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Background: Owing to the lack of valid biomarkers, the diagnosis of autism 
spectrum disorder (ASD) diagnosis relies solely on the behavioral phenotypes of 
children. Several researchers have suggested an association between ASD and 
inflammation; however, the complex relationship between the two is unelucidated 
to date. Therefore, the current study aims to comprehensively identify novel 
circulating ASD inflammatory biomarkers.

Methods: Olink proteomics was applied to compare the plasma inflammation-
related protein changes in a group of the healthy children (HC, n = 33) and 
another with ASD (n = 31). The areas under the receiver operating characteristic 
curves (AUCs) of the differentially expressed proteins (DEPs) were calculated. 
The functional analysis of the DEPs was performed using Gene Ontology and 
Kyoto Encyclopedia Genes and Genomes. Pearson correlation tests were used 
employed to analyze the correlation between the DEPs and clinical features.

Results: A total of 13 DEPs were significantly up-regulated in the ASD group 
compared with the HC group. The four proteins, namely, STAMBP, ST1A1, SIRT2, and 
MMP-10 demonstrated good diagnostic accuracy with the corresponding AUCs 
(95% confidence interval, CI) of 0.7218 (0.5946–0.8489), 0.7107 (0.5827–0.8387), 
0.7016 (0.5713–0.8319), and 0.7006 (0.568–0.8332). Each panel of STAMBP and any 
other differential protein demonstrated a better classification performance [AUC 
values from 0.7147 (0.5858–0.8436, STAMBP/AXIN1) to 0.7681 (0.6496–0.8867, 
STAMBP/MMP-10)]. These DEP profiles were enriched in immune and inflammatory 
response pathways, including TNF and NOD-like receptor signaling pathways. The 
interaction between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10−39) was found to be the 
most significant. In addition, several DEPs related to clinical features in patients with 
ASD, particularly AXIN1 (R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010) and STAMBP 
(R = 0.34, p = 0.010), were positively correlated with age and parity, indicating that 
older age and higher parity may be the inflammation-related clinical factors in ASD.

Conclusion: Inflammation plays a crucial role in ASD, and the up-regulated 
inflammatory proteins may serve as potential early diagnostic biomarkers for ASD.
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1. Introduction

Autism spectrum disorder (ASD) is a common, highly heritable, 
and clinically heterogeneous neurodevelopmental disorder 
characterized by altered social interaction and communication, 
repetitive behaviors, abnormal sensory experiences, and varying 
degrees of intellectual disability (Lord et al., 2018, 2020). In addition 
to aforementioned the core symptoms, several accompanying 
symptoms such as attention-deficit hyperactivity disorder (ADHD), 
anxiety, depression, and epilepsy are also common (Lord et  al., 
2020). From 2012 to 2021, the global prevalence of ASD was 
100/10,000 (range 1.09/10,000, 000–436.0/10,000), that is, about 
1/100 children were diagnosed with ASD, with more male patients 
than female patients, and the male-to-female ratio ranged from 0.8 
to6.1 (median: 4.2) (Zeidan et al., 2022). The increasing trend of 
ASD prevalence over time results in increased costs to patients and 
their families and society, and therefore, breakthroughs in the 
precise diagnosis and effective treatment of ASD are urgently needed.

The current diagnosis of ASD is based on behavioral 
assessments, such as the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5) criteria, and the 
confirmation of the diagnosis relies on validated observation 
tools, such as the Childhood Autism Rating Scale, Second Edition 
(CARS-2) and Diagnostic Observation Schedule for Autism, 
Second Edition (ADOS-2) (Hyman et al., 2020; Jurek et al., 2022; 
Kalb et  al., 2022). However, the behavior-based diagnosis 
primarily exhibits the following shortcomings: 1. It can only 
be evaluated and judged when the behavioral characteristics of 
ASD occur, while the assessment of the behavior of infants and 
young children is difficult; 2. The dependence on the subjective 
judgment of doctors and parents implies, primarily depending on 
the level of professionalism of doctors and the ability of parents 
to observe their child’s behavior. This is highly variable and 
subjective. Early diagnosis and timely intervention are extremely 
important to reduce the severity of ASD symptoms and improve 
prognosis (Whitehouse et  al., 2021; Singhi and Malhi, 2022). 
Deficits in behavioral diagnosis tend to delay the exact timing of 
diagnosis, leading to missed periods of optimal treatment. 
Biomarkers for early diagnosis can accurately distinguish highly 
heterogeneous disease groups from controls (Lombardo et al., 
2019). However, researchers have not been able to isolate valid 
and reliable biomarkers for ASD to date (Müller and Amaral, 
2017). Therefore, the development of effective biomarkers for 
early diagnosis of ASD is urgently necessary.

