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Alpha-pinene moderates memory 
impairment induced by kainic acid 
via improving the BDNF/TrkB/
CREB signaling pathway in rat 
hippocampus
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Introduction: The potential benefits of natural ingredients in the alleviation 
of neurodegenerative disorders are of great interest. Alpha-pinene (APN) is an 
essential oil belonging to monoterpenes with multiple beneficial effects. In this 
study, the possible improving effects of alpha-pinene on memory impairment 
induced by kainic acid and the underlying molecular mechanisms were examined.

Methods: Memory impairment was induced by i.c.v. injection of kainic acid (KA) 
in male Wistar rats. Alpha-pinene (50 mg/kg/day, i.p.) was injected for 21 days, 
including 14 days before the KA injection and seven days afterward. Spatial working 
memory and inhibitory avoidance (IA) memory performance were assessed five 
and even days following KA injection, respectively. The hippocampal protein 
levels of brain-derived neurotrophic factor (BDNF), tropomyosin-like receptor 
kinase B (TrkB), cAMP response element binding protein (CREB), and neuronal 
loss in the CA1 region were also examined.

Results: Results revealed that the i.c.v. injection of KA triggered memory 
impairment, which was notably diminished by alpha-pinene pre-and post-
treatment. Histopathological evaluation revealed that alpha-pinene significantly 
moderated the attenuation in CA1 alive neurons induced by KA injection. 
Western blotting analysis confirmed that alpha-pinene pre-and post-treatment 
significantly reversed the KA-induced decreases in the hippocampal levels of 
BDNF, TrkB, phosphorylated TrkB, CREB, and phosphorylated CREB.

Discussion: These findings suggest that alpha-pinene pre-and post-treatment 
moderate memory impairment induced by KA by restoring the BDNF/TrkB/CREB 
signaling pathway in the rat hippocampus.
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1. Introduction

The ability of humans to perform daily life activities and proper functions in society is 
centrally dependent on memory (Khan et al., 2014). Memory impairment can result from brain 
damage due to trauma, stress, stroke, or epilepsy (Samuelson, 2011; Al-Qazzaz et al., 2014; 
Rayner et al., 2016). An epileptic seizure can potentially affect memory, either during or after 
the seizure (Tramoni-Negre et al., 2017). Based on accumulating clinical studies, learning, and 
memory deficits are among the most frequent cognitive declines in patients with temporal lobe 
epilepsy (TLE; Butler and Zeman, 2008; Celiker Uslu et al., 2019). The hippocampus, the main 
structure of the medial temporal lobe, is predominantly involved in recurrent spontaneous 
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seizures originating from the temporal lobe (Butler and Zeman, 2008). 
Besides, it is well-documented that the hippocampus plays a critical 
role in learning and memory processes (Bartsch and Arzy, 2014). 
Increasing data also indicate that progressive neurodegeneration in 
the hippocampus following prolonged seizure activity correlates with 
impairments in learning and memory performance (Hashemi et al., 
2019). Therefore, it is logical to hypothesize that moderating 
neurodegeneration in the hippocampus has a preventive effect on 
learning and memory impairments induced by seizures.

Neurotrophic factors include several families of growth factors 
with prominent functions in brain health and disease (Chao et al., 
2006). Brain-derived neurotrophic factor (BDNF) is a neurotrophin 
involved in a variety of processes in developing and adult mammalian 
brains, including neuronal differentiation, axonal outgrowth, synaptic 
transmission, neuroprotection, modulation of synaptic plasticity, and 
higher cognitive functions [for review see (Park and Poo, 2013; 
Kowiański et  al., 2018)]. The effects of BDNF on target cells are 
mediated by its strong affinity for tropomyosin-like receptor kinase 
B (TrkB) (Colucci-D'Amato et al., 2020). BDNF also plays a pivotal 
role in modulating memory formation (Bekinschtein et al., 2014). 
The prominent role of BDNF in memory formation and other 
cognitive functions is corroborated by the high expression of TrkB 
receptors in the hippocampus (Muragaki et al., 1995). Cyclic AMP 
(cAMP) response element-binding protein (CREB) is a nuclear 
transcription factor involved in various physiological processes, 
including synaptic plasticity, learning, and memory (Nair and Vaidya, 
2006). CREB is a neuronal activity-dependent protein that plays a key 
role in hippocampal-dependent memory formation (Sen, 2019). 
Studies have shown that different agents that increase CREB activity 
can improve learning and memory function (Tully et  al., 2003; 
Zarneshan et  al., 2022). There are several reports on the 
interconnected functions of BDNF and CREB. For example, it has 
been shown that CREB mediates the effects of BDNF on dendritic 
growth (Finsterwald et  al., 2010). Animal studies have also 
emphasized that the upregulation of BDNF and CREB proteins in the 
hippocampus improves memory impairment in experimental 
epilepsy models (Sharma et al., 2020).

