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Introduction: Neurodegeneration and cancer present in comorbidities with 
inverse effects due to the expression of genes and pathways acting in opposition. 
Identifying and studying the genes simultaneously up or downregulated during 
morbidities helps curb both ailments together.

Methods:  This study examines four genes. Three of these (Amyloid Beta Precursor 
Protein (APP), Cyclin D1 (CCND1), and Cyclin E2 (CCNE2) are upregulated, and 
one protein phosphatase 2 phosphatase activator (PTPA) is simultaneously 
downregulated in both disorders. We investigated molecular patterns, codon 
usage, codon usage bias, nucleotide bias in the third codon position, preferred 
codons, preferred codon pairs, rare codons, and codon context.

Results: Parity analysis revealed that T is preferred over A, and G is preferred over C 
in the third codon position, suggesting composition plays no role in nucleotide bias 
in both the upregulated and downregulated gene sets and that mutational forces 
are stronger in upregulated gene sets than in downregulated ones. Transcript length 
influenced the overall %A composition and codon bias, and the codon AGG exerted 
the strongest influence on codon usage in both the upregulated and downregulated 
gene sets. Codons ending in G/C were preferred for 16 amino acids, and glutamic 
acid-, aspartic acid-, leucine-, valine-, and phenylalanine-initiated codon pairs 
were preferred in all genes. Codons CTA (Leu), GTA (Val), CAA (Gln), and CGT (Arg) 
were underrepresented in all examined genes.

Discussion: Using advanced gene editing tools such as CRISPR/Cas or any other 
gene augmentation technique, these recoded genes may be introduced into the 
human body to optimize gene expression levels to augment neurodegeneration 
and cancer therapeutic regimens simultaneously.
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1. Introduction

Cancer promotes continuous proliferation, invasion, and metastasis of malignant cells into 
distal organs. In contrast, neurodegeneration is characterized by neuronal dysfunction and death. 
These disorders display several opposite features. Where cancer is characterized by abnormal cell 
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survival and resistance to cell death, cells in neurodegenerative disease 
are at elevated risk of cell death. Inverse comorbidities have been 
reported in cancer and neurodegeneration in several reports (Ferreira 
et al., 2010; Driver et al., 2012; Driver, 2014). Transcriptomic meta-
analyses have investigated inverse comorbidities in terms of molecular 
processes common to CNS disorders and cancers. A significant overlap 
has been reported between genes that are up-regulated in cancer and 
down-regulated in neurodegeneration, and vice versa (Ibáñez et al., 
2014). Inverse comorbidities are common. Thus, genes and pathways 
regulated in opposite directions have been thoroughly investigated and 
understood, and examples of such genes and pathways are available. 
To date, only a few reports describe pathways operating in same 
direction in cancer and neurodegeneration. We thus investigated genes 
implicated in both ailments, to identify ways to simultaneously address 
cancer and neurodegeneration. We found many genes to be present at 
the interface of cancer and neurodegeneration, including α-synuclein, 
PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, MAPT, and CDK5 (Plun-
Favreau et al., 2010) with disease-associated point mutations at various 
sites (Mavrou et al., 2008; Morris et al., 2010; Veeriah et al., 2010a,b). 
Specific genes and pathways that simultaneously increased CNS 
disorder risk while reducing that of cancer were identified. 
Transcriptomic meta-analyses revealed the simultaneous upregulation 
of 74 genes, for example PPIAP11, IARS, GGCT, NME2, GAPDHP1, 
CDC123, PSMD8, MRPS33, FIBP, and OAZ2 in three CNS disorders 
and downregulation in three cancer types (Ibáñez et  al., 2014). 
Similarly, 19 genes were up-regulated in three cancer types (lung, 
prostate, and colorectal), and down-regulated in three CNS disorders 
(Alzheimer’s disease, Parkinson’s disease and Schizophrenia) and the 
examples are MT2A, MT1X, NFKBIA, AC009469.1, DHRS3, CDKN1A, 
and TNFRSF1A (Ibáñez et al., 2014). In cancer, P53 is down-regulated, 
whereas PIN and Cyclin F are up-regulated. At the same time, P53 is 
up-regulated, while PIN and Cyclin F are down-regulated in 
neurodegeneration. Inverse comorbidities make coupled treatment of 
both diseases difficult.

To find a solution for both diseases, we looked for genes that were 
up-regulated or down-regulated simultaneously in both disorders, so 
that they could be handled together. An extensive literature search led 
us to four genes, amyloid precursor protein (APP), Cyclin D, Cyclin 
E, and protein phosphatase 2A (PP2A/PTPA). In cancer and 
neurodegeneration, APP, Cyclin D, and Cyclin E are up-regulated, 
whereas PTPA is down-regulated.

Chromosome 21 trisomy, the presence of APP on chromosome 
21, and association of APP gene upregulation with increased risk of 
hematologic malignancy in patients with Down syndrome (DS) 
suggest that APP might predispose to cancer. Children with Down 
syndrome are at 10- to 20-fold higher risk of acute lymphoblastic 
leukemia and acute myeloid leukemia. In patients with acute myeloid 
leukemia, APP is most overexpressed (Wang et  al., 2010), and its 
overexpression is associated with poor prognosis in oral squamous cell 
carcinoma (Lin et al., 2020). APP overexpression in mouse models 
leads to neuronal death (Cheng et al., 2016). Overexpression of the 
human APP gene in Drosophila melanogaster results in cholinergic 
and dopaminergic brain neurons that are significantly degenerated 
later in life compared with controls, accompanied by memory deficits 
and poor cognitive abilities (Bolshakova et al., 2014).

Cyclins D and E have been reported to be up-regulated, whereas 
PTPA has been reported to be  down-regulated in cancer and 
neurodegenerative disease [reviewed in (Seo and Park, 2020)]. 