The rapid development of high-throughput omics 
technologies provides new avenues for dissecting 
pathophysiological mechanisms and discovering biomarkers in 
complex diseases. Proteomics is a systems biology approach for 
studying a group of proteins produced in cells, tissues, and body 
fluids. The aberrant expression of proteins in a disease reflects 
both abnormalities in the upstream DNA or RNA molecules and 
the effects of external stimuli (Mesleh et  al., 2021). Thus, 
measurable protein biomarkers are used for disease diagnosis or 
to indicate disease severity. Blood is the most widely utilized 
diagnostic sample due to its low invasiveness. The plasma 
proteome can originate from any organ or cell and can even 
exchange between mother and child through the placenta 
(Pernemalm et al., 2019; Suhre et al., 2021), and plays a crucial 

role in various biological processes including signal transmission, 
transport, growth, repair, and defense against infection (Sun 
et al., 2018). Plasma proteins may develop into an ideal screening 
library for diagnostic biomarkers because they are frequently 
dysregulated in several disorders.

Herein, the Olink proteomics platform was used, which 
employs proximity extension assay (PEA) and bioinformatic 
technology to analyze the changes in plasma inflammation-related 
proteins in children with ASD diagnosed by behavioral criteria, 
investigate plasma novel diagnostic biomarkers, explore the role 
and possible mechanism of inflammation in the development of 
ASD, and offers a reference for the early accurate molecular 
diagnosis of ASD.

2. Materials and methods

2.1. Study design and participants

A total of 31patients with ASD and 33 healthy controls (HC) 
were enrolled between February 2021 and November 2022 at the 
Shaoguan Maternal and Child Health Care Hospital for the current 
study. The plasma proteomics of the ASD and HC groups were 
identified and compared (Figure 1). The children in the ASD group 
were diagnosed with ASD through the DSM-5 diagnostic criteria. 
The clinicians in pediatric rehabilitation assess children’s symptoms 
with the CARS-2 score. The exclusion criteria were as follows: 
children suffering from schizophrenia; children with pure mental 
developmental disorders; children with simple language 
developmental disorders; children with other pervasive 
developmental disorders, deafness, and organic diseases of the 
nervous system; children suffering from diseases of heart, liver, and 
kidney; and patients who have inflammation or infectious diseases 
and are taking drugs during the study.

2.2. Sample collection

Peripheral venous blood (3 mL) was collected from each patient 
into EDTA tubes in the morning after undergoing overnight fasting 
to eliminate diet-induced variations. Immediately after blood 
collection, plasma was obtained by centrifugation (3,000 rpm for 
15 min at 4°C) and stored at −80°C until laboratory analysis.

2.3. Proteomic analysis

Plasma inflammatory markers were assessed using the 
commercially available Olink® Target 96 Inflammation panels from 
Olink (Uppsala, Sweden).1 In brief, the target protein binds to the 
double oligonucleotide-labeled antibody probe with high specificity, 
and then the microfluidic real-time PCR amplification of the 
oligonucleotide sequence is used to quantitatively detect the resulting 
DNA sequence. Using internal and external controls, the resulting 

1 https: //olink.com
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threshold cycle (Ct)-data were processed for quality control and 
normalized. Normalized Protein expression (NPX) values were 
provided as the final assay read-out, which was an arbitrary log2-scale 
unit corresponding to higher protein levels. One control sample that 
failed to pass the quality control, was excluded from further analysis.

2.4. DEP analysis

The R package “Olink®Analyze” was used to identify the sets of 
DEPs between the two groups. Proteins with a p-value of <0.05 were 
considered to be differentially expressed. The visualization of DEPs 
including volcano plots and heatmaps was performed using the 
standard R package “ggplot2.”