The potential benefits of natural ingredients in the alleviation of 
neurodegenerative disorders are of great interest. Alpha-pinene (APN) 
is an essential oil belonging to monoterpenes with multiple beneficial 
effects, including antioxidative (Khan-Mohammadi-Khorrami et al., 
2022), anti-inflammatory and antiapoptotic (Khoshnazar et al., 2020), 
antiseizure (Hashemi and Ahmadi, 2023), sedative, and anxiolytic 
properties (Khan-Mohammadi-Khorrami et al., 2022). Studies have 
shown that APN improves avoidance memory and motor activity in 
a rat model of Parkinson’s disease via neuroprotective effects against 
6-hydroxy dopamine toxicity and by reducing oxidative damage 
(Goudarzi and Rafieirad, 2017). It has also been reported that APN 
inhalation enhances BDNF gene expression in the olfactory bulb and 
hippocampus in mice (Kasuya et  al., 2015). APN also improved 
learning and memory performance in scopolamine-induced memory 
impairment in C57BL/6 mice (Lee et al., 2017). We recently reported 
that APN pretreatment for 2 weeks has an anti-seizure effect against 
KA-induced TLE. However, the possible beneficial effects of APN on 
KA-induced learning and memory decline and the underlying 
molecular mechanisms have not been investigated. Therefore, it would 
be logical to investigate the effects of APN on memory performance 
in a rat model of kainite-induced epilepsy.

Investigations of animal models for memory impairment have 
disclosed not only valuable information about the organization of 
memory in the brain but also provided solutions for more efficient 
control of the progression of memory loss. Kainic acid (KA), via 
binding to the kainate subtype of glutamate receptors, induces 
histopathological and behavioral alterations as well as learning and 
memory impairment in rodents, which is very similar to that seen in 
patients with TLE (Lévesque and Avoli, 2013; Jefferys et al., 2016). A 
common comorbidity of epilepsy is learning and memory 
impairments in patients with TLE (Xing et al., 2019). Therefore, the 
current study was designed to evaluate the possible positive effects of 
the APN pre-and post-treatment on KA-induced impairment of 
learning and memory performance in rats. The possible involvement 
of the BDNF/TrkB/CREB signaling pathway in the hippocampus was 
also examined.

2. Materials and methods

2.1. Animals

Forty male Wistar rats (200–250 g) were obtained from an animal 
laboratory colony at the University of Kurdistan. The rats were housed 
in four per cage under standard conditions, including a 12-h light/
dark cycle (lights on at 7:00 AM), 22 ± 2°C, and 40–50% humidity. The 
animals had free access to food and water, except during the 
experiments. All procedures in this study followed the Guidelines for 
the Care and Use of Laboratory Animals (2011), defined by the 
National Academy of Sciences Institute for Laboratory Animal 
Research. The study protocol was approved by the Ethics and Research 
Committee of the University of Kurdistan (IR.UOK.REC.1400.024).

2.2. Treatments and experimental groups

Kainic acid was purchased from Sigma (Sigma-Aldrich Co., 
United States), and dissolved in ice-cold normal saline immediately 
before use. Alpha-pinene (APN) is a chemical constituent of the 
essential oils extracted from various plants, including conifers, wild 
pistachio, rosemary, and sage (Salehi et al., 2019). It is a colorless, 
water-insoluble, oil- and ethanol-soluble organic liquid. The APN oil 
used in this study was a gift from Van Company (Sanandaj, Iran), and 
was extracted from Pistacia atlantica subsp. kurdica (wild pistachio 
tree) with 97% purity. Therefore, the main component of the oil 
responsible for its effects is APN, which has the chemical formula 
C10H16. Apart from APN, other constituents such as beta-pinene and 
limonene may also be found in APN oil, but the quantities of these 
components are very low and often work synergistically, exerting 
combined effects that contribute to the overall neuroprotective 
potential of APN oil (Mahjoub et al., 2018). APN was diluted in 5% 
Dimethyl sulfoxide (DMSO; Merck Co., Germany) before use. A 
single dose of KA was intracerebroventricularly (i.c.v.) administered 
to induce memory impairment due to damage to the medial temporal 
lobe structures, mainly the hippocampus. The sham group received an 
i.c.v. injection of saline, instead of KA. APN was injected 
intraperitoneally (i.p.) once a day for 21 days at a dose of 50 mg/kg 
from 14 days before until 7 days following the i.c.v. injection of 
KA. The dose of APN was based on a recent report by other 
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investigators and a recent report from our laboratory (Khan-
Mohammadi-Khorrami et al., 2022; Hashemi and Ahmadi, 2023). 
DMSO (5%) was used as the vehicle for APN. Forty rats were 
randomly distributed into five experimental groups (n = 8 per group) 
as follows: (1) the control group with neither pre-and post-treatment 
of APN nor stereotaxic surgery; (2) DMSO + sham group, which 
received i.p. injections of DMSO and an i.c.v. injection of saline; (3) 
APN + sham group, which received i.p. injections of APN and an i.c.v. 
injection of saline; (4) DMSO + KA group, which received i.p. 
injections of DMSO and an i.c.v. injection of KA; and (5) APN + KA 
group, which received i.p. injections of APN and an i.c.v. injection of 
KA. Random distribution was performed using Random Allocation 
Software V1.0 (Saghaei, 2004).