Cyclins control the cell cycle by modulating Cyclin-dependent 
kinases (CDKs), and their dysregulation underlies several human 
cancers (Krasniqi et al., 2022; Wu et al., 2022; Sher et al., 2023). In 
addition to cell cycle regulation, Cyclins participate in cellular 
processes specific to terminally differentiated neurons (Zhou and 
Ekström, 2022).

Cyclins play important roles in neuronal physiology and pathology 
(Cho et al., 2015). Cyclin D1 is a regulatory subunit of CDK4 or CDK6 
and is essential for entry into S phase from G1. Mutations leading to 
aberrant overexpression of Cyclin D alter cell cycle progression and may 
contribute to tumorigenesis. Thus, CCND1 overexpression correlates with 
shorter survival and poorly differentiated gastric cancer and other tumors 
(Shan et al., 2017). Cyclin D1 is associated with apoptosis in post-mitotic 
neurons (Shupp et al., 2017). In a study of 117 subjects, Cyclin D levels 
were significantly higher in patients with Alzheimer’s disease (AD; Kim 
et al., 2016). CDK4 induces the re-entry of neurons into the cell cycle, is 
deleterious to terminally differentiated neurons, and may lead to neuronal 
degeneration (McShea et al., 1997). Cyclin D1 is involved in breast cancer 
cell invasion/migration, and its overexpression increases invasion (Gao 
et al., 2020). Cyclin E is a regulatory subunit of CDK2 that initiates DNA 
replication during G1/S transition. Its overexpression, resulting in 
genomic instability, has been reported in triple-negative breast cancer 
(Chen et al., 2018), non-Hodgkin’s lymphoma (Williams and Swerdlow, 
1994), lung cancer (Eymin and Gazzeri, 2010), pancreatic cancer (Pang 
et al., 2020), and liver cancer (Sonntag et al., 2021) and results in genomic 
instability (Kok et al., 2020). Increased Cyclin D and E levels are evident 
in degenerating neurons exposed to the neurotoxin 1-methyl-4-
phenylpyridinium (Höglinger et al., 2007). Elevated Cyclin E levels are 
observed during spinal cord injury which induce cell cycle activation and 
neuronal apoptosis (Tian et al., 2006).

Phosphotyrosyl phosphatase activator (PTPA/PP2A), a member 
of the serine/threonine protein phosphatase family, is a tumor 
suppressor gene product. Its inactivation has been reported in 
endometrial carcinomas (Remmerie and Janssens, 2019). This 
inactivation induces cell transformation (Sablina et al., 2010). PTPA 
is decreased in the brains of Alzheimer’s disease (AD) mouse models. 
Additionally, PTPA is present in the mitochondrial membrane, and its 
knockdown induces apoptosis in neuronal cell lines (Luo et al., 2014).

Relative synonymous codon usage (RSCU) explains bias in codon 
usage within genes or transcripts. This bias can result from various 
evolutionary (selection, mutation, and GC-biased gene conversion) 
and compositional factors. Codon usage impacts the level of gene 
expression through its effect on transcription (Zhou et  al., 2016). 
Preferred codons are commonly present in highly expressed genes, 
whereas poorly expressed genes contain rare or less common codons. 
Rare codons in Escherichia coli, including AGG, AGA, CUA, AUA, 
CGA, and CCC, regulate different endogenous proteins. Expression is 
limited due to the rarity of their cognate tRNAs (Wang et al., 2016). 
When RNA polymerase encounters rare codons, transcription 
generally pauses, resulting in ribosome disassembly (Rosano and 
Ceccarelli, 2009). Rare codons are generally found in nonrandom 
clusters (Clarke and Clark, 2008). Codon pair bias is a variant form of 
codon bias, and is the probability of the presence of two specific 
adjacent codons. For example, for the adjacent amino acids alanine 
and glutamate, there are eight possible codon pairs, and all should 
be  equally present; however, the GCC-GAA pair is highly 
underrepresented despite containing GCC, the most prevalent codon 
encoding alanine (Coleman et al., 2008).
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Codon bias may be applied as a tool in synthetic biology to create 
synthetic gene constructs capable of high level expression (Supek and 
Šmuc, 2010), to reduce expression when constructing attenuated 
vaccine candidates (Giménez-Roig et  al., 2021), or to create new 
genomes (Tulloch et al., 2014). In the present study, we envisaged 
codon bias, its correlation with various molecular features of 
transcripts, expression profile, preferred and rare codons, codon pairs, 
and codon context for the genes APP, Cyclin D, and Cyclin E, which 
are up-regulated, and PTPA, which is down-regulated in both cancer 
and neurodegeneration. The information in this study will help 
modulate and fine-tune the expression of these genes, contributing to 
strategies for controlling these ailments concurrently.

2. Materials and methods

2.1. Sequence retrieval

All transcripts corresponding to the genes APP (11), CCND1 (1), 
CCNE1 (4), and PTPA (06) were retrieved from the National Center 
for Biotechnology (NCBI) GenBank database.1 Transcripts containing 

1 http://www.ncbi.nlm.nih.gov

a reading frame starting with ATG and ending with a stop codon were 
included in this study. Accession numbers and transcript lengths are 
listed in Table 1.

2.2. Principal component analysis

Principal component analysis (PCA) is a multivariate tool used 
to determine major variation trends. PCA was performed using 
RSCU values to identify major codon usage trends in up-regulated 
and down-regulated genes. The up-regulated gene group consisted 
of transcripts encoded by APP, CCND1, and CCNE1, while the 
down-regulated gene group consisted of transcripts encoded by 
PTPA. A PCA plot was constructed using the first two axes, which 
accounted for maximum variation. The figure was made using 
Origin18 software.

