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This invited article ad memoriam of Bruce McEwen discusses emerging 
epigenetic mechanisms underlying the long and winding road from adverse 
childhood experiences to adult physiology and brain functions. The conceptual 
framework that we pursue suggest multidimensional biological pathways for the 
rapid regulation of neuroplasticity that utilize rapid non-genomic mechanisms 
of epigenetic programming of gene expression and modulation of metabolic 
function via mitochondrial metabolism. The current article also highlights how 
applying computational tools can foster the translation of basic neuroscience 
discoveries for the development of novel treatment models for mental illnesses, 
such as depression to slow the clinical manifestation of Alzheimer’s disease. 
Citing an expression that many of us heard from Bruce, while “It is not possible 
to roll back the clock,” deeper understanding of the biological pathways and 
mechanisms through which stress produces a lifelong vulnerability to altered 
mitochondrial metabolism can provide a path for compensatory neuroplasticity. 
The newest findings emerging from this mechanistic framework are among the 
latest topics we had the good fortune to discuss with Bruce the day before his 
sudden illness when walking to a restaurant in a surprisingly warm evening that 
preluded the snowstorm on December 18th, 2019. With this article, we wish to 
celebrate Bruce’s untouched love for Neuroscience.
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Mitochondrial metabolism and epigenetic function

Epigenetic mechanisms are involved in the pathophysiology of stress-related diseases, 
including depressive and cognitive disorders as well as opioid and alcohol use disorders, 
and are emerging as potential targets for therapeutic interventions(Sweatt, 2010; Robison 
and Nestler, 2011; Nestler, 2014; McEwen et al., 2015). Work from our group introduced 
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the McEwen lab to acetyl-L-carnitine (LAC), a central 
mitochondrial metabolite that was best known for its role in fatty 
acid oxidation (Fritz and McEwen, 1959; Pettegrew et al., 2000; 
McEwen et al., 2015; McEwen, 2018). In rodents, administration 
of LAC leads to a rapid and persistent antidepressant-like response 
by activating histone acetyltransferases (e.g.: P300) to regulate 
histone acetylation and expression of key genes, including the 
metabotropic glutamate receptor-2 (mGlu2, inhibitor of 
spontaneous glutamate release) and the downstream brain-derived 
neurotrophic factor BDNF (Flight, 2013; Nasca et al., 2013; Russo 
and Charney, 2013; Nasca et al., 2017). Boosting mitochondrial 
metabolism of LAC also leads to the amelioration of specific 
cognitive domains (Barnes et  al., 1990; Liu et  al., 2002). These 
potent epigenetic effects of LAC occur in brain areas such as the 
hippocampus, which is implicated in the pathophysiology of major 
depressive disorders (MDD) and is among the first brain structures 
to degenerate in Alzheimer’s disease (AD) (Braak et  al., 1993; 
McEwen et al., 2016). Furthermore, the rapid effects of LAC extend 
to other key brain areas important not only for mood disorders but 
also for substance abuse disorders such as the prefrontal cortex, 
nucleus accumbens and amygdala (Nasca et al., 2013; Lau et al., 
2017; Cherix et  al., 2020). In rodent models (e.g., mice after 
exposure to chronic stress or the flinders sensitive genetic line FSL 
rats), peripheral and central (e.g., in the hippocampus and 
prefrontal cortex) LAC levels are decreased; and boosting 
mitochondrial metabolism of LAC rapidly regulates a metabolic 
dysfunction known as insulin resistance (IR) (Eriksson et al., 2012; 
Nasca et  al., 2013; Bigio et  al., 2016). In recent years, this 
mechanistic framework in rodents led to test novel hypotheses in 
humans in pursuit of developing disease-modifying drugs and 
precision medicine strategies for stress-related main CNS diseases.

From basic neuroscience discoveries 
to translational research

In subjects suffering from MDD, LAC levels are decreased as 
compared to age-and sex-matched controls; the degree of LAC 
deficiency reflected both the severity and age of onset of depression 
(Nasca et al., 2018; Post, 2018; Nasca et al., 2020). We found the lowest 
levels of LAC in severe clinical phenotypes of treatment resistant 
depression associated with early life stress in the form of childhood 
emotional trauma. Utilization of esketamine as an antidepressant 
increases LAC levels (Rotroff et al., 2016). Decreased levels of LAC are 
also predictive of lack of antidepressant responses to the insulin-
sensitizing agent pioglitazone used as an antidepressant in subjects 
suffering from MDD (Nasca et al., 2021). Recently, we also showed a 
relationship between the epigenetic modulation of glutamatergic 
function and central IR as assessed by measures of the insulin 
signaling cascade in exosomes enriched for the neural cell adhesion 
molecule L1 (L1-CAM), a protein highly expressed in the brain 
(Takahashi et al., 2012; Lonsdale et al., 2013; Uhlen et al., 2015; Nasca 
et al., 2020). As we and others reviewed elsewhere (Kenna et al., 2013; 
Biessels and Reagan, 2015; Grillo et al., 2015; Rasgon and McEwen, 
2016; Arnold et al., 2018; Ferrario and Reagan, 2018; Watson et al., 
2018), in addition to systemic energy metabolism, insulin signaling 
contributes to regulate neuroplasticity and is reflective of cerebral 
hypo-metabolism and aberrant intrinsic connectivity of intra-and 