The diagnostic performance of DEPs was assessed by receiver 
operating characteristic (ROC) curves. AUC was recorded as an index 
of diagnostic accuracy and compared among the proteins. According 
to logistic regression, two or more indicators were combined, and the 
AUC value of the combined diagnosis is shown in the figure legend at 
the lower right corner so that the combined diagnostic effect can 
be viewed. A higher AUC value reflected the greater performance of 
the classifier. The AUC value of 1.0 represented a perfect assignment, 
whereas an AUC of 0.5 represented an unreliable test (gray line).

2.5. Go enrichment analysis and pathway 
enrichment analysis

All GO terms that were significantly enriched in DEPs compared 
to the genome background are provided by GO enrichment analysis 
(Sun et  al., 2018). In addition, the signaling pathway enrichment 
analysis identified significantly enriched metabolic pathways or signal 
transduction pathways in DEPs compared with the whole genome 
background (Kanehisa et al., 2021). GO and KEGG analyses were 
performed by cluster Profiler using the R software package. The 
“ggplot2” R tool was used to visualize the findings of GO and KEGG 

enrichment analysis, and the top 20 GO terms and KEGG pathways 
were shown as a bubble chart.

2.6. Correlation analysis

Pearson’s correlation analysis was used to determine the 
correlation between the expression levels of two DEPs, and the 
scatterplots illustrated the strongest correlation. Pearson correlation 
tests were also employed to analyze the correlation between the DEPs 
and clinical features of patients. The closer the correlation coefficient 
gets to 1, the better the correlation between the two variables. The 
significance of correlation coefficients was calculated using the p-value 
calculator for correlation coefficients.

2.7. Statistical analysis

All statistical analyses were performed using the R software 
“Olink®Analyze” (V.2.0.0). A value of p of less than 0.05 was 
considered statistically significant.

3. Results

3.1. Characteristics of the study subjects

Olink proteomic analysis of plasma from children with ASD 
diagnosed by CARS score and plasma from normal children was 
performed to identify potential diagnostic biomarkers of ASD 
(Table 1). A total of 64 samples were included in this cohort (31 ASD 
VS 33 HC). The majority of ASD patients were male (80.65%), and the 
proportion of children with more than second birth was higher than 
that of first birth (60.71%: 39.29%). Based on the CARS score, it can 
be concluded that the number of patients with mild ASD was higher 
than those with moderate or severe ASD (74.19%: 25.81%).

FIGURE 1

Study strategy and schematic illustration of plasma Olink proteomics. Plasma collected from children with ASD (n = 31) and HC (n = 33) was used for 
Olink-inflammation panel. 63 samples passed quality control. Subsequent bioinformatics analysis was performed to evaluate DEPs, diagnostic 
performance of DEPs (ROC curve), GO/KEGG term enrichment analyses, and correlation of DEPs with various clinical features. ASD, autism spectrum 
disorder; HC, healthy control; QC, quality control; DEPs, differentially expressed proteins; ROC, receiver operating characteristic; GO, gene ontology; 
KEGG, kyoto encyclopedia genes and genomes.
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3.2. Up-regulation of inflammation-related 
proteins in ASD plasma

Olink inflammation panel was employed to detect differences in 
the expression of inflammation-related proteins in ASD and HC 
samples (See Supplementary Table S1 for details of inflammation 
panel). A total of 13 proteins were significantly up-regulated in the 
ASD group compared with the HC group (Figure  2A; Table  2), 
including STAMBP, ST1A1, SIRT2, MMP-10, AXIN1, CD40, IL-18R1, 
CD244, CXCL1, IL18, PD-L1, CSF-1, and CST5. The expression 
heatmap of the above DEPs in each sample was shown in 
Figure 2B. The difference in each of DEPs between the ASD and the 
HC groups was significant (Figure 2C). However, the difference in 
STAMBP was the most significant (p = 0.0008).