2.3. Stereotaxic surgery

On day 14 of DMSO or APN pre-treatment, rats (except for the 
control group) were anesthetized with an i.p. injection of a mixture of 
ketamine (100 mg/Kg, i.p.) plus xylazine (10 mg/Kg, i.p.) and 
positioned in a stereotaxic frame (Stoelting Co., United States). The 
coordinates for the left lateral ventricle were as follows: AP, −1 mm 
relative to the bregma; 1.5 mm from the midline, and −3.5 mm beneath 
the dura (Paxinos and Watson, 2007). During the stereotaxic surgery, 
rats in DMSO + KA and APN + KA groups received an i.c.v. injection 
of 0.5 μg KA dissolved in 1.2 μl of normal saline by using a Hamilton 
syringe. Rats in the DMSO + Sham and APN + sham groups received 
i.c.v. injections of saline without KA (Hashemi and Ahmadi, 2023).

2.4. Y Maze task

Five days after the i.c.v. injection of saline or KA, spatial working 
memory was evaluated in a single-session Y-maze. Spontaneous 
alternations were assessed in a Y-shaped apparatus composed of a 
gray-color Plexiglas with three equal-sized arms named A, B, and C 
(50 × 10 × 40 cm height) interconnected by a triangular central arena. 
Each rat was placed at the end of the A-arm and allowed to explore the 
maze arms freely for 10 min. The animals’ behavior was videotaped 
and evaluated later by an experimenter who was blinded to the 
treatments. Spontaneous alteration behavior was defined as sequential 
entry into all three arms in overlapping triplet sets. The arm entries 
were counted when the animal entered the arm with all four paws. The 
maze arms were cleaned between trials with ethanol 10% to eliminate 
residual odor signs. The percentage (%) of spontaneous alternation 
behavior was calculated using the following formula:

 

 
total number total number Alternation / 100.percentage of alternations of arm entries 2

    = ×    −    

2.5. Inhibitory avoidance task

A step-through inhibitory avoidance (IA) test was also carried out 
during 2 days after the Y Maze test. The IA apparatus was composed of 
two equal-sized white and black chambers (20 × 20 × 30 cm height) 

interconnected by a middle door (7 × 9 cm), which could be  lifted 
manually. The walls and floor of the white chamber were made of white 
Plexiglass, but the walls of the black chamber consisted of black 
Plexiglass and its floor was made of stainless-steel bars 3 mm in 
diameter and located 1 cm apart from each other. In the acquisition 
phase, each rat was first placed in the white compartment, and the door 
between the two compartments was opened 5 s later. When the animal 
entered the black chamber, the middle door was closed and an electrical 
foot shock (1 mA, 3 s) was delivered to the stainless-steel rods by using 
an isolated stimulator (Borj Sanat Azma, Tehran, Iran). In the 
acquisition phase, the initial latency to enter the black compartment was 
recorded. Twenty-four hours following the acquisition phase, each rat 
was transferred to the white compartment for the memory recall test. 
After opening the middle door during the recall phase, the time spent 
in the white compartment before entry into the black compartment was 
recorded as step-through latency. A higher step-through latency 
indicates more memory of the shock delivered to the animal during the 
acquisition trial. A cut-off time of 300 s was set as complete memory 
recall (Azizbeigi et al., 2011; Zarrindast et al., 2012).

2.6. Western blotting

Following completion of the IA test on day 7 of the i.c.v. injection, 
four rats from each group were anesthetized, and the bilateral 
hippocampi were dissected to evaluate BDNF, TrkB, phosphorylated 
TrKB, CREB, and phosphorylated CREB protein levels by western 
blotting. The isolated hippocampal tissues were submerged in RIPA lysis 
buffer with a protease inhibitor cocktail (Abcam, United States) and 
homogenized using an ultrasonic homogenizer (FAPAN300; Fanavari 
Iranian Pajohesh Nassir, Iran). Following centrifugation at 13000 g for 
10 min at 4°C, the supernatants were collected and the Bradford 
technique was used to measure protein concentrations (Bradford, 1976). 
Protein samples (20 μg per lane) were separated by 10% SDS-PAGE and 
transferred onto polyvinylidene difluoride (PVDF) membranes. After 
blocking in 2% non-fat dry milk for 75 min at room temperature (RT), 
the membrane was incubated with the following diluted primary 
antibodies (1:1000): anti-β-actin (SC-47778), anti-BDNF (Abcam-
ab108319), anti-TrkB (SC-377218), anti-phosphorylated TrKB (anti-
pTrKB, orb99306), anti-CREB (SC-377154), and anti-phosphorylated 
CREB (anti-pCREB, ab32096) at 4°C overnight. After washing the 
membranes in TBST buffer (Tris-buffered saline containing 0.1% Tween 
20), they were incubated with appropriate secondary antibody 
conjugated with horseradish peroxidase (HRP, SC-2357, Santa Cruz, 
diluted 1:2000) at RT for 75 min. Immunoreactive protein bands were 
detected using enhanced chemiluminescence (ECL) reagents (Santa 
Cruz Biotechnology, United States). A mild stripping method was used 
to remove primary and secondary antibodies from the western blot 
membrane by using a stripping buffer (25 mM glycine-HCl, 1% SDS, pH 
adjusted to 2.2) before reprobing. Band densities were converted to 
surface area numbers by using ImageJ software (Ahmadi and Khaledi, 
2020; Hashemi and Ahmadi, 2023).

