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The cerebellum is a multifunctional brain region that controls diverse motor and 
non-motor behaviors. As a result, impairments in the cerebellar architecture 
and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental 
disorders. Neurotrophins and neurotrophic growth factors play essential roles in 
the development as well as maintenance of the central and peripheral nervous 
system which is crucial for normal brain function. Their timely expression 
throughout embryonic and postnatal stages is important for promoting growth 
and survival of both neurons and glial cells. During postnatal development, the 
cerebellum undergoes changes in its cellular organization, which is regulated by 
a variety of molecular factors, including neurotrophic factors. Studies have shown 
that these factors and their receptors promote proper formation of the cerebellar 
cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, 
we will summarize what is known on the neurotrophic factors’ role in cerebellar 
postnatal development and how their dysregulation assists in developing various 
neurological disorders. Understanding the expression patterns and signaling 
mechanisms of these factors and their receptors is crucial for elucidating their 
function within the cerebellum and for developing therapeutic strategies for 
cerebellar-related disorders.
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Introduction

The cerebellum, or ¨little brain¨, is well-known for its sensorimotor function and its role in 
movement coordination (Gao et al., 1996; Strick et al., 2009). Nevertheless, growing evidence 
indicates that the little brain is also involved in higher-order cognitive processing, including 
spatial learning, attention, language, reward, emotion, social behavior and memory (Ito, 2006; 
Schmahmann and Caplan, 2006; Ito, 2008; Stoodley, 2012; Koziol et al., 2014; Adamaszek et al., 
2017; Wagner et al., 2017; Carta et al., 2019; Kostadinov et al., 2019). Several neuroimaging and 
lesion studies have shown cerebellar aberrations to account for changes in affective and cognitive 
behavior, collectively termed the “cerebellar cognitive affective syndrome” with deficits in 
executive function, emotion regulation, and working memory (Schmahmann and Sherman, 
1998). Aberrant cerebellar functionality and cerebellar-only genetic alterations have been 
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implicated in numerous neuropsychiatric disorders, such as 
schizophrenia and bipolar disorder, and neurodevelopmental 
disorders, including attention deficit hyperactivity disorder (ADHD) 
and autism spectrum disorder (ASD) (Allen et al., 2004; Peter et al., 
2016; Stoodley, 2016; Sathyanesan et al., 2019). This is mainly because 
cerebellar learning, complementing its role in motor control, also has 
a bottom-up influence on cognitive functions through extensive 
interconnections between the deep cerebellar nuclei and limbic brain 
structures (Snider et al., 1976; Carta et al., 2019; Frontera et al., 2020). 
Hence, if genetically predisposed, environmental perturbations 
throughout most of the cerebellar development may impair neuronal 
maturation and synapse formation, and lead to incorrect circuit wiring.

The cerebellum is a highly conserved brain structure that has an 
extensive and elaborate development, which starts in humans at 
gestational week 7 (E13  in rodents) and ends around 12 months 
postnatal (P21 in rodents) (Larramendi and Victor, 1967; Altman, 
1972; Sathyanesan et al., 2019). For this review we will focus on the 
postnatal development of the cerebellum since the embryonic 
development has been covered in plenum by other reviews (Leto et al., 
2016; Sathyanesan et  al., 2019; Amore et  al., 2021). During early 
postnatal stages, the dendritic complexity of Purkinje cells (PCs) 
develops extensively in terms of both branching and arbor length, 
resulting in the thickening of the molecular layer (Leto et al., 2016). 
Granule cell progenitors (GCPs), on the one hand, form the temporary 
external granule layer (EGL) in which they actively proliferate and 
expand. Consequently, the immature GCPs exit the cell cycle, 
commence differentiation, after which they migrate radially until they 
reach their destination within the internal granule layer (IGL) and 
become mature cerebellar granule neurons (CGNs). During this 
process, there is both extension of the CGN axons, namely the parallel 
fibers, and growth of the CGN dendrites (Consalez et al., 2021). The 
inhibitory interneurons (IN), on the other hand, originate from a pool 
of progenitors located in the cerebellar white matter (WM) that give 
rise to a variety of glial cells, including astrocytes, oligodendrocytes, 
and Bergmann glia (BG), as well as several types of interneurons. 
These progenitors migrate through the WM into the cerebellar cortex 
and subsequently differentiate into mature glia and INs (Zhang and 
Goldman, 1996). Lastly, synaptogenesis and target innervation of the 
PC axons occurs followed by synaptic and dendritic pruning (Leto 
et al., 2016).