2.3. Protein properties determination

Protein physical properties affect their biological behaviors and 
influence their codon usage. Various protein properties have been 
reported to correlate with nucleotide composition and codon bias 
(Khandia et  al., 2021). In this study, we  calculated two protein 
properties: GRAVY and AROMA. GRAVY assesses in combination 
both hydrophobicity and hydrophilicity, with GRAVY scores ranging 
between − 2 and + 2. Positive values suggest hydrophobicity and 
negative values indicate hydrophilicity. AROMA determines the 
frequency of aromatic amino acids (Phe, Tyr, and Trp) in a given 
protein (Alqahtani et al., 2022). These protein indices suggest the 
action of selective forces (Khandia et al., 2019). Both indices were 
calculated using COUSIN (COdon Usage Similarity INdex) software 
developed by Bourret et al. (2019).

2.4. Scaled Chi-square

Shields et al. (1988) suggested a term to quantitate bias based on 
a Chi-squared (χ2) value, called the scaled Chi-square (SCS). This SCS 
value is derived from the equal usage of codons from synonymous 
codon groups normalized to actual usage, with tryptophan and 
methionine excluded. SCS values range between 0 and 1, with higher 
values suggesting a higher bias (Bahiri-Elitzur and Tuller, 2021).

2.5. Codon adaptation index

The Codon Adaptation Index (CAI) was initially developed to 
determine codon bias in DNA and RNA sequences. It calculates the 
similarity in codon usage between a given gene and codon usage in 
highly expressed genes from a reference set (Puigbò et al., 2008). It 
also predicts gene expression level and is thus frequently used in 
heterologous gene expression (Raab et  al., 2010). CAI is not 
comprehensive, but is an important measure for determining protein 
expression, and has been verified using deep learning methods and 
biological experiments (Fu et al., 2020). In the present study, the CAI 
values for each transcript were calculated and used for 
correlation studies.

TABLE 1 List of transcripts examined in this study corresponding to APP, 
CCND1, CCNE1, and PTPA genes.

S. No.
Name of 
gene

Accession 
number of 
transcript

Length of 
transcript

1 APP

NM_000484 2,313

NM_201413 2,256

NM_201414 2088

NM_001136016 2,241

NM_001136129 1920

NM_001136131 1983

NM_001204301 2,259

NM_001204302 2,202

NM_001385253 2,145

NM_001136130 2,145

NM_001204303 2034

2 CCND1 AF511593 888

13 CCNE1

NM_001322262 1,188

NM_001322261 1,086

NM_001322259 1,098

NM_001238 1,233

17 PTPA

NM_178001 1,077

NM_001193397 867

NM_001271832 885

NM_021131 972

NM_178003 846

NM_178000 972
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2.6. Rare codon analyses

Rare codons occur at low frequencies in genes and transcripts. Rare 
codons transiently stall ribosomes, helping proteins fold properly (Li 
et al., 2006). Rare codon frequencies were derived and the frequency of 
rare codons was adjusted according to transcript length. Codons with 
a percentage occurrence below 0.5% were considered rare.

2.7. Codon context analysis

Codon context refers to the tendency of codons to be found in pairs. 
Generally, a few codon pairs are used more than others, and codon pair 
bias is present in organisms (Kunec and Osterrieder, 2016). Codon pair 
bias has been implicated in reducing protein expression via codon pair 
de-optimization while generating attenuated vaccine candidates using a 
synthetic biology approach (Coleman et al., 2008). Therefore, the codon 
pair context was derived and analyzed for all four genes in this study.

2.8. Effective number of codons

Effective number of codons (ENc) is a metric in which bias is 
measured in terms of deviation from random distribution of 
synonymous codons. ENc values range from 20 to 61. ENc is a 
nondirectional measure of codon bias. Higher values suggest equal 
codon usage, whereas lower values suggest more biased codon usage 
(Li et al., 2022). ENc was calculated for all 22 transcripts, and average 
values were calculated for individual gene transcripts. ENc-GC3 was 
plotted to determine the impact of composition, mutation, and 
selection forces on codon bias. The data points near or along the curve 
show the impact of mutational force, whereas the points below the GC3 
curve show the impact of selection and other forces (Anwar et al., 2021).

2.9. Parity plot analysis

Parity rule 2 (PR2) states that A = T and C = G. Generally, this rule 
is not precisely followed, thus a deviation is observed. In PR2 bias, the 
nucleotide skew between A and T and C and G was calculated at the 
third codon position. A plot was constructed by plotting AT bias (A3/
A3 + T3) and GC bias (G3/G3 + C3) on the Y- and X-axes, respectively. 
If all values are near the center of the plot, A, T, C, and G are used 
equally (Khandia et al., 2019).

2.10. Software used

Scaled Chi-square, CAI, and ENc were calculated using software 
developed in Bourret et al. (2019). The overall nucleotide composition 
and the composition at other codon positions were calculated using 
CAIcal, developed by Puigbò et al. (2008). Graphs and figures were 
generated, and PCA plots were constructed using Origin18 software. 
Correlation analysis was performed using Past4.11 software. Despite the 
low statistical significance, we have to proceed with the available number 
of transcripts, which is unavoidable because of the inherently low 
transcript number available for the envisaged genes. Codon frequency 
and codon pair context were derived using Anaconda 2 software 
(ANACONDA v.2.0; https://bioinformatics.ua.pt/software/anaconda/).