2.7. Histological assessment

Nissl staining was performed to investigate the neuroprotective 
effects of APN treatment in the CA1 region (n = 4 per rat). On day 7 
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of the i.c.v. injection (day 21 of the schedule), four rats from each 
group were deeply anesthetized and perfused with 0.9% sodium 
chloride followed by a fixative solution through the left ventricle, 
including 4% paraformaldehyde in 0.1 M phosphate-buffered saline 
(pH 7.4). Whole brains were separated from the skull and fixed in the 
same fixative at 4°C overnight followed by paraffin embedding. Five-
micrometer- sections were cut using a rotary microtome (Did Sabz 
Co., Urmia, Iran), and six hippocampal sections from each rat brain 
were mounted on glass slides. The slides were then dehydrated in 
graded ethanol solutions followed by Nissl staining using 0.1% cresyl 
violet for 2 min. The number of living cells in a small area of CA1 (15 
* 103 μm2) was counted in six sections per rat using ImageJ software. 
The average number of live neurons in six sections per rat was used 
for statistical analyses.

2.8. Statistical analysis

All data were presented as the mean ± SD. The differences among 
all experimental groups were compared and analyzed by one-way 
ANOVA followed by paired group comparisons using Tukey’s post hoc 
test. Statistical significance was set at p < 0.05. Statistical analyses were 
performed using the GraphPad Prism software package version 9.0. 
The corresponding author agrees to make data supporting the findings 
of this paper available upon reasonable request.

3. Results

3.1. APN treatment improved spatial 
working memory performance in a Y Maze 
task impaired by KA

Figure 1 shows the results of spatial working memory performance 
in the different experimental groups. One-way ANOVA revealed that 
the spontaneous alternation percentage was significantly different 
between the experimental groups [F(4, 35) = 27.5, p < 0.001]. Post-hoc 
Tukey’s test revealed that the spontaneous alternation percentage 
significantly decreased in the KA-treated group compared to those in 
the control, DMSO + Sham, and APN + Sham groups (p < 0.001). On 
the other hand, the decrease in the spontaneous alternation percentage 
induced by KA was significantly diminished following pre-and post-
treatment of APN in the APN + KA group (p < 0.001).

3.2. APN treatment moderated the 
impairment of IA memory induced by KA in 
rats

Based on the results of the one-way ANOVA, no significant 
difference was detected in the initial latency between the experimental 
groups on the training day of the IA test [F(4, 35) = 1.41, p > 0.05]. 
However, a significant difference in step-through latency between 
groups was detected on the testing day of the IA test, suggesting 
significant changes in IA memory performance among the experimental 
groups [F(4, 35) = 68.73, p < 0.001]. Tukey’s post hoc analyses indicated 
that KA significantly impaired IA memory performance in the 
DMSO + KA group compared to that in the DMSO + sham group 

(p < 0.001). Interestingly, the APN pre- and post-treatment significantly 
moderated the impairment of IA memory performance (p < 0.001) as 
revealed by an increase in step-through latency in the APN + KA group 
compared to the DMSO + KA group (Figure 2).

3.3. APN treatment prevented neuronal cell 
loss induced by KA in the CA1 region of the 
hippocampus

It is obvious that i.c.v. injections of KA induce neuronal cell death 
in the hippocampus of mice and rats (Jin et al., 2009; Hashemi and 
Ahmadi, 2023). In the current study, following Nissl staining, the 
number of live neurons in the CA1 region was counted for all 
experimental groups. The results of one-way ANOVA analyses 
revealed substantial differences between groups in the number of 
living cells in CA1 [F(4, 15) = 226.8, p  < 0.001]. Paired group 
comparisons confirmed that i.c.v. microinjection of KA led to notable 
neuronal loss in the CA1 area compared to the control and both 
DMSO + sham and APN + sham groups (p < 0.001). Interestingly, APN 
pre-and post-treatment significantly decreased neuronal cell loss in 
the CA1 area induced by KA (p < 0.001) compared to the DMSO + KA 
group, suggesting a neuroprotective role for APN. However, the 
number of the CA1 living cells in the APN + KA group was lower than 
APN + sham group (Figure 3).