Cerebellar development is a complex process that is regulated by 
a variety of signaling molecules and growth factors, both in a cell-
autonomous and non-cell-autonomous manner. One category of 
growth factors that play a crucial role in cerebellar development and 
circuit formation is the neurotrophic factors (Figure 1). This includes 
the classical neurotrophins brain-derived neurotrophic factor 
(BNDF), nerve growth factor (NGF), neurotrophin-3 (NT-3) and 
neurotrophin-4 (NT-4), that are widely and timely expressed in 
different regions of the central and peripheral nervous system. 
Neurotrophins are key players during nervous system development 
where they regulate neurogenesis, morphogenesis, synaptogenesis, 
and cell maintenance, as well as during adulthood, in processes of 
cellular survival or death and, synaptic plasticity (Huang and 
Reichardt, 2001). The neurotrophins occur as both their secreted 
precursor state and their cleaved mature form (Lee et  al., 2001). 
Mature neurotrophins bind preferentially to the high-affinity Trk 
receptors, a family of transmembrane tyrosine kinases, to regulate 
neuronal survival and differentiation (Lu et al., 2005). Activation of 

Trks initiates several signaling cascades, including the mitogen-
activated protein kinase (MAPK) cascade, the phosphatidylinositol-
3-kinase (PI3K) cascade, and the protein kinase C (PKC)-
phospholipase-Cγ (PLC-γ) cascade (Klesse and Parada, 1999; 
Reichardt, 2006). Proneurotrophins, however, preferentially interact 
with the low-affinity and nonselective p75 neurotrophin receptor 
(p75NTR) of the tumor necrosis factor (TNF) receptor superfamily in a 
complex with members of the sortilin receptor family to regulate cell 
death via the c-Jun N-terminal kinase (JNK) or caspase-3 pathway 
(Yoon et  al., 1998; Friedman, 2000; Hempstead and Salzer, 2002; 
Nykjaer et al., 2004). NGF binds TrkA, BDNF and NT-4 bind TrkB, 
and NT-3 binds primarily TrkC (Chao and Hempstead, 1995). In 
addition to the prototypical neurotrophins, there are numerous 
growth factors that also play a major role in proper brain development 
(Figure 1). These include ciliary neurotrophic factor (CNTF), ephrins, 
epidermal growth factor (EGF), glial cell line-derived neurotrophic 
factor (GDNF), neuregulins, progranulin (PGRN) and transforming 
growth factor (TGF-β). By binding to their respective receptors, they 
provide survival, differentiation, migration, maturation, and circuit 
formation signals to the developing nervous system (Abe et al., 1991; 
Lärkfors et al., 1994; Mount et al., 1995; Ozaki et al., 2000; Rodger 
et al., 2012; Araujo et al., 2016; Uesaka et al., 2018). CNTF binds the 
CNTF receptor (CNTFR), ephrins bind to the Eph tyrosine kinase 
receptors, EGF binds to the EGF receptor (EGFR) or receptor 
homologs, GDNF binds predominantly GFRα1 in complex with the 
RET receptor, neuregulins bind the ErbB family of receptors, PGRN 
binds TNF receptors as well as the sortilin receptor, and lastly, TGF-β 
isoforms binds to the TGF-β type I, II, and III receptors (TβRI, TβRII, 
and TβRIII) (Cheifetz et al., 1988; Treanor et al., 1996; Chang et al., 
1997; Doré et al., 1998; Wieduwilt and Moasser, 2008; Hu et al., 2010; 
Tang et al., 2011; Fantone et al., 2020). Binding of these growth factors 
to their respective receptors activates various signaling pathways 
including the p38 and JNK-MAPK, Jak–STAT, Ras-MAPK, and 
PI3K-Akt signaling pathways (Bonni et  al., 1993; Oh et  al., 1998; 
Wong and Guillaud, 2004; Murphy and Bielby-Clarke, 2008; Paratcha 
and Ledda, 2008; Wee and Wang, 2017; Fantone et al., 2020; Wang 
et al., 2022).

In this review, we will summarize what is currently known about 
the spatiotemporal expression of the different neurotrophic factors 
and their receptors within the cerebellar system during postnatal 
development (Figure 2; Table 1). Additionally, we will outline the 
neurotrophic factors’ diverse cellular functionalities and some of the 
downstream signaling mechanisms that require neurotrophic 
expression and activity. Lastly, we will highlight how aberrations in 
both neurotrophic expression and function affect the cerebellar 
cytoarchitecture and what it implicates for several neurodevelopmental 
disorders (Table 2).

BDNF

BDNF is abundantly expressed within the developing cerebellum, 
both embryonically and postnatally in humans and rodents 
(Menshanov et al., 2015; Camuso et al., 2022). While produced in both 
CGNs and PCs, BDNF is mostly expressed in the axons of mature 
CGNs of the IGL, mossy fibers (MFs), and the deep cerebellar nuclei 
(DCN) (Schwartz et al., 1997; Rico et al., 2002). The release of BDNF 
from CGN axonal terminals is facilitated by calcium-dependent 
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activator protein for secretion 2 (CAPS2), which is a granule-
associated protein (Sadakata et al., 2007; Kokubo et al., 2009; Shinoda 
et  al., 2019). BDNF binds TrkB on both postsynaptic PCs and 
presynaptic CGNs, thereby leading to Trk signaling in both a paracrine 
and autocrine manner, respectively (Lindholm et  al., 1997). Both 
BDNF and its immature form, proBDNF can act as a mitogenic and 
chemotactic factor in cerebellar development. While BDNF exerts cell 
survival effects through TrkB activation, proBDNF is known to be a 
proapoptotic mediator through activation of p75NTR, resulting in axon 
pruning and cell death (Glass et al., 1991; Ghosh et al., 1994; Singh 
et al., 2008).