3. Results

3.1. Nucleotide composition revealed an 
elevated prevalence of G in the codon third 
position

Studies of gene composition are critical because composition 
influences several properties including protein stability over a range 
of temperatures, pH levels, and metal concentrations (Franzo et al., 
2021). Biased codon usage is due to the underlying genomic 
composition. Therefore, certain types of mutations are favored (Chen 
et al., 2004). Average compositional analysis (Figure 1A) revealed 
that in the APP, CCND1, and PTPA gene transcripts, the average 
composition of %G was the highest (28.11, 29.95, and 27.84%, 
respectively), followed by %C3 (28.5, 45.58, and 33.58%, respectively). 
The average %T was the lowest (20.19, 16.66%, and 21.99, 
respectively). For CCNE1 transcripts, the average composition of 
nucleotide %A was highest (27.42%), and %C was lowest (22.28%). 
At the third codon position, for all genes, the average percent 
composition was highest for %G3 (29.95, 43.91, 32.34, and 35.40% 
for APP, CCND1, CCNE1, and PTPA gene transcripts, respectively) 
and lowest for %A3 (19.12, 8.10, 21.08, and 11.98% for APP, CCND1, 
CCNE1, and PTPA gene transcripts, respectively). Overall GC 
percentage ranged from 48.72 to 61.14%. For APP, CCND1, and 
PTPA gene transcripts, average %GC composition (51.98, 61.14, and 
54.28%, respectively) was higher than average AT composition 
(48.01, 38.85, and 45.71%, respectively). For CCNE1 transcripts, the 
%AT composition (51.29%) was higher than the %GC composition 
(48.72%). Since the GC composition is high in at least three out of 
four gene transcripts, there is a high chance of having preferred 
codons ending with C or G nucleotides.

Percent GC3 composition is an indicator of codon bias, and 
GC3-rich and GC3-poor gene products may represent distinct 
subcellular locations in the human genome (Shen et  al., 2015). A 
comparison of the average overall GC composition and the 
composition at the three codon positions for all genes is depicted in 
Figure 1B. It is evident from this study that the %GC composition was 
lowest at the second codon position.

3.2. Gene length correlates with nucleotide 
%A composition in all genes

For convenience, we divided all transcripts into two sets. One 
group contained up-regulated transcripts and the other contained 
down-regulated transcripts. Gene length affects codon bias and 
gene expression (Duret and Mouchiroud, 1999; Khandia et al., 
2022). We performed correlation analysis between gene length 
and composition (overall composition, and composition at the 
third codon position), CAI, SCS, GRAVY, AROMA, PC1, and 
PC2 (Table 2). In both the up-regulated and down-regulated gene 
transcripts, we found a significant positive correlation between 
length, %A composition, and SCS. The transcript lengths of the 
up-regulated genes were significantly correlated with %G3, 
%GC1, %GC2, GRAVY, AROMA, and PC1. These analyses 
revealed that length influences the overall %A composition and 
codon bias in both gene sets. However, in up-regulated gene 
transcripts, apart from compositional parameters, length also 
influences protein properties.
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3.3. Gene expression is highest among all 
genes for CCND1

Codon Adaptation Index analysis was performed for all genes. The 
average CAI values for APP, CCND1, CNE2, and PTPA transcripts were 
0.788, 0.861, 0.714, and 0.822, respectively. The highest CAI value is for 
the CCND1 gene transcript, followed by PTPA. The average CAI value for 
all genes was high, suggesting high expression of all examined genes.

3.4. Codon bias is highest in the CCND1 
gene transcript and lowest in CCNE1 gene 
transcripts

ENc correlates negatively with codon bias, with high ENc values 
suggesting low codon bias. The highest possible ENc value, 61, 

represents equal use of all codons, and the lowest possible value, 20, 
represents exclusive use of one codon among a set of synonymous 
codons. Generally, values less than 35 are considered highly biased, 
whereas values > 50 suggest low bias. The average ENc values for APP, 
CCND1, CCNE1, and PTPA transcripts were 51.55, 33.64, 57.8, and 
50., respectively. Hence, overall bias was low, except in CCND1, where 
ENc was below 35 (Wright, 1990; Munjal et al., 2020).

3.5. The codon AGG exhibits the highest 
loading value in both up-regulated and 
down-regulated gene sets

Relative synonymous codon usage values were used as descriptor 
variables in an unsupervised classification method PCA to explore 
codon usage features. A biplot analysis was performed for both gene 
sets. The five highest loading values across Axis 1 are listed in 

FIGURE 1

(A) Percent nucleotide composition at first and third codon position. (B) Percent GC composition at all codon positions.

TABLE 2 Correlation analysis of transcript length with compositional parameters, codon bias measures, gene expression, and protein properties.

Up-regulated 
transcript

%A %C %T %G %A (3) %C (3) %T (3) %G(3) %GC 
(all)

r 0.544 −0.159 −0.397 0.346 0.211 0.071 0.330 −0.717 0.007

p 0.029 0.557 0.128 0.190 0.433 0.793 0.212 0.002 0.978

Significance * NS NS NS NS NS NS ** NS

Down-regulated transcript %A %C %T %G %A(3) %C(3) %T(3) %G(3) %GC(all)

r 0.904 −0.215 −0.520 0.294 0.757 −0.610 0.449 −0.363 −0.085

p 0.013 0.683 0.290 0.572 0.081 0.198 0.372 0.480 0.873

Significance * NS NS NS NS NS NS NS NS

Up-regulated transcript %GC(1) %GC(2) %GC(3) CAI_59 Scaled_Chi GRAVY AROMA PC 1 PC 2

r 0.780 −0.518 −0.284 0.417 0.968 −0.855 −0.579 0.680 0.156

p 0.000 0.040 0.286 0.108 0.000 0.000 0.019 0.004 0.563

Significance *** * NS NS *** *** * ** NS

Down-regulated transcript %GC(1) %GC(2) %GC(3) CAI_59 Scaled_Chi GRAVY AROMA PC 1 PC 2

r 0.414 0.685 −0.760 −0.760 0.995 −0.804 −0.550 0.760 −0.460

p 0.414 0.133 0.079 0.079 0.000 0.054 0.258 0.079 0.359

Significance NS NS NS NS *** NS NS NS NS

***p<0.001; **p<0.01; *p<0.05; NS, non-significant.
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Supplementary Table  1. For up-regulated gene sets, 61.51 and 
34.72%, and for down-regulated genes, 42.22 and 39.23% 
contributions to data inertia were attributed to axes 1 and 2, 
respectively. These results indicate that codon bias influences codon 
usage patterns. These results suggest that most can be explained by 
the first two axes (Yu et al., 2021a). High loading values indicate the 
most influential codons in shaping codon bias (Alqahtani et  al., 
2022). This analysis revealed lengthy arrows for AGG and CTG 
codons in both sets (Figures 2A,B), suggesting a strong influence of 
these codons on codon usage in both gene sets. All other highly 
influential codons were dissimilar between gene sets.