3.4. APN treatment increased hippocampal 
levels of BDNF, TrKB, and p-TrKB in a rat 
model of memory impairment induced by 
KA

To examine the molecular mechanisms underlying the 
neuroprotective role of APN, the protein levels of BDNF and its 
receptor TrKB were examined in the hippocampus after 21 days of APN 

FIGURE 1

Effect of APN pre-and post-treatment (50 mg/kg/day) on 
spontaneous alternation behavior in a Y Maze task. All data are 
presented as the mean ± SD (n = 8 per experimental group). One-way 
ANOVA was used to identify the overall differences between the 
groups. ***p < 0.001: the significant statistical difference between the 
specified groups revealed by post hoc Tukey’s test.
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treatment. Western blot analysis of BDNF, TrKB, and p-TrKB protein 
levels in the hippocampus revealed significant differences between 
experimental groups for BDNF [F(4, 15) = 33.5, p < 0.001], TrkB [F(4, 
15) = 18.99; p < 0.001], and p-TrKB [F(4, 15) = 102.3; p < 0.001]. Tukey’s 
post hoc test indicated that there were significant decreases in the 
hippocampal levels of BDNF, TrKB, and p-TrKB in the DMSO + KA 
group compared to those in the control, DMSO + sham, and 
APN + sham groups (p  < 0.001). The APN pre-and post-treatment 
moderated (p < 0.001) the reductions in hippocampal levels of BDNF, 
TrKB, and p-TrKB induced by the i.c.v. injection of KA (Figure 4).

3.5. APN treatment increased hippocampal 
levels of CREB and p-CREB in a rat model 
of memory impairment induced by KA

According to research, different agents can improve learning and 
memory by increasing CREB activity (Sharma et al., 2019; Yan et al., 
2022). We also examined the CREB and p-CREB protein levels in the 
hippocampus after 21 days of APN treatment. The results of western 
blotting for CREB and p-CREB protein levels in the hippocampus 
revealed significant differences between the experimental groups for 
both CREB [F(4, 15) = 13.69; p < 0.001] and p-CREB [F(4, 15) = 77.08; 
p  < 0.001]. Paired group comparisons indicated that there were 

significant decreases in the hippocampal levels of CREB and p-CREB 
in the DMSO + KA group compared to those in the control, 
DMSO + sham, and APN + sham groups (p < 0.001). However, pre-and 
post-treatment of APN at a dose of 50 mg/kg partially prevented 
(p < 0.001) the reductions in CREB and p-CREB protein levels in the 
hippocampus induced by i.c.v. injection of KA (Figure 5).

4. Discussion

This study examined how the administration of APN before and 
after KA exposure affected learning and memory deficits in rats. To 
assess these effects, both the Y-maze and step-through IA tasks were 
employed. The levels of BDNF, TrKB, p-TrKB, CREB, and p-CREB 
were measured in the hippocampus, along with the evaluation of 
neuronal cell loss in that brain region. The results of the Y-maze test 
revealed that i.c.v. injection of KA impaired spatial memory 
performance in rats, which was attenuated by APN pre-and post-
treatment. The Y Maze task is a well-known test for evaluating 
hippocampal-dependent spatial working memory in rodents (Kraeuter 
et al., 2019). Consistent with the present results, previous evidence has 
also documented that the injection of KA into different parts of the 
brain, including the lateral ventricle and hippocampus, leads to 
learning and memory impairments (Gordon et al., 2013; Khodamoradi 
et  al., 2016). There was also a significant decrease in IA memory 
performance in the DMSO + KA group compared with that in the 
DMSO + sham group. However, pre-and post-treatment with APN 
remarkably improved IA memory performance in the APN + KA group 
compared to those in the DMSO + KA group. In addition, there was a 
group difference in IA memory performance between the APN + KA 
and APN + sham groups, which may imply that the APN pre-and post-
treatment did not completely prevent memory impairment induced by 
KA. Extending the duration of the APN treatment is a suggestion to 
obtain a better memory-improving effect with APN; however, further 
studies are needed. Together, the results of the behavioral tests in the 
present study confirmed that APN pre-and post-treatment partially 
had preventive effects against KA-induced memory impairment.

Furthermore, the beneficial effect of APN on learning and 
memory deficits in animal models of neurodegenerative diseases has 
been previously reported (Goudarzi and Rafieirad, 2017; Lee et al., 
2017). In a study, Lee et  al. (2017) demonstrated that daily APN 
pretreatment mitigated memory deficit induced by scopolamine, 
probably via inhibiting oxidative stress and increasing the synthesis 
of acetylcholine (Lee et al., 2017). APN also has preventive effects 
against IA memory impairment by regulating antioxidative and anti-
acetylcholinesterase mechanisms, as well as enhancing dopamine 
concentration in a rat model of Parkinson’s disease (Goudarzi and 
Rafieirad, 2017). Other studies have revealed that APN not only 
improves memory deficits in amnesia-related models but also 
enhances learning and memory abilities in normal rats (Nozari and 
Rafieirad, 2019; Ahmadi-Kanali et al., 2021). In this regard, it has 
been shown that intrahippocampal injection of APN increases spatial 
memory by reducing the time latency and total distance traveled to 
reach the hidden platform in the acquisition phase of the Morris 
water maze (MWM) test and improves IA memory performance 
(Ahmadi-Kanali et al., 2021). Moreover, it has been reported that 
APN administration for 2 weeks significantly enhanced IA memory 
performance due to decreased MDA levels and increased thiol 

FIGURE 2

Effects of APN pre-and post-treatment (50 mg/kg/day) on IA 
memory performance. (A) Initial latencies in the acquisition phase 
and (B) step-through latencies in the memory-recall session. All data 
are presented as the mean ± SD (n = 8 per group). The overall 
difference between groups was determined using one-way ANOVA. 
The post hoc Tukey’s test indicated a statistically significant 
difference between the specified groups: ***p < 0.001.
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concentration in the hippocampus (Nozari and Rafieirad, 2019). 
However, the results of the current study indicated that APN pre-and 
post-treatment by itself had no enhancing effect on learning and 
memory performance in the sham-operated group compared to the 
control group. Differences in methodology, including the drug doses 
and route of drug administration, may account for the discrepancy 
between other reports and the results of the current research on the 
effect of APN on memory performance.