As BDNF and TrkB are expressed in cerebellar PCs, they play a 
role in PC dendritogenesis and spine formation both in vitro and in 
vivo (Schwartz et al., 1997; Shimada et al., 1998; Yamashita et al., 
2011). Lärkfors et al. (1996) found that survival of PCs increases after 
in vitro treatment with BDNF. Additionally, Morrison and Mason 
(1998) found that BDNF improves PC survival in isolated cultures, but 
decreases when co-cultured with CGNs, indicating that the 
neurotrophic action is context- and activity-dependent. However, 
recent findings suggest that BDNF does not exert a survival effect on 
naïve PCs in vivo but promotes survival in damaged PCs 
(Rakotomamonjy and Goumari, 2019). These data are supported by 
several other findings which show that BDNF does not affect survival 
in other neuronal populations such as cortical, hippocampal, and 
striatal neurons (Gorski et al., 2003; Baquet et al., 2004; Rauskolb 
et al., 2010).

In murine CGN cultures, BDNF–TrkB signaling promotes neurite 
extension and survival of differentiated mature CGNs (Gao et al., 
1995; Nonomura et al., 1996; Tanaka et al., 2000). Accordingly, BDNF 
not only has pro-survival but also anti-apoptotic capacities in CGNs 
that are cultured in either serum-free media, low K+ media, or media 
with high glutamate concentrations (Lindholm et  al., 1993; Kubo 
et al., 1995; Zirrgiebel et al., 1995; Nonomura et al., 1996; Shimoke 
et al., 1997; Skaper et al., 1998; Tong and Perez-Polo, 1998; Bulleit and 
Hsieh, 2000; Leeds et al., 2005; Sanchez-Perez et al., 2005; Ortega et al., 
2010). ProBDNF, on the other hand, does not exert a pro-survival 
effect on CGNs. Instead, proBDNF binds to p75NTR, which in turn 
leads to the activation of the JNK signaling pathway and cell death 
(Koshimizu et al., 2010). Both the pro and mature form of BDNF 
affect the migration of CGNs in vivo. While endogenous BDNF 
promotes GCPs to exit the cell cycle and initiate migration in an 
autocrine manner, proBDNF acts as a negative regulator, an effect 
which is mediated by binding p75NTR and its co-receptor sortilin 
(Borghesani et al., 2002; Zhou et al., 2007; Kokubo et al., 2009).

Synaptogenesis is a crucial developmental step that promotes 
normal brain function. Improper synapse formation is, therefore, 
associated with neuronal dysfunction. BDNF–TrkB signaling is 
involved in correct circuit wiring, synaptogenesis, and establishing a 
balance between inhibitory and excitatory synapses within the 
cerebellar system (Minichiello, 1996; Schwartz et al., 1997; Carter 
et al., 2002; Rico et al., 2002; Bosman et al., 2006; Shinoda et al., 
2019). For instance, BDNF secreted by both excitatory MFs and 

FIGURE 1

Neurotrophic factors regulate postnatal cerebellar development. This schematic diagram depicts the families of neurotrophic factors that regulate 
survival, differentiation, and migration of cerebellar neurons as well as neurite circuit formation and maintenance. BDNF, brain-derived neurotrophic 
factor; CNTF, ciliary neurotrophic factor; EGF, epidermal growth factor; GDNF, glial-derived neurotrophic factor; NGF, nerve growth factor; NT-3, 
neurotrophin-3; NT-4, neurotrophin-4; PGRN, progranulin; TGF-b, transforming growth factor beta. Figure produced in BioRender.
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CGNs aids in inhibitory synaptogenesis by regulating gephyrin, a 
postsynaptic scaffolding protein, clustering on CGN and PC 
dendrites, respectively, via the PLCy calcium-dependent and the 
PI3K-Akt signaling pathway (Chen et al., 2016). This is consistent 
with reports that BDNF–TrkB signaling promote gamma amino 
butyric acid (GABA)ergic synaptogenesis (Bao et al., 1999; Seil, 1999; 
Seil and Drake-Baumann, 2000). Moreover, BDNF contributes to the 
development of the two major afferent systems in the cerebellar 
cortex. Rabacchi et al. (1999) found that CGN-derived BDNF acts in 
a retrograde manner to promote the growth and maturation of 
innervating basilar pontine MFs. In addition, BDNF from PCs acts 
retrogradely on TrkB located within climbing fibers (CF) in 
facilitating late-phase CF synapse elimination from PC soma 
(Bosman et al., 2006; Choo et al., 2017). Secretion of BDNF from PCs 
is most likely triggered following metabotropic glutamate receptor 