3.6. Relative synonymous codon usage 
analysis revealed a preference for codons 
ending in G/C

Average RSCU analysis of all four gene transcripts revealed that for 
16 of 18 amino acids, G/C ending codons were preferred in at least three 
genes. For the remaining two amino acids, two genes preferred A/T 
endings and the other two preferred G/C endings. These results suggest 
an overall preference for codons ending in C. Codon usage for individual 
genes is shown in Figure 3. Leucine (CTT) and valine (GTT) are the two 
most frequently used amino acids in all human coronaviruses (Hou, 
2020). In the present study, among the genes simultaneously up-regulated 
or down-regulated in cancer and neurodegeneration, the CTG codon 
encoding leucine was the most preferred codon for APP, CCND1, and 
PTPA, while AGG was the most preferred codon for CCNE1. Nine, 16, 4, 
and 7 codons were overrepresented in APP, CCND1, CCNE1, and PTPA 
gene transcripts, respectively. Similarly, 13, 17, 11, and 14 codons were 
under-represented in APP, CCND1, CCNE1, and PTPA transcripts, 
respectively. The codons CTA (Leu), GTA (Val), CAA (Gln), and CGT 
(Arg) were underrepresented in all four genes.

3.7. Parity analysis reveals a preference for 
T and G in codon third positions

At the center of the parity plot, where the value of both coordinates 
is 0.5, the numbers of A and T nucleotides will be similar, and reciprocal 
to G and C nucleotides in codon third positions. This is where no 
selection or mutational force is applied (Sueoka, 1988). In the present 

study, the mean values of GC and AT bias were 0.531 ± 0.03 and 
0.473 ± 0.04 for up-regulated transcripts, and 0.512 ± 0.01 and 0.386 ± 0.02 
for down-regulated transcripts. An average bias value of less than 0.5 
suggests a preference for pyrimidine over purine (Zhang et al., 2018). 
Therefore, for both up-regulated and down-regulated gene transcripts, 
T was preferred over A, and G was preferred over C (Figure 4).

3.8. Assessment of selectional, mutational, 
and compositional constraints in shaping 
codon bias

An ENc-GC3 plot was constructed to investigate the forces 
influencing codon bias. In the presence of data points on the solid curve, 
codon bias is considered to result from compositional constraints only 
(Franzo et al., 2021; Khandia et al., 2021), while if data points are present 
below the expected Nc curve, other forces, such as natural selection, gene 
length, and RNA structure also influence codon usage (Yu et al., 2021b). 
Data points near the solid curve indicate the role of mutational forces 
(Chen et al., 2017). In the up-regulated gene set, data points were present 
on the %GC3 curve, near the curve, and below the curve, indicating that 
composition, mutation, and selection forces shape codon usage. In the 
down-regulated gene set, data points were present near and below the 
curve, indicating that selection and mutational forces may shape codon 
usage (Figure  5). To further ascertain the role of mutational forces, 
we performed a correlation analysis between nucleotide composition and 
codon composition (A3s, C3s, G3s, U3s, and GC3s), and ENc and codon 
composition (Supplementary Table 2). Correlation analysis revealed that 
for the up-regulated gene set, there was a statistically significant 
correlation between the overall nucleotide and codon composition at the 
third codon position, except for T-G3 and G-G3. ENc also exhibited a 
highly significant correlation with codon composition. In contrast, for the 
down-regulated gene set, only A-A3, T-A3, and ENc-T3 were significantly 
correlated. These results suggest the role of mutational forces was stronger 
in up-regulated gene sets than in down-regulated gene sets.

3.9. CGT codon was rare in all four genes

Rare codons occur less frequently in a given gene or transcript. At 
open reading frame 5′ ends, a small cluster of rare codons is generally 
present that limits the rate of translation to promote effective 

FIGURE 2

Biplot analysis in PCA in (A) up- and (B) down-regulated gene transcripts in cancer and neurodegeneration across PC1. Each arrow indicates the 
loading value of the codon. Codon AGG influencing codon bias the most in both up-regulated and down-regulated gene sets.
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post-translational folding and prevent ribosome traffic jams (Bentele 
et al., 2013). Rare codons also influence protein functions (Rosano and 
Ceccarelli, 2009). Introducing rare codons into a highly expressed gene 
may reduce the expression levels of that gene and other genes due to 
reduced availability of the corresponding tRNAs (Frumkin et al., 2018).