inter-hippocampal circuits. A growing literature suggests that IR—
which is ameliorated by boosting mitochondrial metabolism of LAC 
in rodent models—is one of the steps in the irreversible activation of 
the cascade leading from mood disorders to AD (Byers and Yaffe, 
2011; De Felice et al., 2014; Rasgon and McEwen, 2016; De Felice 
et al., 2022).

In the connection between mitochondrial metabolism and aging, 
prior work reported decreased levels of LAC in subjects with AD as 
compared to cognitively healthy controls, with intermediate levels in 
subjects with subjective memory complaint or mild cognitive 
impairment (MCI) (Cristofano et al., 2016). As we elaborated above, 
these translational findings are an outgrowth of a mechanistic model 
in rodents with impaired plasticity of key brain areas relevant to 
mood, cognitive, opioid and alcohol use disorders, wherein LAC levels 
are markedly decreased and signal abnormal brain and systemic 
functions. The current mechanistic model compels further research 
to identify new signaling pathways and mechanisms for developing 
novel treatment models for mental illness, ultimately to slow the 
clinical manifestation to dementia (Byers and Yaffe, 2011; Rasgon and 
McEwen, 2016).

Early life stress and adverse childhood 
experiences

At the same time, while we  continue to learn the role of 
multidimensional biological pathways—which utilize rapid 
non-genomic mechanisms of epigenetic regulation of gene expression 
and modulation of metabolic function—in neuroplasticity (McEwen 
et al., 2015), there is increasing recognition that adverse childhood 
experiences disproportionately influence lifelong vulnerability to 
develop mood and cognitive disorders (McEwen, 2003; McEwen et al., 
2015; Nemeroff, 2016). Prior gene expression studies showed a brain 
that continually changes with experience and that the biological 
embedding of trajectories of neuroplasticity starts in early life 
(Shonkoff et al., 2009; Gray et al., 2014). Adverse experiences, such as 
decreased maternal care early in life, leads to lifelong changes in the 
epigenome (e.g.: histone acetylation) and the related expression of key 
genes for the responses to stress in the hippocampus; and these 
changes are accompanied by behavioral deficits (Meaney et al., 1988; 
Weaver et al., 2004). Regarding excessive glutamate overflow, mice 
with inherent anxiety at baseline show elevated expression of the 
mineralocorticoid receptors (MR) in the hippocampus that 
predisposes to a stress-induced suppression of mGlu2 expression and 
development of depressive-like behavior. Blocking MR receptors and 
interfering with glucocorticoids stimulation of glutamate activity 
counteracts stress-induced behavioral abnormalities. Yet, the nature 
of the experiences of the animals that develop increased MR 
expression is not known but might involve epigenetic experiences 
early in life, such as maternal care and stressors in the neonatal nesting 
environment as we fully described in the epigenetic allostasis model 
(Nasca et al., 2015).

Exposure to early life stress also leads to a decrease in 
hippocampal volume in adult subjects suffering from MDD (Saleh 
et al., 2017). Recent studies also showed a decreased hippocampal 
volume in children with depression (Barch et al., 2019; Zovetti et al., 
2022). Timing of the stress is found to negatively affect hippocampal 
volume; the strongest effects were found when stress exposure 
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occurred before 5 years of age (Gerritsen et al., 2015; Humphreys 
et al., 2019). Anxiety and co-dependence of the mother during the 
first weeks after birth also resulted in long-lasting effects on the 
hippocampal volume in young adult offspring, as well as in children 
from low socioeconomic status households (Hanson et  al., 2015; 
Mareckova et al., 2018). In the connection to metabolism, studies in 
humans showed that childhood trauma is not only a risk factor for 
aberrant mitochondrial metabolism in severe clinical phenotypes of 
treatment resistant depression, but also for IR as well as for shortening 
of leukocyte telomere length (LTL, a marker of cellular aging) (Price 
et  al., 2013; Nasca et  al., 2018; Post, 2018; Nasca et  al., 2021). 
We  reported that emotional trauma is a critical factor for the 
decreased LAC levels in severe clinical phenotypes of treatment 
resistant depression (Nasca et al., 2018; Post, 2018). We showed a 
relationship between emotional trauma, but none of the other 
subscales of the childhood trauma, and antidepressant responses as a 
function of LAC levels and the corresponding IR and LTL (Nasca 
et al., 2021). The specificity of these effects is in agreement with prior 
studies showing that the consequences of emotional maltreatments in 
childhood differ from those of physical and sexual abuse (Nemeroff, 
2016; Williams et al., 2016). There is also considerable evidence that 
childhood trauma, particularly emotional maltreatment, impairs 
responses to antidepressant drugs (Nemeroff et al., 2003; Nemeroff, 
2016). Although there are fewer studies describing how specific 
subscales of childhood trauma affect the responses to drugs that 
ameliorate cognitive function, prior work suggested that adverse 
childhood experiences result in poorer response to cognitive-
behavioral therapy (Short and Baram, 2019). Collectively, the current 
work raises the hypothesis for future studies that targeting 
mitochondrial metabolism opens windows of epigenetic plasticity to 
re-direct the life course trajectories toward more positive health 
outcomes when adverse childhood experiences occurred.