(mGluR1) activation by parallel fiber (PF) signal transduction, the 
latter being a key player in CF synapse elimination (Kano et al., 1997; 
Ichise et al., 2000). The maturation of the cerebellar circuitry requires 
de novo synthesis of BDNF followed by activation of the TrkB-MAPK 
signaling pathway and phosphorylation of transcription factor ETS 
translocation variant 1 (Etv1) which upregulates the expression of 
several maturation genes with a role in dendritic development and 
functional synaptic assembly of the cerebellar circuit (Abe et  al., 
2012). Activation of Etv1 is also necessary for CaMKK2/CaMKIV-
dependent phosphorylation of cAMP response element-binding 
protein (CREB) which drives BDNF autoregulation (Kokubo et al., 
2009; Ding et al., 2018). Together, these findings demonstrate the 
importance of BDNF in cerebellar postnatal development as an 
imbalance in BDNF expression or signaling results in altered 
cerebellar architecture and functionality, leading to several 

FIGURE 2

Different processes during postnatal cerebellar development require neurotrophic action. This schematic illustration depicts several stages of postnatal 
cerebellar development that involve the neurotrophic factors. EGL, external granule layer; oEGL, outer EGL; iEGL, inner EGL; PCL; Purkinje cell layer; 
ML, molecular layer; (I)GL, (internal) granule layer; WM, white matter; DCN, deep cerebellar nuclei; PC, Purkinje cell; CGN; cerebellar granule cell; MLI, 
molecular layer interneuron; BG, Bergmann glia; BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; EGF, epidermal growth 
factor; GDNF, glial-derived neurotrophic factor; NGF, nerve growth factor; NT-3, neurotrophin-3; NT-4, neurotrophin-4; PGRN, progranulin; TGF-b, 
transforming growth factor beta. Figure produced in BioRender.
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TABLE 1 Function of neurotrophic factors during postnatal cerebellar development.

Neurotrophic 
factors

Cerebellar 
function

References

BDNF CGN survival Bulleit and Hsieh (2000), Kubo et al. (1995), Leeds et al. (2005), Lindholm et al. (1993), Nonomura et al. (1996), Ortega 

et al. (2010), Sanchez-Perez et al. (2005), Shimoke et al. (1997), Skaper et al. (1998), Tong and Perez-Polo (1998), 

Zirrgiebel et al. (1995), and Koshimizu et al. (2010)

CGN migration Borghesani et al. (2002), Kokubo et al. (2009), and Zhou et al. (2007)

CGN neurite 

outgrowth

Gao et al. (1995), Nonomura et al. (1996), and Tanaka et al. (2000)

PC survival Lärkfors et al. (1996), Rakotomamonjy and Goumari (2019), and Morrison and Mason (1998)

PC neurite outgrowth Schwartz et al. (1997), Shimada et al. (1998), and Yamashita et al. (2011)

Circuit wiring Bosman et al. (2006), Carter et al. (2002), Minichiello (1996), Rico et al. (2002), Schwartz et al. (1997), Shinoda et al. 

(2019), Chen et al. (2016), Bao et al. (1999), Seil (1999), Seil and Drake-Baumann (2000), Rabacchi et al. (1999), Choo 

et al. (2017), Ichise et al. (2000), Kano et al. (1997), and Abe et al. (2012)

CNTF CGN survival de Luca et al. (1996a)

PC survival Lärkfors et al. (1994)

Astrocyte 

differentiation

Okano-Uchida et al. (2013)

Ephrins CGN survival Karam et al. (2000) and Sentürk et al. (2011)

CGN migration Yacubova and Komuro (2002)

CGN neurite 

outgrowth

Karam et al. (2000), Sentürk et al. (2011), Moreno-Flores et al. (2002), and Wang et al. (2007)

PC neurite outgrowth Karam et al. (2000), Heintz et al. (2016), and Saywell et al. (2014)

Circuit wiring Lackey and Sillitoe (2020)

Cerebellar foliation Karam et al. (2000) and Rogers et al. (1999)

EGF CGN survival Abe et al. (1991, 1992), Morrison et al. (1988), Yamada et al. (1997), Gunn-Moore and Tavaré (1998) and Leutz and 

Schachner (1981)

CGN migration Carrasco et al. (2003), and Martinez et al. (2011)

CGN neurite 

development

Abe et al. (1991, 1992), Morrison et al. (1988), and Yamada et al. (1997)

NSC proliferation Okano-Uchida et al. (2013) and Leutz and Schachner (1981)

GDNF CGN survival Subramaniam et al. (2008)

PC survival Mount et al. (1995)

PC neurite outgrowth Mount et al. (1995)

MLI survival Sergaki and Ibáñez (2017)

NGF CGN survival Legrand and Clos (1991), Muller et al. (1994), Khursigara et al. (2001), Kisiswa et al. (2018), and Vicario et al. (2015)

PC survival Cohen-Cory et al. (1991), Florez-McClure et al. (2004), Legrand and Clos (1991), and Mount et al. (1998)

PC neurite outgrowth Cohen-Cory et al. (1991), Legrand and Clos (1991), and Mount et al. (1998)

Circuit wiring Numakawa et al. (2003)

Neuregulins Circuit wiring Rieff and Corfas (2006), Ozaki (2001), Ozaki et al. (2000), Xie et al. (2004), Xie et al. (2007), Rieff et al. (1999), Ozaki 

et al. (2004), Gajendran et al. (2009), and Fenster et al. (2012)

NT-3 CGN survival Katoh-Semba et al. (2000), Bates et al. (1999), Joo et al. (2014), Bates et al. (1999), Joo et al. (2014), Katoh-Semba et al. 