Codons with a frequency of < 0.5% in a transcript are considered 
rare. The adjusted frequencies of the two-, three-, four-, and six-fold 

degenerate codons are shown in Figure 6. Codons ACG, ACT, AGC, 
AGG, ATA, CCG, CTA, CGT, GCG, TCG, TTA and TGT codons for 
APP, AAT, ACG, ACT, AGA, AGG, AGT, ATA, CAT, CCA, CCT, CGA, 
CGT, CTA, CTT, GCT, GGA, GGC, GGT, GTA, GTT, TAT, TCA, TCT, 
TTA, TTG, TTT for CCND1; codons ACT, AGT, CAT, CGC, CGT, 
CTA for CCNE1 gene and codons AGT, CAA, GCA, CGT, GCG, GTG, 
GTA, TTA, TTG were rare in the PTPA gene. The CGT codon was rare 

FIGURE 3

Codon usage analysis for APP, CCND1, CCNE1, and PTPA genes. Overexpressed codons (RSCU > 1.6) are depicted as dark blue bars, randomly used 
codons (RSCU between 1.6 and 0.6) are depicted as green bars, and underrepresented codons are depicted as light blue bars.

FIGURE 4

Parity plot analysis of gene transcripts up- and down-regulated in cancer and neurodegeneration revealed that in both sets, A is preferred over T, and 
C is preferred over G.
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in all four genes, whereas ACT, AGT, CTA, and TTA codons were rare 
in at least three genes. The ATA, CAT, GCG, GTA, TTG, and CAT 
codons were rare in at least two genes. Information on rare codon 
frequencies may help to manipulate multiple genes simultaneously.

3.10. High frequency codon pair analysis 
revealed presence of glutamic acid 
initiated codon pairs

Three of the four gene transcripts displayed identical codon pairing. 
Three in the APP gene (ACC–ACC, GAA–GAA, and GAG–GAG), two 
in CCND1 (GAG–GAG and CTG–CTG), and one in the PTPA gene 
(GCT–GCT). In APP, of the 15 highly occurring codon pairs, seven 
were glutamic acid-initiated, three were aspartic acid-initiated, and two 
were initiated with valine and alanine codons. In the CCND1 transcript, 
alanine and phenylalanine initiate three codon pairs, and leucine and 
valine initiate two codon pairs. In CCNE1 transcripts, glutamic acid, 
leucine, and aspartic acid initiate two codon pairs. In PTPA, leucine and 
glutamic acid initiate three codon pairs, and valine and phenylalanine 
initiate two codon pairs each. The results suggest that glutamic acid, 
aspartic acid, leucine, valine, and phenylalanine-initiated codon pairs 
are abundant in the envisaged genes. The top  15 most frequently 
occurring codon pairs are listed in Table 3.

Codon context bias reveals a preference for the sequentiality of 
a pair of codons. In addition to the codon pair bias, codon pair 
context, specifically, context present at the 3′ end has been observed 
in various organisms, and influences the accuracy and rate of 
translation. Codon context affects the speed of protein translation 
and results in translational selection (Tats et al., 2008). Both codon 
bias and context favor gene expression for a heterologous gene 
expression (Chung et al., 2013). In the present analysis, in the three 
transcripts other than APP, after the initiating ATG codon, the 
AAG codon encoding lysine is highly favored (Figure 7).

4. Discussion

Cancer and neurodegeneration are ailments with opposite 
symptoms: cancer is associated with unchecked cellular proliferation, 
and neurodegeneration is associated with cell death or degeneration. 
However, the relationships between cancer and neurodegeneration 

remain incompletely characterized. Patients with Parkinson’s disease, 
multiple sclerosis, and schizophrenia have lower risk of developing 
specific cancers (e.g., Parkinson’s disease reduces risk of melanoma, 
multiple sclerosis reduces risk of brain cancers, and schizophrenia 
reduces risk of breast cancer; Catalá-López et  al., 2014). A few 
epidemiological studies have revealed that subjects with Alzheimer’s 
disease (AD) and Parkinson’s disease (PD) have a 35–50% lower risk 
of cancer. Similarly, cancer patients have lower (35–37%) risk of 
occurrence of AD and related disorders (Zabłocka et al., 2021). Inverse 
morbidity results from gene products and genomic pathways being 
regulated in opposite directions. Many genes and gene products 
common to both diseases are involved, and mutations in genes such 
as PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, MAPT, CDK5, and 
others (Plun-Favreau et  al., 2010) result in disease. Apart from 
mutations that result in gain or loss of function in these genes, some 
mutations in disease conditions upregulate or downregulate gene 
expression. Metagenomic analysis revealed the simultaneous 
upregulation of 74 genes in CNS disorders and downregulation in 
cancers, and another 19 genes were reported to be  concurrently 
up-regulated in cancers and down-regulated in CNS disorders (Ibáñez 
et al., 2014). Comparatively fewer genes are up-regulated or down-
regulated in both disorders. A literature search revealed four genes 
that meet this criterion. APP, Cyclin D, and Cyclin E are simultaneously 
up-regulated in cancer and neurodegeneration, and PTPA tended to 
be down-regulated. We chose these genes to study codon usage and 
other analyses because manipulation of these genes will offer possible 
genetic routes to mitigating both disorders together.

Codon usage analysis reveals molecular patterns within a gene or 
transcript that can influence gene expression (Quax et al., 2015; Zhou 
et  al., 2016). Codon usage is influenced by gene composition 
(Alqahtani et al., 2021; Simón et al., 2021). Compositional analysis 
revealed that in the APP, CCND1, and PTPA gene transcripts, %G and 
%T displayed maximum and minimum respective prevalences. In 
contrast, in the CCNE1 transcripts, %A and %C displayed the highest 
and lowest respective prevalences. Notably, at the third codon 
position, both G and T nucleotides were preferred in both up-regulated 
and down-regulated gene transcripts. Therefore, the nucleotide bias at 
the third codon position is not dependent on composition.

