DG region marker (Gupta et al., 2012; Abellan 
et al., 2014), but was also expressed in adult pigeon V. Since the avian 
V has been proposed to be equivalent to the mammalian DG (Atoji 
and Wild, 2004; Suarez et al., 2006; Gupta et al., 2012; Herold et al., 
2014; Atoji et al., 2016; Puelles et al., 2018), this raised the possibility 
that PROX1 could also be used as a marker for corresponding cells in 
the DG granule cell population marker in adult birds. To better 
understand the characteristics of serotonin-regulated neural circuits 
in the avian HF, it is necessary to increase the available markers for cell 
types within the avian HF. In the mouse HF, the 5-HTR1B gene is 
selectively and strongly expressed in the CA1 pyramidal layer (Lein 
et al., 2007; Ng et al., 2009, 2010), whereas in the chick HF, 5-HTR1B-
expressing cells are sparsely distributed in the V and DM, and 
abundantly distributed throughout the DL (Fujita et al., 2020, 2022a). 
For example, if avian HF 5-HTR1B-expressing cells can be cell typed, 
it may be possible to identify the distribution of neurons in the avian 
HF that share similarities in serotonergic control with mammalian 
CA1 pyramidal neurons.

In addition, several brain regions (nuclei) that exhibit characteristic 
5-HTRs expression patterns in the chick have been identified. First, the 
intercalated core nucleus (ICo) of the hyperpallium strongly expresses 
5-HTR1B, 5-HTR1D, and 5-HTR1E (Fujita et  al., 2020, 2022a; 
Figure 3C). The ICo has been recently named by Puelles et al., 2018 to 
describe the nucleus, first noted for its zinc-rich property (Faber et al., 
1989) and subsequently noted to express of ENC1 (García-Calero and 
Puelles, 2009), ZENK (Zapka et al., 2010), and NR4A2 genes (Puelles 
et al., 2016; Fujita et al., 2019). Since there is little information on how 
the ICo is in involved in brain functions such as cognition, behavior, 
and emotion, it is expected that attention will focus on serotonergic 
regulation prior to advances in our understanding. Second, 5-HTR1E 
was found to be  highly selectively expressed in a part of the DM 
subdivision of the HF, an ectopic part of the rostral area 
parahippocampalis (APHre) characterized by LEF1 expression 
(Abellan et al., 2014; Figure 3C). LEF1 is a transcription factor required 

for the generation of granule cells in the mammalian DG (Galceran 
et  al., 2000). A significant LEF1-expressing population during the 
development of HFs is commonly observed in both chickens and mice 
(Gupta et al., 2012; Abellan et al., 2014). However, in the adult HF, there 
is a significant LEF1-expressing population in the APHre in post-
hatched chicken, whereas LEF1 expression is not significant in the 
adult HF of mice (Lein et al., 2007; Ng et al., 2009, 2010). As such, the 
APHre may represent a unique cellular population within birds and 
be  a region key to understanding the functional correspondence 
between avian and mammalian HFs. In chickens, the projection 
relationship of the APHre and related functions are completely 
unknown, but in the HF of pigeons, several excellent descriptions of 
the intra-HF projection relationships have been published (Atoji and 
Wild, 2004, 2006; Atoji et al., 2016; Herold et al., 2019; Rook et al., 
2023). The subdivision chicken APHre (Abellan et al., 2014) appears to 
correspond to the parvocellular hippocampal area (Pa) (Atoji and 
Wild, 2004) or the dorsal dorsomedial (DMd) region (Herold et al., 
2014) in pigeons, but detailed correspondence information remains to 
be elucidated. Confirming whether the Pa or DMd in pigeons and the 
APHre in chickens can be  regarded as homologs and unifying 
terminology will be the first step toward understanding the functions 
of the APHre in birds. Third, 5-HTR1B, 5-HTR4, and 5-HTR5A are 
expressed in the dorsal arcopallium (AD), while 5-HTR2C, 5-HTR4, 
and 5-HTR1E are enriched in the TnA (Figure 3C). Previous studies on 
the distribution of serotonergic projections and terminals using anti-
serotonin antiserum or antibody have shown that the AD and TnA of 
avian brains, including chickens (Yamada and Sano, 1985; Metzger 
et al., 2002) and pigeons (Challet et al., 1996), were commonly enriched 
with serotonergic nerve terminals. However, it was revealed that the 
AD and TnA express different 5-HTR family genes, and focusing on 
the differences in their molecular compositions will help clarify the 
mode of serotonergic regulation that the AD and TnA receive.