(2000), Kubo et al. (1995), and Shimoke et al. (1997)

CGN differentiation Doughty et al. (1998), Neveu and Arenas (1996), Takumi et al. (2005), Minichiello (1996), Zanin et al. (2016), Zanin and 

Friedman (2022), Zanin et al. (2019), and Segal et al. (1992)

CGN migration Neveu and Arenas (1996)

PC survival Lärkfors et al. (1996) and Mount et al. (1998)

PC neurite outgrowth Joo et al. (2014), Neveu and Arenas (1996), and Tepper et al. (2020)

Circuit wiring Sadakata et al. (2014), Shinoda et al. (2019), and Sherrard and Bower (2002)

(Continued)
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cerebellar-related neurodevelopmental disorders which are discussed 
in the paragraph below.

BDNF in cerebellar-related 
neurodevelopmental disorders

Impairment in BDNF signaling within the cerebellum has been 
implicated in several cerebellar-related disorders. Ataxia is a group of 
neurological disorders mainly characterized by a lack of voluntary 
movement coordination (Schmahmann, 2004). Post-mortem studies 
of patients with spinocerebellar ataxia type 6 (SCA6) show reduced 
expression of BDNF which was also revealed in a SCA6 mouse model, 
as well as a spinocerebellar ataxia type 1 (SCA1) mouse model. Both 
mice models display PC pathology, abnormal firing rates and changes 
in motor behavior. Extrinsic BDNF delivery and subsequent activation 
of the TrkB-Akt signaling pathway improves the PC firing rate and 
delays the onset of the observed motor deficits (Mellesmoen et al., 
2019; Cook et al., 2022).

Friedreich’s ataxia (FA) is a predominantly neurodegenerative 
disease caused by recessive mutations that produce a deficiency of 
frataxin (FXN). FXN triggers apoptosis in CGNs, pathological changes 
in PCs as well as loss of motor coordination. In primary granule 
cultures of FXN-deficient mice, it was evidenced that BDNF can 
be used as a therapeutic agent that effectively prevents CGN apoptosis 
and PC pathogenesis (Katsu-Jiménez et  al., 2016). However, this 
remains to be tested in vivo.

Furthermore, expression levels of BDNF, proBDNF, and its 
intrinsic receptor, TrkB, are reduced in the cerebella of patients with 
neuropsychiatric disorders, including schizophrenia, bipolar disorder 
(BPD), and major depressive disorder (MDD) as well as in a rodent 
model for ASD (Soontornniyomkij et al., 2011; Yang et al., 2017; Alò 
et al., 2021). Additionally, CAPS2-deficient mice that show reduced 
secretion of BDNF from CGNs exhibit developmental deficits around 
the cerebellar vermis, such as increased CGN apoptosis and impaired 

PC dendritogenesis. This leads to poor circuit connectivity and failed 
paired-pulse facilitation at PF-PC synapses. This is in line with 
changes observed in ASD patients who display cellular disturbances, 
as well as hypoplasia around the vermis (Sadakata and Furuichi, 2009; 
Sadakata et al., 2014).

CNTF

CNTF is a cytokine that has a multifunctional role in CNS 
development, for instance in neurite outgrowth and neuronal survival, 
as well as after injury (Oyesiku and Wigston, 1996). The expression of 
CNTF in cerebellum is relatively low during early postnatal weeks, 
however, it increases significantly during adulthood (Ohta et  al., 
1996). Due to this low expression of CNTF in the developing 
cerebellum, there are limited studies on the effects of CNTF on 
cerebellar cells and only reports on the role of CNTF in cultured 
cerebellar cells. Although the expression is low, it is not absent, 
suggesting that CNTF might play a role during development and, 
therefore, warrant further studies.

One report showed that CNTF improves PC and other cerebellar 
GABAergic neuron survival in vitro as showcased in rat primary PC 
cultures (Lärkfors et  al., 1994). Furthermore, CNTF exercises a 
neuroprotective effect in immature cerebellar granule cultures that are 
maintained in physiological low concentrations of potassium in vitro, 
which under normal circumstances, leads to apoptosis. CNTF can also 
prolong their survival in such non-depolarizing conditions (de Luca 
et  al., 1996b). However, the physiological relevance of CNTF in 
immature CGNs remains unclear. On the other hand, CNTF might 
act as a differentiation factor during development. The postnatal 
cerebellum contains neuronal stem cells (NSCs) which derive from 
the white matter and CNTF has been shown to facilitate NSCs 
differentiation into astrocytes (Okano-Uchida et al., 2013). However, 
it remains unclear whether CNTF is responsible for their 
differentiation in vivo.