Gene length has been shown to affect gene composition 
(Alqahtani et al., 2021), codon bias (Duret and Mouchiroud, 1999; 
Khandia et al., 2022) and gene expression (Duret and Mouchiroud, 
1999). We  also investigated whether the neurodegeneration- and 

FIGURE 5

Effective number of codons (ENc)-GC3 analysis of up- and down-regulated genes in cancer and neurodegeneration.
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cancer-related gene transcripts displayed a genuine relationship to 
these diseases. Gene length was found to correlate with the average 
frequency of A nucleotides in both the up-regulated and down-
regulated transcripts. Furthermore, the %G3, %GC1, and %GC2 
components were significantly correlated with the lengths of the 
up-regulated transcripts. These analyses indicate that only the 
composition of the up-regulated transcripts is affected by gene length.

Researchers have reported mixed results on the effects of gene 
length on codon bias. This correlation is strongly positive for E. coli 
genes; strongly negative for D. melanogaster and S. cerevisiae genes 
(Moriyama and Powell, 1998), Caenorhabditis elegans, and Arabidopsis 
thaliana (Duret and Mouchiroud, 1999); and weak for sesame 
(Andargie and Congyi, 2022). Codon bias was significantly positively 
correlated (p < 0.001) with gene length in both up-regulated and 
down-regulated gene sets, indicating that with an increase in length, 
bias also increased. Gene expression in our study did not correlate 
with transcript length in either up-regulated or down-regulated genes. 
Our results differ from those of Brown (2021), who demonstrated that 
gene expression is inversely proportional to gene length (Brown, 2021).

Because CAI is a significant predictor of expression levels (Park 
et al., 2012), it has been used as a surrogate marker for expression of 
several human genes, including HPRT1 (De Mandal et al., 2020), Tlr7, 
Tlr9 (Newman et al., 2016), SPANX (Choudhury and Chakraborty, 
2015), SRY (Cai et al., 2015), human oncogenes (Mazumder et al., 
2014), and human transcriptome data of monocytes, B, and T 
lymphocytes (Ruzman et  al., 2021). Average CAI values for APP, 

CCND1, CCNE2, and PTPA transcripts were 0.788, 0.861, 0.714, and 
0.822, respectively, suggesting a high level of protein expression for all 
four genes. The highest CAI among all E. coli genes was 0.85 for the 
most abundant LPP protein in E. coli cells (Henry and Sharp, 2007). In 
the dementia-associated gene set, the maximum CAI value found 
(0.849) was for CTSD (Alqahtani et al., 2022). APP, CCND1, and CNE2 
are associated with cell cycle progression, whereas PTPA negatively 
regulates cell growth and division. Based on the high CAI values of all 
genes, it is evident that all genes are required for normal cell 
functioning, and elevated or suppressed expression may lead to disease.

Relative synonymous codon usage analysis revealed that codons 
ending in GC are favored over codons ending in AT, and 16 of 18 
amino acids preferred codons ending in G/C in at least three genes. 
Our results are in concordance with the results of Newman et al. 
(2016) based on a study of 19,105 human and 20,558 mouse genes, 
which revealed that in both species, most of the preferred codons had 
high GC content. Codons CTA (Leu), GTA (Val), CAA (Gln), and 
CGT (Arg) were underrepresented in all four genes. When CTA was 
assessed in Tlr7 and Tlr9, the frequency in Tlr7 was 14.4%, whereas 
in Tlr9, similar to our study, the frequency was low (0.5%; Newman 
et al., 2016). In the present study, we found that CTG, which encodes 
leucine, was the most preferred codon in APP, CCND1, and PTPA, as 
well as in genes common to primary immunodeficiency and cancer 
(Khandia et  al., 2021). These results suggest that glutamic acid, 
aspartic acid, leucine, valine, and phenylalanine-initiated codon pairs 
are abundant in the studied genes.

FIGURE 6

(A–D) Average adjusted frequency of the codons in APP, CCND1, CCNE1, and PTPA gene transcripts for two-, three-, four- and six-fold degenerate 
codons. Codons below red dotted lines are rare codons in respective genes. Axis X indicated adjusted occurrence of codons and Axis Y shows 
respective codons.
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TABLE 3 Top 15 high occurring codon pairs in APP, CCND1, CCNE1, and PTPA transcripts.

APP 
codon 
pairs

No of 
codons

Adjusted 
score

CCND1 
codon 
pairs

No of 
codons

Adjusted 
score

CCNE1 
codon 
pairs

No of 
codons

Adjusted 
score

PTPA 
codon 
pairs

No of 
codons

Adjusted 
score

ACC–ACC 77 0.98 GAG–GAG 11 3.72 AGG–GAG 13 0.85 CTG–GAG 18 0.96

GAA–GAA 66 0.84 GAG–GTC 3 1.01 GAT–GAA 12 0.78 GAC–TAC 17 0.91

GAG–GAG 55 0.70 CTG–GAG 3 1.01 ATT–GCA 10 0.65 TTC–ATC 16 0.85

GTG–GAA 44 0.56 CTG–CTG 3 1.01 TTG–GAT 8 0.52 GAT–GAG 16 0.85

GCC–AAC 44 0.56 TTC–CTG 2 0.68 TTC–TCG 8 0.52 TTC–AAG 12 0.64

GCA–GAA 44 0.56 TTC–CTC 2 0.68 TTA–ATG 8 0.52 GTG–GAT 12 0.64

GAT–GAG 44 0.56 TTC–ATT 2 0.68 TGT–GTC 8 0.52 GTC–CCT 12 0.64

GAA–GCC 44 0.56 TGC–GAG 2 0.68 TCT–GAA 8 0.52 GCT–GCT 12 0.64

GAA–GAG 39 0.50 TCC–TAC 2 0.68 GGG-AGC 8 0.52 GAT–GAC 12 0.64

GTG–GAG 33 0.42 TCC–ATG 2 0.68 GCC–ATG 8 0.52 GAG–AAG 12 0.64

GAT–GAC 33 0.42 GTG–GCC 2 0.68 GAG–GAA 8 0.52 CTG–CCC 12 0.64

GAG–GAA 33 0.42 GTG–GAC 2 0.68 GAC–AAA 8 0.52 CTC–TGC 12 0.64

GAG–AGA 33 0.42 GCG–GAG 2 0.68 GAA–GAT 8 0.52 CAG–CTG 12 0.64

GAG–ACA 33 0.42 GCC–GCA 2 0.68 GAA–ATG 8 0.52 AAG–TTC 12 0.64

GAC–AAG 33 0.42 GCC–GAG 2 0.68 CTT–CTG 8 0.52 AAG–GCC 12 0.64

https://doi.org/10.3389/fnmol.2023.1200523
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Khandia et al. 10.3389/fnmol.2023.1200523