Hippocampal sclerosis is the main cause of memory complications 
following KA injection and is defined by massive neurodegeneration, 
particularly in the CA1, CA3, and hilar region (CA4) of the 
hippocampus (Malmgren and Thom, 2012). There are direct 

correlations between memory dysfunction and neuronal damage in the 
hippocampus (Miltiadous et  al., 2011). Accumulating evidence 
indicates that KA administration into the lateral ventricle causes 
neurodegeneration within the hippocampus, which is accompanied by 
learning and memory deficits in rodents (Hashemi et al., 2019). The 
current findings demonstrate a wide range of neuronal cell loss in the 
CA1 region of the hippocampus due to the microinjection of KA into 
the left lateral ventricle. Interestingly, APN pre-and post-treatment at 
a dose of 50 mg/kg for 21 days significantly moderated KA-induced 
neuronal degeneration in the CA1. However, there was still a significant 
group difference in the number of CA1 surviving neurons between the 
APN + KA group and the APN + sham group, indicating some neuronal 

FIGURE 3

Neuroprotective effect of APN pre-and post-treatment (50 mg/kg/day) against neuronal cell loss in the CA1. The number of live neurons was counted 
in a small area of CA1 (15 * 103  μm2) per CA1 section. (A) Is a coronal section of the whole healthy hippocampus, indicating the selected area for cell 
counting. Magnified photomicrographs represent magnified coronal sections of the CA1 in the experimental groups, including (B) control, (C) DMSO + 
sham, and (D) APN + sham groups. (E) Is a coronal section of the whole hippocampus in a KA-treated rat visualizing the extent of neuron loss in 
different areas of the hippocampus. (F,G) Are images of a magnified area of the CA1 in the DMSO + KA and APN + KA groups, respectively. Rectangles on 
images A and E represent the main part of the CA1. Arrows on some of the images indicate pyramidal cell layer in the CA1. The bar graph in the lower 
panel represents the quantification of the surviving neurons in the CA1 in each experimental group (n = 4 per group). Data are shown as the mean ± SD. 
One-way ANOVA was employed to assess the general difference between groups, and the subsequent post hoc Tukey’s test revealed a statistically 
significant difference among the specific groups: ***p < 0.001.
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cell loss due to KA injection, even in the presence of APN pre-and 
post-treatment. Our findings are consistent with a recent study 
indicating that APN reverses amyloid-beta-induced neuronal cell loss 
by increasing the number of CA1 neurons in male rats (Khan-
Mohammadi-Khorrami et al., 2020). We have also recently shown that 
APN pre-and post-treatment for 19 days has a neuroprotective effect 
against neuronal cell loss induced by i.c.v. injection of KA in the CA3 
and CA4 of the hippocampus. Our previous data indicated that the 
neuroprotective effect of APN pre-and post-treatment is mediated by 
preventing the activation of the apoptotic pathway in the hippocampus 
(Hashemi and Ahmadi, 2023). It seems that the beneficial effects of 
APN on KA-induced learning and memory impairment also result 
from its neuroprotective effects in the hippocampus.

APN is a small and lipophilic molecule; therefore, it can cross 
cellular membranes, taking advantage of the natural permeability of 
membranes to small non-polar molecules (Yang and Hinner, 2015). 
Animal studies have also shown that APN penetrates the blood–brain 
barrier 30 min after inhalation (Satou et al., 2013, 2017). Similar to 
other terpenes, APN can interact with various targets including 
different membrane receptors, intracellular receptors, enzymes, and 
other cellular components to exert its pharmacological effects (Liktor-
Busa et al., 2021). These effects include antioxidant, anti-inflammatory, 

and neuroprotective activities, as reported by different investigators. 
Research has revealed that the memory-improving effect of alpha-
pinene may be mediated by its effect on cholinergic neurotransmission. 
In particular, APN has a therapeutic effect on Alzheimer’s disease by 
inhibiting acetylcholine esterase, an enzyme involved in the breakdown 
of acetylcholine (Wojtunik-Kulesza et al., 2021). APN treatment also 
increases the mRNA expression of choline acetyltransferase, an enzyme 
that catalyzes the production of acetylcholine (Lee et al., 2017). In 
addition, research has shown that APN acts as a partial modulator of 
GABAA-benzodiazepine receptors and enhances GABAergic synaptic 
transmission directly by binding to the benzodiazepine-binding site of 
the GABAA receptor (Yang et al., 2016; Rafie et al., 2022). However, the 
exact molecular mechanisms underlying APN action remain unclear 
and require further investigations.