TABLE 1 (Continued)

Neurotrophic 
factors

Cerebellar 
function

References

NT-4 CGN survival Proenca et al. (2016), Gao et al. (1995), Kubo et al. (1995), Shimoke et al. (1997), and Skaper et al. (1998)

CGN neurite 

outgrowth

Gao et al. (1995)

PC survival Proenca et al. (2016), Lärkfors et al. (1996), and Morrison et al. (1988)

Circuit wiring Sadakata et al. (2014), Shinoda et al. (2019), and Sherrard and Bower (2002)

PGRN PC survival Wang et al. (2022)

PC neurite outgrowth Matsuwaki et al. (2015)

Circuit wiring Uesaka et al. (2018)

TGF-b CGN survival Wang et al. (2011), Elvers et al. (2005), de Luca et al. (1996b), Brown (1999), Constam et al. (1994), and Kane et al. (1996)

CGN migration Wang et al. (2011)

PC survival Zhou et al. (2003) and Wang et al. (2011)

PC neurite outgrowth Wang et al. (2011)

Circuit wiring Araujo et al. (2016), Ondáčová et al. (2017)

Cerebellar foliation Wang et al. (2011)

CGN, cerebellar granule neuron; PC, Purkinje cell; MLI, molecular layer interneuron; NSC, neuronal stem cell; BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; 
EGF, epidermal growth factor; GDNF, glial cell line-derived neurotrophic factor; NGF, nerve growth factor; NT-3, neurotrophin-3; NT-4, neurotrophin-4; PGRN, progranulin; TGF-β, 
transforming growth factor beta.
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CNTF in cerebellar-related 
neurodevelopmental disorders

Globoid cell leukodystrophy (GLD) is a lysosomal storage disease 
that is characterized by demyelination and astrogliosis. Such 
neuropathy leads to neurobehavioral changes, including cerebellar 
ataxia. In a murine model of GLD, cerebellar neurons as well as 
Bergmann glia undergo degeneration, an effect which is accompanied 
by the altered expression of several neurotrophic factors. For example, 
CNTF expression is markedly increased in GLD cerebella, which 
could possibly mitigate remyelination of demyelinated neurons (Lin 
et al., 2015).

Ephrins

Ephrins are membrane-bound proteins that are expressed in many 
regions of the developing brain. They consist of two subclasses, the 
A-type (ephrin-A1-5) and the B-type (ephrin-B1-3) and bind to their 
respective tyrosine kinase receptors, namely the Eph receptors which 

are mainly type-specific and consist of two subfamilies, EphA and 
EphB (Chang et al., 1997). Their signaling is bidirectional, meaning it 
occurs via both phosphorylation of intracellular proteins via the Eph 
receptors or by intracellular signal transmission via the ephrin ligands 
itself upon receptor binding, a process known as reverse signaling 
(Rodger et  al., 2012). In the chicken cerebellum, ephrin-A4 and 
ephrin-A5 are expressed at the earliest during embryonic stages, 
followed by expression of ephrin-A2 and ephrin-A3. Expression of 
ephrin-B1 and ephrin-B2, however, is mostly found during postnatal 
stages in migrating CGNs (Karam et al., 2000). Ephrin-B1 is expressed 
in both CGNs and PCs, while expression of its receptor, EphB, is 
mainly constricted to CGNs during postnatal development (Moreno-
Flores et al., 2002).

The family of ephrins is involved in the formation and 
maintenance of PC compartments (Karam et al., 2000). For example, 
ephrin/Eph signaling regulates both the type and density of spines on 
PCs, a process which is required for defining either CFs or PFs that 
innervate different parts of PC dendrites. As a result, dendritogenesis 
on PCs is subject to competition between these fibers; CFs occupy the 
more proximal dendrites of PCs by suppressing the formation of 

TABLE 2 Involvement of neurotrophic factors in cerebellar-related neurodevelopmental disorders.

Neurotrophic factors Cerebellar-associated 
neurodevelopmental 
disorder

References

BDNF ASD Sadakata and Furuichi (2009), Sadakata et al. (2014), and Alò et al. (2021)

MDD Yang et al. (2017)

BPD Soontornniyomkij et al. (2011) and Yang et al. (2017)

Schizophrenia Yang et al. (2017)

FA Katsu-Jiménez et al. (2016)

SCA Cook et al. (2022) and Mellesmoen et al. (2019)

CNTF GLD Lin et al. (2015)

Eprins MB Bhatia et al. (2015)

EGF MB Schönholzer et al. (2020) and Neve et al. (2017)

GDNF ADHD Bilgiç et al. (2017) and Shim et al. (2015)

Schizophrenia Tunca et al. (2015)

CMD Sakuma et al. (2002)

NGF ADHD Bilgiç et al. (2017), Clemow et al. (2000), Guney et al. (2014), Syed et al. (2007), and Tiveron 

et al. (2013)

MS Damarjian et al. (2004)

Neuregulins MB Di Marcotullio et al. (2006) and Gilbertson et al. (1998)

Schizophrenia Kircher et al. (2009), Nickl-Jockschat et al. (2014), Schmitt et al. (2010), Yeganeh-Doost et al. 