3.3. Important diagnostic values of DEPs

The ROCs were plotted based on both the true and false positive 
rates, and the AUCs of 13 DEPs were calculated. The following four 
proteins had AUC (95% CI) values greater than 0.7: STAMBP, ST1A1, 
SIRT2, and MMP-10, the actual values of being 0.7218 (0.5946–
0.8489), 0.7107 (0.5827–0.8387), 0.7016 (0.5713–0.8319), and 0.7006 
(0.568–0.8332), respectively (Figure 3). Among them, STAMBP had 
the highest AUC and its diagnostic value was superior to the other 
three DEPs. The logistic regression model was also computed with the 
overall ROC curves for the aforementioned four DEPs. A classifier 
consisting of these four DEPs was higher than a single STAMBP, and 
the AUC increased from 0.7218 (0.5946–0.8489) to 0.7843 (0.67–
0.8985). The AUC values for all DEPs are listed in 
Supplementary Table S2. However, when the AUCs for the individual 
DEPs in combination with STAMBP were considered, MMP-10 
performed better than other DEPs (Supplementary Table S2).

3.4. DEPs enrichment analysis and 
correlation analysis

GO and KEGG enrichment analysis was used to further 
investigate the function of plasma DEPs in ASD. DEPs were mainly 
enriched in the GO terms such as interleukin-18-mediated signaling 
pathway, positive regulation of natural cell proliferation, immune 
response, and inflammatory response (Figure 4A). KEGG pathways 

such as cytokine-cytokine receptor interaction, TNF signaling 
pathway, and NOD-like receptor signaling pathway were significantly 
enriched (Figure 4B). The protein expression correlations between 
different DEPs were analyzed based on the NPX values. All 13 DEGs 
were upregulated proteins, and hence correlations between the DEPs 
demonstrated positive correlations. Strong correlations were revealed 
between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10−39), SIRT2 and 
AXIN1 (R = 0.91, p = 1.76 × 10−24), STAMBP and AXIN1 (R = 0.88, 
p = 4.15 × 10−21), and AXIN1 and CD40 (R = 0.83, p = 2.86 × 10−17) 
proteins (Figure 4C), with the STAMBP and SIRT2 expressions having 
the strongest correlation in plasma.

3.5. Correlation analysis between 
differential proteins and clinical 
characteristics

Next, the association between plasma DEPs and clinical 
characteristics was analyzed (Figure 5). Five proteins, PD-L1 (R = 0.39, 
p = 0.003), ST1A1 (R = 0.34, p = 0.011), SIRT2 (R = 0.33, p = 0.013), 
STAMBP (R = 0.31, p = 0.022), and AXIN1 (R = 0.30, p = 0.023), were 
positively associated with child age. Three candidate markers, AXIN1 
(R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010), and STAMBP 
(R = 0.34, p = 0.010), were in turn positively associated with parity. In 
addition, these candidate DEPs were found to be  independent 
of gender.

4. Discussion

The clinical heterogeneity and complex etiology and pathogenesis 
of ASD make the precise diagnosis of ASD challenging. Changes in 
societal awareness and diagnostic criteria can also affect the rates of 
ASD diagnosis. A recent study reporting the incidence and prevalence 
of ASD across 204 countries indicated that in the past 30 years (1990–
2019), the number of people with ASD increased from an estimated 
20 million [95% uncertainty level (UI) =16.9–24.2)]to more over 28 
million (95% UI = 23.5–33.8), with a relative increase in the prevalence 
of ASD of 39.3% worldwide (Solmi et al., 2022). The prevalence of 
ASD varies by country or region. Currently, Iceland has the highest 
incidence of ASD worldwide, with a prevalence of 3.13% 
(3,130/100,000) in children aged 7–9 years (Weye et al., 2021). ASD 
prevalence in children aged 6–12 years in China was 0.70% (95% CI: 

TABLE 1 Demographics of clinical samples analyzed by Olink.