Taken together, our previous work provided a comprehensive 
overview of 5-HTR gene expression patterns in the chick telencephalon 
(Fujita et al., 2020, 2022a). For example, mammalian 5-Htr4 is known 
to have multiple splice variants (Bockaert et al., 2006; Marin et al., 2020), 
and it has been clarified that the expression site differs depending on the 
variant (Vilaró et al., 2005). As multiple isoforms of chicken 5-HTR4 are 
registered in the database, it is possible that there are differences in the 
expression site for each of these isoforms. To make a more detailed 
molecular comparison of serotonergic regulation in mammalian and 
avian brains, it is important to increase the information on the 
expression distribution of avian receptors. However, 5-HTRs for whom 
characteristic expression patterns have not been clarified may exhibit 
low levels of expression. Therefore, in order to elucidate the detailed 
distribution, it may be necessary to use highly sensitive methods, such 
as using radioisotopes. Few prior studies have demonstrated the 
existence of the neural circuits involved in cognitive, behavioral, and 
emotional functions in bird brain regions. Information on the 
expression population of 5-HTR genes provides a useful molecular basis 
for studying the role of neural circuits in birds in the future.

4.3. Serotonergic modulation of the other 
modulatory system in chicks

In addition to the central serotonergic system, the dopaminergic 
system is another important modulatory system known to be involved 
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in motivation-related behavior. In addition, the central serotonergic 
system and the dopaminergic system interact with each other in 
mammals (Boureau and Dayan, 2011; De Deurwaerdere and Di 
Giovanni, 2017, 2021; Yagishita, 2020; Beyeler et al., 2021; Peters et al., 
2021). The midbrain dopaminergic nuclei receive the projections 
from the DR including serotonergic neurons (Ogawa et al., 2014; 
Beier et al., 2015; Ogawa and Watabe-Uchida, 2018). Furthermore, 
recently, it has been clarified how dopaminergic neurons undergo 
serotonergic regulation at the neural circuit level and which 5-HTRs 
are involved in mice (Wang et al., 2019; Peters et al., 2021). Interaction 
between the serotonergic and dopaminergic systems appears to occur 
in birds (Matsunami et  al., 2012), but the molecular basis of this 
interaction was previously unknown. Through comprehensive 
examination of the expression of the 5-HTRs probe set described 
above, we revealed that 5-HTR1A and 5-HTR1B are expressed in 
chick dopaminergic nuclei (Fujita et al., 2022c). Therefore, it was 
suggested that the dopaminergic system is also regulated by serotonin 
through 5-HTR1A and 5-HTR1B in birds, supporting the importance 
of the interaction between the serotonergic and dopaminergic 
systems. Unlike in mammals, the 5-HTR1A- and 5-HTR1B-expressing 
cells and dopaminergic neuron marker expression did not overlap, 
and 5-HTRs expressed directly in dopaminergic neurons could not 
be detected. It would be interesting to clarify serotonergic regulation 
of dopaminergic neurons in birds using methods with higher 
detection sensitivity and through pharmacological examination of 
dopaminergic neurons. Analysis of the molecular basis of interactions 
between modulatory systems in birds is nascent, and further analysis 
is required in the future.

5. Central serotonergic system 
functions in birds

The central serotonergic system in mammals has been 
demonstrated to be involved in a wide variety of cognitive, behavioral, 
and emotional processes, including mood, fear, anxiety, appetite, 
aggression, impulsivity, reward and learning (Jacobs and Azmitia, 
1992; Lucki, 1998; Yagishita, 2020). These neuromodulatory functions 
of serotonin have also been investigated in birds. For example, 
behavioral-pharmacological studies have revealed the involvement of 
serotonergic regulation in aggression in pigeons (Fachinelli et  al., 
1989) and foraging behavior in chickens (Matsunami et al., 2012). In 
addition, associations with feather-pecking behavior, during which 
chickens on a poultry farm peck their feathers together sometimes 
resulting in cannibalism in extreme cases (Savory, 1995), have also 
been examined through combining analyses of behavior and brain 
serotonin levels (Kops et al., 2017). For an excellent review on the 
relationship between feather-pecking behavior and the serotonergic 
system the reader is referred to De Haas and Van Der Eijk (2018).

Although specific gene functions in the serotonergic system are 
not clearly linked to specific cognitive, behavioral, and emotional 
processes in birds, studies are beginning to focus on expression of the 
5-HTR genes. For example, a previous study linked high expression of 
5-HTR2C in the right cerebral hemisphere with susceptibility to being 
a victim of feather pecking (Yao et  al., 2017), and another study 
correlated the expression levels of 5-HTR2A and 5-HTR2B in the 
caudal region of the left telencephalon with individual variations in 
cognition using reversal learning (Boddington et  al., 2020). 

Association studies between SERT polymorphism and behaviors, of 
which there are a relatively large number, are now discussed.