(2011), and Barros et al. (2009)

NT-3 ASD Sajdel-Sulkowska et al. (2009), Sajdel-Sulkowska et al. (2011), and Sadakata et al. (2014)

NT-4 CMD Sakuma et al. (2002)

PGRN ASD Matsuwaki et al. (2015), Uesaka et al. (2018), and Wang et al. (2022)

TGF-b MB Marino (2005), Roussel and Hatten (2011), Santhana Kumar et al. (2018), and Aref et al. (2013)

ASD Ferretti and Hollander (2015) and Xu et al. (2017)

CA Cook et al. (2022) and Mellesmoen et al. (2019)

MB, medulloblastoma; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; MDD, major depressive disorder; BPD, bipolar disorder; MS, multiple sclerosis; EAE, 
experimental autoimmune encephalomyelitis; CMD, congenital muscular dystrophy; FA, Friedreich’s ataxia; CA, cerebellar ataxia; SCA, spinocerebellar ataxia; GLD, globoid cell 
leukodystrophy; BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; EGF, epidermal growth factor; GDNF, glial cell line-derived neurotrophic factor; NGF, nerve 
growth factor; NT-3, neurotrophin-3; NT-4, neurotrophin-4; PGRN, progranulin; TGF-β, transforming growth factor beta.
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smaller spines that are typically associated with PFs. Instead, CFs 
make room for a few larger spines to form contact with PCs. In an in 
vitro cerebellar model, it was shown that the ephrin/Eph signaling 
pathway affects the more proximal dendrites on PCs by inactivating 
integrin downstream signaling (Heintz et  al., 2016). Additionally, 
ephrins and their receptors effectively function as PC axon guidance 
and growth molecules in a spatiotemporal manner (Saywell et al., 
2014). One study found that both ephrin-A2 and ephrin-A5 by 
binding to their respective receptor control PC-MF communication 
during circuit formation. This is necessary for the proper patterning 
of mossy fiber afferents into discrete zones located within the granule 
layer (Lackey and Sillitoe, 2020).

While the different types of ephrin-A are crucial for PC 
development, ephrin-Bs regulate CGN development. For example, 
ephrin-B1 facilitates CGN survival, migration, dendritogenesis, as 
well as axonal extension (Karam et al., 2000; Sentürk et al., 2011). It 
also mitigates the expression of certain cell adhesion and microtubule-
associated proteins which are necessary for axonal extension and 
guidance, as well as dendritogenesis of CGNs (Moreno-Flores et al., 
2002; Wang et al., 2007). Both ephrin-B2 and its receptor EphB2 are 
strongly expressed in the EGL at postnatal day 3 in mice, a timepoint 
prior to the initiation of postmitotic CGN migration. Their concerted 
action is thought to inhibit the effect of certain chemokines which 
control the migration GCPs, consequently leading to the initiation of 
migration (Yacubova and Komuro, 2002). On a macroscopic scale, the 
ephrins and Eph receptors are thought to play an important role in 
cerebellar foliation as they have the ability to demarcate the cerebellar 
anlage (Rogers et al., 1999; Karam et al., 2000).

Ephrins in cerebellar-related 
neurodevelopmental disorders

Ephrins have also been implicated in developmental disorders, in 
particular schizophrenia and medulloblastoma. The drug olanzapine 
is effective in treating schizophrenia, but its precise mechanism 
remains unclear. One study found that olanzapine treatment may 
regulate the DNA methylation of certain genes in the cerebellum, 
including the ephrin/Eph receptor family. This family plays a crucial 
role in axon guidance during development and synaptic plasticity in 
adulthood, including long-term potentiation, which has been linked 
to psychosis. Therefore, the epigenetic changes in these genes may 
account for the therapeutic effects of olanzapine observed in a rat 
model of schizophrenia (Melka et al., 2014).

Medulloblastoma (MB) is an aggressive tumor that arises from 
GCPs in the cerebellum. Proper formation and migration of these 
precursors require ephrin-A5 and its receptors. In a mouse model of 
MB, it was found that deletion of ephrin-A5 inhibits tumor growth, 
providing a platform for development of ephrin-based pharmacological 
interventions of medulloblastoma (Bhatia et al., 2015).

EGF

EGF is part of the large EGF superfamily which also contains the 
transforming growth factor alpha (TGF-α) and the neuregulins 
(Wieduwilt and Moasser, 2008). It binds the epidermal growth factor 

receptor (EGFR, also called ErbB1) or receptor homologs ErbB2, 
ErbB3, or ErbB4 (Wieduwilt and Moasser, 2008). EGF and its receptor, 
EGFR, are expressed during all stages of life depending on the cell 
type, however, during postnatal development, they can be  found 
within the CGNs, PCs and astrocytes of the cerebellar cortex as well 
as the DCN (Gómez-Pinilla et  al., 1988; Seroogy et  al., 1995; 
Scalabrino, 2022). EGF binding to EGFR results in activation of 
several signaling pathways including the PLC, PI3-K, and the 
Ras-MAPK signaling pathway (Wong and Guillaud, 2004).