Characteristics ASD (n = 31) HC (n = 33) P Valuesa

Gender (Male/Female) 25/6 18/15 0.026 (Chi-square test)

Age (years), median (IQR) 4 (2.8333, 4.4583) 3.4167 (3.0833, 5) 0.877 (Wilcoxon test)

Parity, n (%) 0.672 (Chi-square test)

  1 11 (39.29) 13 (44.83)

  ≥2 17 (60.71) 16 (55.17)

CARS Score, n (%)

  Mild (30–36) 23 (74.19)

  Moderate or severe (≥37) 8 (25.81)

aP values was calculated using Chi-square test (Gender and Parity) and Wilcoxon test (Age). ASD, autism spectrum disorder; HC, healthy control; IQR, interquartile range; CARS, childhood 
autism rating scale, second edition.
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0.64–0.74%, 1 in 143) according to the first national ASD prevalence 
statistics (Zhou et al., 2020), which was lower than 1.85% (95% CI: 
18.0–19.1, 1 in 54) in the children aged 8 years in the United States 
(Maenner et al., 2020) and 2.5% (95% CI: 2.0–3.0) in children aged 
6–7 years in Australia (Randall et al., 2016). The low prevalence of 
ASD in Chinese children may be caused by the parents’ educational 
level as well as insufficient awareness of ASD, and the use of diagnostic 
criteria DSM-5 under equivalent conditions that may reduce the 
prevalence. The male-to-female ratio in patients screened for inclusion 
in our study was approximately 4:1, which is comparable to the data 
from previous findings (Zeidan et al., 2022). For people with ASD, the 
number of males is greater than that of females, and the proportion of 
the former has remained above >3 for the past 30 years. However, the 
male-to-female ratio gradually declined from 1990 to 2019, possibly 
because of the increased clinical concern for female ASD patients 
(Solmi et al., 2022). In China, the prevalence was also significantly 
higher in boys than in girls (0.95% vs. 0.30% (Zhou et al., 2020); 
0.7277% vs. 0.1645% (Wang et al., 2018). However, the molecular 

mechanism of this “preference” for males is unelucidated to date. It 
may be related to mutations in X-linked genes encoding the neural 
junction proteins NLGN3 and NLGN4 (Jamain et al., 2003; Nguyen 
et al., 2020). Alternatively, it may be caused by pathogenic variants that 
alter the function of the CDK16 and TRPC5 genes on the X 
chromosome (Leitão et al., 2022).

In recent years, several studies have found an association 
between inflammation and ASD (Croonenberghs et  al., 2002; 
Siniscalco et  al., 2018). A systematic review investigated the 
pro-inflammatory markers in approximately 4,000 children and 
adolescents with neuropsychiatric and neurodevelopmental 
disorders, including ASD. The findings of this review indicated that 
the inflammatory markers were elevated, more significantly in ASD, 
thus identifying the role of inflammation in these neuropsychiatric 
disorders and providing preliminary evidence linking 
pro-inflammatory status with the disorders (Mitchell and Goldstein, 
2014). According to inflammation-related cytokines produced by the 
lipopolysaccharide stimulation of cultured peripheral blood 

FIGURE 2

All significantly changed inflammation-related proteins between the ASD group and the HC group. (A) Volcanic visualization of 92 inflammation-
related biomarkers. Red, significantly up-regulated proteins. Gray, no differences. Blue, significantly down-regulated proteins. (B) Heatmap of 
differentially expressed inflammation-related proteins. (C) Box-scatter plot of the 13 DEPs expression. *p ≤ 0.05, †p ≤ 0.01, ‡p ≤ 0.001. ASD, autism 
spectrum disorder; HC, healthy control; NPX, normalized protein expression; DEPs, differentially expressed proteins.
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mononuclear cells, ASD can be divided into pro-inflammatory and 
non-inflammatory groups., Children with pro-inflammatory features 
demonstrate more severely impaired development, higher behavioral 
scores, and more prominent sleep problems and aggressive behaviors 
compared to those with non-inflammatory features (Careaga et al., 
2017). An increase in pro-inflammatory biomarkers in blood, such 
as various interleukins, reinforce the strong association of abnormal 
inflammatory response with ASD (Siniscalco et al., 2018). Therefore, 
inflammation-related proteins are likely to be  a high-quality 
screening library for diagnostic biomarkers in ASD. However, the 
majority of studies on ASD have focused on several or at most a 

dozen inflammatory factors without providing a more comprehensive 
analysis of the inflammation-related proteins.