Numerous investigations have confirmed that among all 
neurotrophins, BDNF and its receptor TrKB play an essential role in 
adult synaptic plasticity, learning, and memory formation (Andero et al., 
2014; Lu et al., 2014). Accordingly, BDNF deficiency has been associated 
with memory and cognitive impairments in neurodegenerative diseases, 
including Alzheimer’s disease (Amidfar et  al., 2020), and also with 
memory deficits in TLE (de Almeida et al., 2017). It has been reported 
that the downregulation of TrkB in the hippocampus is associated with 

FIGURE 4

Effect of APN pre-and post-treatment (50 mg/kg/day) on hippocampal levels of BDNF, TrKB, and p-TrKB. (A) Western blotting images indicating band 
densities for BDNF, TrKB, and p-TrKB in the five experimental groups. β-actin was used as an internal reference. (B–D) Bar graphs represent the 
quantified protein levels of BDNF, TrkB, and p-TrkB in the hippocampus in each experimental group (n = 4 per group). All data are presented as the 
mean ± SD. The overall difference between groups was determined using one-way ANOVA. The post hoc Tukey’s test indicated a statistically significant 
difference between the specified groups: ***p < 0.001.
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the progression of Alzheimer’s disease and subsequent memory decline 
(Ginsberg et  al., 2019). To investigate the molecular mechanisms 
underlying the improving effects of pre-and post-treatment of APN on 
memory performance, we assessed the protein levels of BDNF and its 
receptor, TrkB, as well as CREB in the rat hippocampus following 
21 days of the APN treatment. According to our findings, hippocampal 
levels of BDNF, TrkB, and phosphorylated TrKB (p-TrKB) were 
remarkably decreased in the DMSO + KA group compared to those in 
the DMSO + sham group. In agreement with these results, studies have 
also demonstrated diminished BDNF levels in the hippocampus 
following KA administration (Şahin et  al., 2019). Interestingly, the 
results of the present experiments indicated that pre-and post-treatment 
with APN significantly moderated the KA-induced decreases in the 
hippocampal levels of BDNF, TrkB, and p-TrkB.

In support of the current results, it has been reported that inhalation 
of APN stimulates BDNF expression in the hippocampus of mice 
(Kasuya et al., 2015). There are some reports that astrocytic BDNF and 
TrkB molecules in the hippocampus are promising therapeutic targets 

for the treatment of TLE (Fernández-García et al., 2020). We have also 
recently reported that APN pre-and post-treatment protects 
hippocampal neurons via, at least partly, inhibiting pro-apoptotic Bax 
and increasing anti-apoptotic Bcl2 proteins in the hippocampus 
(Hashemi and Ahmadi, 2023). The present results indicate that APN 
treatment also increases BDNF and TrKB levels, supporting the 
neuroprotective effects of APN in the hippocampus. BDNF plays a 
crucial role in the development, growth, survival, and function of 
neurons in developing and adult mammalian brains. When BDNF binds 
to the TrkB receptor, it triggers phosphorylation of the receptor and 
subsequently a series of intracellular signaling pathways. TrkB receptors 
dimerize following BDNF binding, leading to transphosphorylation of 
the autophosphorylation loops at tyrosine residues 705/6 (Y705/6) and 
phosphorylation of tyrosine residues 515 and 816 (Y515 and 816), which 
initiate downstream signaling cascades, including the mitogen-activated 
protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) 
pathways, transmitting the signal to the nucleus (Minichiello et al., 1999; 
Minichiello, 2009; Numakawa et al., 2010). Activated signaling pathways 
induce changes in gene expression within the target cell nucleus, 
including increased expression of BDNF and the TrkB receptor. This 
upregulation of TrkB receptors enhances cell sensitivity and 
responsiveness to BDNF signaling, facilitating the important functions 
of BDNF in neuronal growth, survival, and plasticity (Alonso et al., 2002; 
Deinhardt and Chao, 2014; Leal et al., 2014).

Moreover, the protective impact of APN has been evidenced in 
numerous investigations [for review see (Weston-Green et al., 2021)]. 
It has been shown that APN modulates BDNF and its receptor TrkB in 
certain contexts. Kasuya et al. (2015) reported an increase in mRNA 
levels of BDNF in the olfactory bulb and hippocampus following 
inhaled administration of APN (Kasuya et al., 2015). However, the 
exact mechanisms underlying the effects of APN on BDNF and TrkB 
are still being studied and further research is needed to fully understand 
the underlying processes. APN can potentially influence the activity of 
transcription factors, such as CREB, which bind to specific regions of 
the BDNF gene, promoting its transcription. This increased 
transcription of BDNF leads to higher levels of BDNF protein 
production in the neurons. APN may also enhance the binding affinity 
between BDNF and TrkB, leading to increased activation of TrkB 
receptors and resulting in enhanced cellular responses mediated by 
BDNF–TrkB signaling. BDNF levels have been suggested as a valuable 
indicator of cognitive states (Amidfar et  al., 2020). Therefore, the 
increases in hippocampal BDNF and TrKB levels following APN 
treatment validate the positive effects of APN on memory performance.