In humans, the promoter region of the SERT gene has a repetitive 
sequence insertion/deletion (IN/DEL) polymorphism, known as the 
SERT polymorphic region (SERTPR, or 5-HT transporter (5-HTT)-
linked polymorphic region, 5-HTTLPR) that affects its expression 
level; it has been repeatedly indicated that this polymorphism is 
associated with many psychiatric states such as depression, anxiety, 
and suicidal behavior (Serretti et al., 2006; Canli and Lesch, 2007; 
Murphy et  al., 2008). In chickens, a functional polymorphism 
considered analogous to human SERTPR has been discovered and 
shown to have associations to body weight gain and locomotion 
activity (Phi-Van et  al., 2014). Subsequently, the same chicken 
SERTPR polymorphism was shown to be associated with feed intake 
(Kjaer and Phi-Van, 2016) and fear-related behaviors (Krause et al., 
2017, 2019; Phi Van et al., 2018; Table 1). However, it should be noted 
that the behavioral assays used to measure fear-related behaviors in 
chickens have not been standardized and are not necessarily widely 
supported, unlike the common assay systems used in mammals for 
fear conditioning (LeDoux, 2000) and anxiety-related behaviors 
(reviewed in Allsop et al., 2014; O'leary et al., 2020). As a notable 
example, tonic immobility (TI), a paradigm often chosen in behavioral 
studies to observe indicators of fear in chickens, is thought to represent 
a form of reproducible hypnotic state (Gallup et al., 1971; Gallup, 
1974). The bird TI has a long history of being used as an index of fear 
and, since it can be  observed with good reproducibility, it is 
undoubtedly highly useful as an indicator of certain behaviors (Gallup, 
1973; Fureix and Meagher, 2015). However, it is unclear whether the 
TI in birds should be compared to fear-related behavior in mammals. 
Elucidating the neural circuits that control TI in chickens will advance 
what kind of behavioral and emotional states TI represents, and thus 
what emotional states it should be  compared to in mammals. In 
addition, there are also interesting examples of association studies 
combining the genotyping of SERT polymorphisms and ecological 
observations as well as behavioral tests in wild birds. Several SERT 
polymorphisms have been associated with behavioral traits, such as 
the performance of novel object tests and urban or rural habitat 
differences in great tits (Parus major) (Riyahi et al., 2015, 2022; Timm 
et al., 2018, 2019; Grunst et al., 2021; Thys et al., 2021), blackbirds 
(Turdus erula) (Müller et  al., 2013), and dunnocks (Prunella 
modularis) (Holtmann et al., 2016), and have been linked to animal 
personalities such as boldness and aggression (Table 1). However, 
associations between SERT polymorphisms and behavioral traits have 
not always yielded consistent results across birds and populations. For 
example, no association was detected between SERT polymorphisms 
and behavioral tests using Seychelles warbler (Acrocephalus 
sechellensis) (Edwards et  al., 2015), no SERT polymorphism was 
detected with black swans (Cygnus atratus) (Van Dongen et al., 2015), 
and when using great tits Timm et al. (2019) and Thys et al. (2021) had 
conflicting results regarding female aggression. The discrepancies in 
these results appear to be at least in part due to differences in species 
and populations, as well as the difficulty in collecting a sample size that 
enhances statistical power, due to the use of wild animals. More 
research in the field is required to facilitate a future meta-analysis that 
could elucidate the issue.

In addition to its role as a neuromodulator, there is increasing 
evidence that serotonin acts as a signaling molecule involving many 
aspects of neural development such as regulating cell proliferation, 
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neuronal differentiation, neurite outgrowth, and synaptogenesis in 
mammals (Daubert and Condron, 2010; Wirth et al., 2017; Whitaker-
Azmitia, 2020). In birds, serotonin levels in the brain and expression 
levels of serotonergic system-related genes during the development of 

serotonergic neurons have been clarified (Huang X. et al., 2019), and 
it has been shown that injecting serotonin externally to embryos 
affects neurodevelopment in chickens (Huang et al., 2021). As Huang 
et  al. (2021) pointed out, in contrast to mammals that receive 
serotonin from the placenta during development, birds develop 
independently within eggs. Therefore, avian embryos may provide a 
unique model to investigate the role of serotonin as a morphogen 
in neurogenesis.

6. Conclusion and future perspectives

The anatomical organization of the avian central serotonergic 
system has been noted to be highly similar within vertebrates. In this 
review, we  highlight that the molecular properties of the avian 
serotonergic system are also similar to those of the mammalian 
serotonergic system, supporting evolutionary conservation of the 
central serotonergic system in vertebrates. Going forward, it will 
be important to understand in detail the projection destinations of 
avian serotonergic neurons and to elucidate the functions involved at 
the neural circuitry level. Optogenetics, a revolutionary method for 
demonstrating the functions involved at the neural circuitry level, is 
becoming available in birds using viral vectors (Roberts et al., 2012; 
Rook et  al., 2021). By combining such viral vectors with avian 
transgenic technology (Motono et  al., 2010; Tsujino et  al., 2019; 
Hagihara et al., 2020), it will be possible not only to comprehensively 
visualize targeted neural projection relationships, but also to elucidate 
the functions of avian neural circuits at the cellular level. Birds have 
emerged as unique model organisms for understanding the 
evolutionary continuity of the neural circuits responsible for 
cognition, behavior, and emotion. In addition to understanding the 
detailed correspondence between avian and mammalian brain 
structure, and between avian behavior assay systems and mammalian 
behavior, a neural circuitry level understanding of avian behavior 
regulated by the central serotonergic system could provide an 
opportunity for comparison with the neural circuits revealed in 
mammals. Such comparison of the neural circuits responsible for 
cognition, behavior, and emotion between birds and mammals will 
facilitate our understanding of the evolutionary continuity of the 
neural circuits.
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