In the current study, the plasma inflammation-related protein 
profiles were comprehensively compared among 31 children with ASD 
and 33 healthy controls by Olink proteomics, and 13 significantly 
up-regulated DEPs were identified. The DEPs were enriched in 
inflammation and immune response, and were significantly related to 
several immune-related pathways such as the TNF signaling pathway. 
Four proteins including STAMBP, ST1A1, SIRT2 and MMP-10 
demonstrated good diagnostic accuracy, and the combination of 
STAMBP with any of the differential proteins exhibited good 
classification performance. The findings of the analysis also revealed 
that there were strong correlations between four protein combinations: 
STAMBP and SIRT2, SIRT2 and AXIN1, STAMBP and AXIN1, and 
AXIN1 and CD40. Several ASD DEPs were positively correlated with 
age and parity. In addition, these inflammatory differential proteins 
were not significantly associated with gender, indicating that 
inflammatory status did not differ between male and female patients.

The levels of the inflammatory proteins such as interleukin-18 
(IL-18), chemokine (CXCL1), macrophage colony-stimulating factor 
(CSF-1), cytokine receptors (IL-18R1 and CD40), ligands (CD244 and 
PD-L1), and other inflammation-related markers (STAMBP, ST1A1, 
SIRT2, MMP-10, AXIN1, and CST5) were increased in the ASD 
group. Among them, the up-regulation of IL-18 in ASD was consistent 
with the results of the previous studies (Businaro et al., 2016; Saresella 
et al., 2016). The remaining 12 DEPs were novel findings of this study. 
All DEPs were enriched in some inflammation-related signaling 
pathways, such as the TNF signaling pathway and NOD-like receptor 
signaling pathway. A study by Ziats (Ziats and Rennert, 2011) 
indicated that ASD transmits immune signals primarily through TNF, 
JNK, and NF-κB. A previous in vitro study demonstrated that the 
TNF-JNK pathway and TNF-p38 MAPK pathway stimulated CXCL1 
release from human endothelial cells (Lo et al., 2014). TNF-α signaling 
was associated with the polarization of macrophages to autoimmune 
inflammatory states during injury repair, and autocrine TNF-α 
signaling induced the expression of proteins such as CXCL1  in 
macrophages to activate and recruit immune cells (Wang et al., 2022). 

TABLE 2 Significantly changed plasma inflammatory proteins between the ASD group and the HC group.

Protein symbol Uniprot ID Name FCa p valuesb

STAMBP O95630 STAM-binding protein 0.69 0.0008

ST1A1 P50225 Sulfotransferase 1A1 0.54 0.0021

SIRT2 Q8IXJ6 NAD-dependent protein deacetylase sirtuin-2 0.78 0.0026

MMP-10 P09238 Matrix metalloproteinase-10 0.65 0.0053

AXIN1 O15169 Axin-1 0.77 0.0055

CD40 P25942 Tumor necrosis factor receptor superfamily member 5 0.33 0.0056

IL-18R1 Q13478 Interleukin-18 receptor 1 0.24 0.0056

CD244 Q9BZW8 Natural killer cell receptor 2B4 0.23 0.0062

CXCL1 P09341 Growth-regulated alpha protein 0.51 0.0114

IL18 Q14116 Interleukin-18 0.32 0.0116

PD-L1 Q9NZQ7 Programmed cell death 1 ligand 1 0.25 0.0142

CSF-1 P09603 Macrophage colony-stimulating factor 1 0.16 0.0244

CST5 P28325 Cystatin-D 0.26 0.0476

aFC (Fold-change) between ASD and HC, calculated on a log2 scale. bp values calculated using Student’s t-test. Significantly different proteins are shown (p < 0.05).

FIGURE 3

The ROC curves of individual and multi-protein with AUC > 0.7 
showing sensitivity and specificity of DEPs in ASD. ROC receiver 
operating characteristic, AUC the area under the receiver operating 
characteristic curves.
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Furthermore, CSF-1 promoted cell proliferation, differentiation, and 
cytokine expression by binding to the CSF-1R receptor and activating 
the MAPK signaling pathway (Muñoz-Garcia et  al., 2021). The 
activation of the NOD-like receptor signaling pathway is also one of 
our novel findings, which may initiate the innate immune response 
through the NF-κB pathway. However, the detailed mechanisms of 
these signaling pathways in ASD still need to be investigated in depth.