CREB, a key transcription factor downstream of many 
intracellular signaling pathways, mainly regulates the expression of 
molecules involved in memory functions, including BDNF (Josselyn 
and Nguyen, 2005; Amidfar et  al., 2020). A reduction in CREB 
expression has also been associated with memory impairment in a 
mouse model of TLE induced by pilocarpine (Xing et  al., 2019). 
We  also examined hippocampal CREB levels in all experimental 
groups to evaluate changes compared to BDNF levels. According to 
the present results, KA injection decreased hippocampal levels of 
CREB and phosphorylated CREB (p-CREB), which was partially 
rescued by APN pre-and post-treatment. Considering the effects of 
APN on hippocampal levels of CREB and BDNF, we reasoned that the 
increased levels of CREB and p-CREB are a possible mechanism for 
the improving effects of APN on hippocampal BDNF levels and 
memory performance in the Y-maze and IA tasks. Other investigators 

FIGURE 5

Effect of APN pre-and post-treatment (50 mg/kg/day) on CREB and 
p-CREB protein levels in the hippocampus. (A) Western blot images 
indicating CREB and p-CREB band densities in the five experimental 
groups. (B, C) Are bar graphs representing the quantified protein levels 
of CREB and p-CREB in the hippocampus in each experimental group 
(n = 4 per group). All data are presented as the mean ± SD. One-way 
ANOVA was employed to assess the general difference between 
groups, and the subsequent post hoc Tukey’s test revealed a statistically 
significant distinction among the specific groups: **p < 0.01 and 
***p < 0.001.

https://doi.org/10.3389/fnmol.2023.1202232
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Hashemi and Ahmadi 10.3389/fnmol.2023.1202232

Frontiers in Molecular Neuroscience 09 frontiersin.org

have also reported that plant-derived compounds improve memory 
functions in animal models of Alzheimer’s disease via increasing 
CREB and BDNF (Pak et al., 2022; Yan et al., 2022). Together, these 
data suggest that the BDNF/TrKB/CREB signaling pathway may 
account for the improved effects of APN treatment on KA-induced 
memory impairment.

Several pathways are involved in CREB activation, including 
receptor tyrosine kinases, G protein-coupled receptors, and ionotropic 
receptors (Shaywitz and Greenberg, 1999; Mizuno et al., 2002). It has 
been reported that the pharmacological effects of APN are mediated 
by its interaction with various target molecules on either the cell 
membrane or inside the cells (Liktor-Busa et al., 2021). Considering 
the involvement of BDNF/TrKB and CREB activation in learning and 
memory processes and the increase in these molecules due to APN 
treatment in the present study, we hypothesized that APN leads to 
CREB activation by increasing BDNF/TrKB signaling pathway. 
However, CREB activation via other signaling cascades following APN 
treatment cannot be excluded and requires further experiments.

5. Conclusion

Two potential explanations for these findings can be put forward. 
First, it is plausible that the decrease in BDNF, p-TrKB/TrKB, and 
p-CREB/CREB proteins be a consequence of neuronal death in the 
hippocampus following KA injection. Second, decreases in BDNF, 
p-TrKB/TrKB, and p-CREB/CREB proteins play a causal role in 
neuronal death in the hippocampus following KA injection. Both of 
the two possibilities should be  considered. The hippocampus is 
particularly vulnerable to KA-induced cytotoxicity and neuronal 
damage. When neurons die, normal protein expression and signaling 
processes are disrupted. Therefore, the decrease in BDNF, p-TrKB/
TrKB, and p-CREB/CREB protein levels in the hippocampus reflect, 
on one hand, the damage and subsequent death of neurons, which 
leads to a reduction in their expression levels. On the other hand, 
BDNF plays a crucial role in supporting neuronal survival and 
protecting against neurodegenerative processes by employing various 
protective mechanisms (Almeida et al., 2005; Chen et al., 2017). BDNF 
can inhibit apoptotic cell death by counteracting KA-induced 
pro-apoptotic signals (Chiu et  al., 2019). BDNF and TrKB 
neurotrophic signaling also enhance neuronal survival by supporting 
survival signaling cascades within neurons (Rössler et al., 2004; Wang 
et al., 2019). In addition to its well-established neurotrophic action, 
BDNF also possesses other neuroprotective effects including anti-
apoptosis, anti-oxidation, and autophagy suppression (Chen et al., 
2017). These mechanisms collectively contribute to BDNF’s ability to 
support neuronal survival in the hippocampi of KA-treated animals. 
Therefore, increases in BDNF, p-TrKB/TrKB, and p-CREB/CREB 
proteins and prevention of neuronal death in the hippocampus due to 
APN treatment support the suggestion that the hippocampus is 
particularly vulnerable to KA-induced damage due to blocking BDNF 
signaling. We have recently shown that APN can modulate the balance 
between pro-apoptotic and anti-apoptotic proteins in the 
hippocampus of animals treated with KA, thereby promoting cell 
survival (Hashemi and Ahmadi, 2023). Taken together, it can 
be  concluded that APN can directly or indirectly employ various 
targets involved in cell survival such as BDNF/TrKB/CREB to exert 
neuroprotective effects against KA damage in the hippocampus.
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