Importance of the anterior (human) or 
ventral (rodent) hippocampus in stress 
and CNS disorders

Growing literature showed that the ventral hippocampus 
(vHIPP) in rodents (anterior hippocampus in humans) is a stress-
sensitive circuit and a neural hub key for the regulation of behaviors 
implicated in depression, such as social interaction and anhedonia, 
as well as for cognitive functions. The vHIPP is also a target for 
antidepressant action of rapid acting agents, such as ketamine and 
LAC (Jett et al., 2015; Carreno et al., 2016). The vHIPP is connected 
to limbic areas involved in affective, reward and cognitive functions. 
It receives intense inputs from the ventromedial parts of the 
entorhinal cortex, carrying information arising from the infralimbic 
and prelimbic cortices as well as from the ventral tegmental area in 
the midbrain and the locus coeruleus and raphe nuclei in the brain 
stem. In turn, the vHIPP sends projections to the prefrontal cortex, 
nucleus accumbens, amygdala, and hypothalamus (Jonas and 
Lisman, 2014) among other brain areas. Therefore, plasticity of the 
ventral hippocampus is key in mediating changes in behaviors and 
cognitive functions. For example, vHIPP glutamatergic afferents to 
the nucleus accumbens regulate susceptibility to social defeat stress 
and the corresponding behavioral responses as shown by 
optogenetic studies (Bagot et al., 2015).

Computational approaches and 
multidimensional predictors of health 
trajectories

This is a time of enormous technological advance in so many 
aspects of neuroscience and medicine that is bringing together 
basic, computational, and clinical laboratories to develop novel 
mechanism-based treatment models for specific clinical phenotypes 
of stress-related disorders. We are now increasingly recognizing 
that heterogeneous psychiatric disorders, such as MDD, are likely 
much more biologically distinct than are captured by self-report 
symptom clusters. Using functional magnetic resonance imaging 
(fMRI), recent work showed that subjects suffering from depression 
can be subdivided into four neurophysiological subtypes defined by 
distinct patterns of dysfunctional connectivity in limbic and 
frontostriatal networks (Drysdale et al., 2017). Subtypes 1 and 4 are 
mainly characterized by reduced connectivity of frontoamygdala 
and increased anxiety; subtypes 3 and 4 are characterized by hyper-
connectivity of thalamic and frontostriatal networks with increased 
anhedonia and psychomotor retardation. The four biotypes also 
predicted different antidepressant responses to repetitive 
transcranial magnetic stimulation. Toward understanding of the 
molecular mechanisms that might characterize the four 
neurophysiological subtypes, recent work showed that boosting 
mitochondrial metabolism leads to a rapid amelioration of 
anhedonia-related behaviors in rodent models deficient in LAC, 
which we  now know is also a factor in clinical phenotypes of 
treatment resistant depression, suggesting it might be a potential 
treatment target, especially for these specific biotypes (Nasca et al., 
2013, 2018). It is also important to note that subjects with opioid 
use disorders, particularly those in methadone and buprenorphine 
treatment programs, manifest a significant anhedonia which is in 
turn linked to poorer responses to treatment for tobacco use 
(Leventhal et al., 2009; Roys et al., 2016; Cook et al., 2017; Parker 
et  al., 2020; Streck et  al., 2020). These findings compel further 
research to understand whether certain aspects of mitochondrial 
metabolism and the related anhedonic states might serve as new 
targets for the development of more effective mechanism-based 
treatment models for psychiatric and substance abuse disorders.