The AUC values were calculated based on the ROC curves for 
the DEPs, with the four proteins having the highest diagnostic 
values (STAMBP, ST1A1, SIRT2, and MMP-10). These proteins 
may serve as potential diagnostic plasma biomarkers for 
ASD. STAMBP is a deubiquitinated protein encoded by the p13 
STAMBP gene on chromosome 2 (Tanaka et al., 1999), and was 
found to be  significantly differentiated in ASD. The STAMBP 
protein has been reported as a potential diagnostic biomarker for 

early Alzheimer ‘s disease (Whelan et al., 2019), late pregnancy 
in women with postpartum depression (Bränn et  al., 2017), 
fibromyalgia (Fineschi et al., 2022), and esophageal squamous 
cell carcinoma (Aversa et  al., 2020). STAMBP may increase 
NALP7 (NACHT, LRR and PYD domains-containing protein 7) 
abundance by inhibiting the trafficking of the inflammasome 
NALP7 to lysosomes and preventing the lysosomal degradation 
of NALP7 (Bednash et al., 2017). NALP7 regulates innate immune 
responses by promoting the maturation of the inflammatory 
cytokines IL-1β and IL-18. ST1A1 (SULT1A1) is a sulfotransferase 
that catalyzes the sulfation of catecholamines, estrogens, 
phenolics, and neurotransmitters and plays a crucial role in phase 
II drug metabolism (Isvoran et al., 2022). ST1A1, like STAMBP, 
is down-regulated during late pregnancy in women with 
postpartum depression (Bränn et al., 2017) and is associated with 

FIGURE 4

Functional enrichment analysis and correlation analysis of DEPs. (A) Top 20 enriched GO terms based on the background of all annotated proteins. 
(B) Top twenty enriched KEGG pathways based on the background of all annotated proteins. (C) Correlations between DEPs in ASD and HC. Red, 
positively related; blue, negatively related; and white, nonrelated. The scatterplot shows the highest correlation between STAMBP and SIRT2. *p ≤ 0.05, 
†p ≤ 0.01, ‡p ≤ 0.001. GO, gene ontology; KEGG, kyoto encyclopedia genes and genomes, R Pearson correlation coefficient.
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an increased risk of esophageal squamous cell carcinoma (Aversa 
et al., 2020). Furthermore, changes in ST1A1 expression may also 
cause inflammation in the skin lesions of patients with cutaneous 
leishmaniasis (Taslimi et  al., 2020) and predict short-term 
mortality in patients with acute myocardial infarction (Schmitz 
et  al., 2022). SIRT2 is the only NAD-dependent deacetylase 
primarily localized in the cytoplasm, which plays an important 
regulatory role in biological processes such as neural cell 
differentiation and survival, mitotic regulation, genomic 
integrity, cell differentiation, cell homeostasis, aging, infection, 
inflammation, oxidative stress, and autophagy (Wang et  al., 
2019). Abnormality in SIRT2 blood content in various diseases 
may indicate that SIRT2 is probably an effective biomarker for 
the diagnosis and treatment of these diseases (Hysing et al., 2019; 
Panezai et al., 2020; Qu et al., 2021; Zhu et al., 2021; Fineschi 
et al., 2022). STAMBP demonstrated the highest correlation with 
SIRT2 in ASD (R = 0.97, p = 8.52 × 10−39). A possible reason for 
this may be  that NACHT, LRR and PYD domains-containing 
protein 3 (NLRP3) inflammasome was significantly upregulated 
in children with ASD (Saresella et  al., 2016), whereas both 
STAMBP (Bednash et al., 2021) and SIRT2 (He et al., 2020) may 
participate in the inflammatory response by regulating NLRP3 
inflammasome. Furthermore, MMP-10 expression was 
significantly higher in the ASD group compared with the normal 
controls. MMP-10 promotes the recruitment of infiltrating cells 
by remodeling the extracellular matrix (Pittayapruek et al., 2016). 
The up-regulation of MMP-10 has also been shown to be linked 
to some other neurological diseases, such as Alzheimer ‘s disease 
(Whelan et  al., 2019; Martino Adami et  al., 2022), dementia 
(Erhardt et  al., 2021), and intracerebral hemorrhage (Howe 
et al., 2018).