Frontiers in Molecular Neuroscience 11 frontiersin.org

AGG is the most preferred codon in the CCNE1 gene, and an 
AGG cluster near the ORF 5′ end may increase biological activity 
(Ivanov et  al., 1997). This codon is generally rare in E.coli. The 
advantage of the AGG codon is revealed via protein engineering 
through reassignment of the AGG sense codon using an orthogonal 
tRNA CCU and an aminoacyl-tRNA synthetase pair resulting in 
charging of the tRNA with an unnatural or chemically modified 
amino acid. The abundance of the AGG codon in CCNE1 could thus 
be exploited for protein engineering to interrogate other physiological 
functions (Lee et al., 2015). While recording the genetic sequences of 
our selected genes to manipulate gene expression profiling, it must 
be  kept in mind that when AGG and TTG codon frequencies 
increase, the frequencies of other C- or G-ending codons decrease, 
negatively influencing gene expression in humans. Local 
compositional biases may not explain this unusual behavior (Kliman 
and Bernal, 2005).

Rare codons such as AGG, AGA, CUA, AUA, CGA, and CCC 
have been used to fine tune gene expression in E. coli (Wang et al., 
2016). A cluster of rare codons present at the 5′ end of the transcript 
ensures proper protein folding and biological activity (Rosano and 
Ceccarelli, 2009; Bentele et al., 2013). In this study, CGT codons were 
rare in all four genes, whereas ACT, AGT, CTA, and TTA codons were 
rare in at least three genes. In humans, the six codons, GCG (Ala), 

CCG (Pro), CGT (Arg), CGC (Arg), TCG (Ser), and ACG (Thr) are 
rare (Kanduc, 2017). It is thus clear that CGT codons are rarely used 
in the studied transcripts. However, the low occurrence of other 
codons may be a result of different negative selections for local pauses 
in translation that can be beneficial for protein biogenesis (Clarke and 
Clark, 2008). Sequences optimized with codon-pair context exhibited 
higher protein expression than the native codons.

The extent to which a codon is translated depends on 
neighboring codons. This is called a context effect, and influences 
translation kinetics (Chevance et al., 2014). Sequences optimized 
using a codon-pair context showed better protein expression than 
those optimized using codon usage (Huang et  al., 2021). 
Removing only two codon pairs that are detrimental to protein 
expression may increase protein expression levels 30 fold 
compared to the original sequence (Trinh et  al., 2004). 
Deoptimized codon pairs have been used to generate attenuated 
vaccine candidates against influenza, polioviruses, and 
arboviruses (Jack et al., 2017). The same strategy may be adopted 
to augment the expression profile to the desired level through 
gene editing. In the present study, an abundance of glutamic 
acid-, aspartic acid-, leucine-, valine-, and phenylalanine-
initiated codon pairs were observed, and disruption of preferred 
codon pairs can be used to reduce the gene expression level (Jack 

FIGURE 7

Codon context analysis for APP, CCND1, CCNE1, and PTPA genes. Good context (when the 3′ codons appear more frequently than expected) is 
indicated as positive values (indicated with green), and bad context (3′ codons appear less frequently than expected) is indicated as negative values 
(Red color). Values between − 5 to + 5 are not statistically significant (no bias and depicted as black color). No correlation is depicted with the grey 
color.
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et al., 2017). After the ATG codon, a highly positive context was 
present for the AAG (lysine) codon in all transcripts, except for 
APP, reflecting a prominent 3′ context effect (Tats et al., 2008). 
With the help of new scientific developments, it is now possible 
to replace a copy of a defective gene with the desired gene. This 
strategy may augment expression levels, raising risk of cancer 
and/or neurodegeneration.

5. Conclusion

From our analysis, it was evident that codons ending in G/C were 
preferred over codons ending in AT in all genes and such pattern is 
not the result of nucleotide compositional bias. In the present study, 
CTA (Leu), GTA (Val), CAA (Gln), and CGT (Arg) were under-
represented in all four genes. In contrast, ACT, AGT, CTA, and TTA 
codons were rare in at least three genes. This information is helpful for 
reducing gene expression levels by inserting these codons during gene 
coding to ameliorate disease symptoms. Negative selection of codons 
is suggestive of specific requirements for local pauses during protein 
translation. Glutamic acid-, aspartic acid-, leucine-, valine-, and 
phenylalanine-initiated codon pairs were abundant. Also, the 3′ 
context of the AAG codon with ATG at the 5′ end was evident. Present 
study has unavoidable limitation of using four genes APP, CCND1, 
CCNE1, and PTPA only, since so far only four genes have been 
identified those are commonly implicated in cancer and 
neurodegeneration. With more number of genes, statistical analyses 
would be stronger. In the present study, different information gained 
regarding molecular patterns, codon usage, codon usage bias, 
nucleotide bias at the third codon position, preferred codons, 
preferred codon pairs, rare codons, and codon context will guide 
future studies. Based on this knowledge, these genes may 
be  manipulated to augment their defects through gene editing, 
CRISPR/Cas, or any other gene augmentation technique.
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