Using hierarchical clustering to integrate molecular measures with 
clinical symptoms in those patients suffering from MDD characterized 
by a LAC deficiency, we also found that specific symptoms related to 
anhedonia, depressed mood, feelings of guilt, and suicidality are 
accompanied by a brain metabolic dysfunction known as IR as showed 
by an increase and sex-specific phosphorylation in the expression of 
IRS1, a key marker of the insulin signaling cascade, in discrete 
exosomes enriched for the brain (Nasca et al., 2020). These findings 
provided the closest available in vivo molecular signature for brain IR 
in depression and showed important sex differences in these pathways. 
In keeping with the important role of childhood trauma on adult 
physiology and brain functions, prediction profile modelling revealed 
that those patients suffering from MDD and characterized by 
decreased baseline LAC levels, elevated BMI and high reported rates 
of emotional abuse show the worst antidepressant responses; 
conversely, those patients with increased baseline LAC levels, 
decreased BMI and low reported rates of emotional abuse show 
decreased depression severity at the HDRS-21 in the responses to the 
insulin-sensitizing agent pioglitazone used as an antidepessant (Nasca 
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FIGURE 1

Social environment and health: in pursuit of windows of epigenetic plasticity. Created with BioRender.com.

et  al., 2021). These recent findings suggest that multidimensional 
factors spanning mitochondrial metabolism, cellular aging, metabolic 
function, and childhood trauma provide more detailed signatures to 
predict antidepressant responses. Integrating molecular and circuit-
level approaches has the potential to transform our understanding of 
the molecular underpinning of circuit-level abnormalities, and inform 
future efforts to develop personalized interventions with the potential 
for significantly enhanced efficacy compared to the current 
standard-of-care.

An additional application of computational tools includes the 
integration of multidimensional phenotypic measures to identify 
those mechanisms that predispose apparently healthy individuals 
to develop maladaptive coping strategies from those that confer 
resilience. Using a high-throughput unbiased automated 
phenotyping platform that collects >2000 behavioral features based 
on machine learning, recent work showed that a rich set of 
behavioral alterations distinguish susceptible versus resilient 
phenotypes after exposure to social defeat stress (SDS) (Lorsch 
et  al., 2021). Interrelated brain–body marker characterize these 
phenotypes before any applied stress. We showed that a subgroup 
of mice characterized, at baseline, by increased anxiety at the light–
dark test, the corresponding elevation of pro-inflammatory cytokine 
IL-6 as well as smaller hippocampal volume develops behavioral 
and neurobiological deficits after exposure to SDS, with social 
withdrawal and impaired transcriptomic-wide changes in ventral 
dentate gyrus (Nasca et  al., 2019). At the individual level, a 
computational approach used to integrate in vivo measures of 
anxiety and immune system function predicted if a given animal 
developed SDS-induced social withdrawal, or remained resilient, 
with a sensitivity of 80% that is stronger than the categorization 
power based on either individual measure alone (Nasca et al., 2019). 
The findings of a priori multidimensional biomarkers for predicting 
the behavioral deficits resulting from exposure to SDS suggests a 
unique approach to examine the individual trajectories of adaptative 
and maladaptive responses to stress, paving the way to develop 

integrative models of mechanisms leading to susceptibility versus 
resilience to stress.

Future directions: in pursuit of “windows of 
epigenetic plasticity” to re-direct 
trajectories of brain function

While prevention is paramount, identifying novel biological 
pathways and mechanisms through which stress, including childhood 
trauma, affects adult systemic physiology and brain functions is a 
timely topic crucial for the development of new mechanistic 
frameworks to build resilience or decrease vulnerability to main CNS 
diseases, where adverse events have happened. Beyond recognizing 
resilience as “achieving a positive outcome in the face of adversity” 
(McEwen et al., 2015), there appears to be a common denominator in 
the trajectories to stress-related disorders that we propose involves an 
epigenetic embedding of early life experiences through the 
mitochondrial metabolite LAC that, when supplemented, rapidly 
alters gene expression profiles to ameliorate behaviors and cognitive 
function in animal models deficient in LAC because of stress-induced 
causes. The concept of epigenetic embedding of early life experiences 
is akin to the original definition of epigenetics, wherein the emergence 
of characteristics of each individual is not evident from prior stages of 
development (Waddington, 1942). While it is not possible to “roll back 
the clock,” deeper understanding of the biological pathways and 
mechanisms through which adverse childhood experiences produce 
a lifelong vulnerability to altered mitochondrial metabolism can 
provide a path for compensatory neuroplasticity toward more positive 
health directions (Figure 1). The COVID-19 pandemic and the related 
biological and social fallouts further highlight the need for basic 
neuroscience research to identify new signaling pathways and 
mechanisms underlying the effects of stress on the brain and the rest 
of the body to develop mechanistic-based treatment models 
(COVID-19 Mental Disorders Collaborators, 2021; WHO, 2022).
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