Based on the aforementioned reported literature, inflammatory 
DEPs may induce the inflammatory or immune response through 
a very complex mechanism, thereby contributing to ASD 
development (Figure  6). STRING protein interaction analysis2 
revealed complex interactions among eight DEPs (CD40, CXCL1, 

2 string-db.org

IL-18, IL-18R1, CSF-1, PD-L1, CD244 and MMP-10). However, 
STAMBP and SIRT2 may promote IL-18 and inflammatory 
response through the inflammasomes NALP7 and NLRP3. The 
interaction between SATMBP, SIRT2, AXIN1 and CD40 have not 
yet been reported, but they must be linked by some mechanism. In 
addition, the TNF and NOD signaling pathway may play an 
important role in the pathogenesis of ASD through CXCL1 
or IL18.

Molecular expression profiles in ASD vary across age groups 
(Ramsey et al., 2013). Correlation analysis between DEPs and age in 
ASD revealed that five inflammatory proteins (PD-L1, ST1A1, SIRT2, 
STAMBP, and AXIN1) were positively associated with age at 
diagnosis. Ramsey and colleagues (Ramsey et  al., 2013) also 
discovered some age-related proteins in ASD, but they were different 
from the ones found in the current study. One major reason is that 
diverse proteomic platforms detect different proteins. Using a highly 
specific PEA technique that focused on the detection of inflammatory 
biomarker profiles can be a technical advantage in this study. Positive 
correlations between AXIN1, SIRT2, and STAMBP and parity were 
also found. Although it had been pointed out that ASD is relevant to 
prenatal factor–parity (Bilder et al., 2009; Cheslack-Postava et al., 
2014), little is known about the association between inflammatory 
markers in ASD and parity. Consequently, clinical cohort studies 
with rational design need to be  performed to further assess the 
association of clinical factors such as age and parity with 
inflammation in ASD.

A few limitations of this study should be mentioned. First, the 
number of participants was small and the validation of the candidate 
biomarker in an independent cohort was lacking. The primary reason 
is that a large enough sample could not be collected because of the 
refusal of the child and parents and several technical reasons while 
collecting blood. Second, this study was a single-center study. The 
findings of our study must be replicated in other centers so that the 
inflammatory biomarkers can be  widely disseminated for ASD 
diagnosis. Therefore, a larger, multicenter study is needed to confirm 
our results. Third, our findings were from a single-layer omic analysis. 
In comparison to single-layer omic analysis, multi-omics analysis 
exhibits higher sensitivity (the missing data in one omics analysis can 
be supplemented with other measurements) and reliability (multiple 
measurements are more accurate). However, this study directly 
identified the expression changes of inflammatory proteins at the 
protein level of ASD and healthy groups, providing useful insight for 
future multi-omics research. It will be more convincing if follow-up 
studies combine single-cell transcriptomics and transcriptomics to 
verify the changes of DEPs in mRNA transcription at the level of 
single cells or even subcellular structures.

5. Conclusion

In summary, 13 inflammation-related DEPs were observed in the 
plasma of children, and four of them exhibited high diagnostic 
accuracy and may serve as potential diagnostic biomarkers for 
ASD. The enrichment of these DEPs in inflammatory and immune-
related responses and signaling pathways illustrated the importance 
of inflammation in the development of ASD. Although the molecular 
mechanisms through which these biomarker proteins played a role in 
ASD are unelucidated to date, the findings of this study may provide 

FIGURE 5

Correlation heatmap of gender, age and parity among the protein 
expressions of 13 DEPs. Red, positively related; blue, negatively 
related; and white, nonrelated. *p ≤ 0.05, †p ≤ 0.01.
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new avenues for the early diagnosis and monitoring of ASD. In the 
future, we will expand the clinical sample sizes, improve the diagnostic 
accuracy of candidate biomarkers, and validate their potential for 
clinical application.
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