EGF has the ability to support neuronal growth and survival in 
cultured rodent CGNs (Morrison et al., 1988; Abe et al., 1991, 1992; 
Yamada et al., 1997). This indicates that EGF can act as a neurotrophic 
factor that promotes the elongation and maintenance of neurites in 
cerebellar neurons which is most likely achieved through the 
activation of protein kinases (Morrison et al., 1988; Abe et al., 1991, 
1992; Yamada et  al., 1997). Moreover, EGF effectively reduces 
glutamate-associated apoptosis in primary CGN cultures and has thus 
a neuroprotective effect against glutamate-induced neurotoxicity (Abe 
and Saito, 1992; Gunn-Moore and Tavaré, 1998). In addition, it also 
enhances survival of serum-deprived cerebellar cultures (Leutz and 
Schachner, 1981). Concomitant to its function in CGN survival and 
maturation, EGF has been suggested to be involved in CGN migration, 
largely due to expression of EGFR found in premigratory post-mitotic 
CGNs and its function in facilitating Bergmann glia elongation 
(Carrasco et al., 2003; Martinez et al., 2011). NSCs which derive from 
the cerebellar white matter require EGF to keep their proliferative 
ability (Okano-Uchida et al., 2013). Once these NSCs differentiate into 
astrocytes they express EGFR. It has been reported that EGF-EGFR 
signaling in these astrocytes stimulates DNA synthesis increasing their 
proliferation (Leutz and Schachner, 1981).

EGF cerebellar-related 
neurodevelopmental disorders

Similar to ephrins, EGF signaling is involved in MB as it rapidly 
increases nuclear activation of the ERK1/2-MAPK pathway in MB 
cells which speeds the invasion of these cells (Schönholzer et  al., 
2020). Neve et al. (2017) found that in organotypic cerebellar slices, 
EGF effectively enhances tumor growth and infiltration, indicating its 
tumor progressing capabilities.

GDNF

GDNF is expressed in several different types of neurons, including 
PCs, and plays a crucial role in regulating various processes in the 
developing nervous system, such as neuron survival, cell migration, 
axon growth, and synapse formation (Mount et al., 1995; McAlhany 
et al., 1997, 1999; Paratcha and Ledda, 2008). It acts in a paracrine 
manner by pairing with the GDNF family receptor α1 (GFRα1) 
(Treanor et al., 1996). The GDNF/GFRa1 complex subsequently binds 
with the “rearranged during transfection” (RET) tyrosine kinase 
receptor or the neural cell adhesion molecule (NCAM), though with 
lower affinity to activate either the MAPK or P13K–Akt pathway 
(Treanor et al., 1996; Trupp et al., 1996; Paratcha and Ledda, 2008; 
Sergaki and Ibáñez, 2017).
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GDNF, expressed by PCs, has been shown to be crucial for the 
survival of molecular layer interneurons (MLIs) during postnatal 
cerebellar development (Sergaki and Ibáñez, 2017). It binds the 
GFRa1-RET receptor complex on MLIs in a cell-autonomous manner 
to stimulate IN survival. The absence of either receptor leads to the 
loss of MLIs, decreased GABAergic inputs to PC dendrites, and an 
increase in PC firing rate, subsequently resulting in compromised 
motor learning as well as eyeblink conditioning (Sergaki and Ibáñez, 
2017). Additionally, GDNF has neurotrophic capacities in cultured 
PCs as it aids spine formation and thickening of the dendritic tree as 
well as in CGNs as it increases survival of these neurons (Mount et al., 
1995; Subramaniam et al., 2008).

GDNF in cerebellar-related 
neurodevelopmental disorders

GDNF has been implicated in several cerebellar-related 
neurodevelopmental disorders including schizophrenia and 
ADHD. For example, serum of schizophrenia patients shows reduced 
levels of GDNF compared to healthy controls (Tunca et al., 2015). 
Conversely to schizophrenia, plasma levels of GDNF in children with 
ADHD are markedly increased (Shim et al., 2015; Bilgiç et al., 2017). 
Although the levels of GDNF are altered in both schizophrenia and 
ADHD children, both studies measured circulation levels of GDNF 
suggesting that this alteration might not be restricted to the cerebellum 
but a global nervous system impairment.

Furthermore, GDNF might also play a role in congenital muscular 
dystrophy (CMD). CMD encompasses a group of genetic muscle 
diseases, characterized by muscle weakness, hypotonia, and muscle 
atrophy and often accompanied by respiratory complications as well 
as intellectual disability (Bertini et al., 2011). In a mouse model of 
CMD, it was found that GDNF expression was markedly enhanced in 
both PCs and CGNs (Sakuma et al., 2002). Since GDNF is a potent PC 
survival agent, such elevated expression levels may be the result of a 
compensatory mechanism due to PC degeneration. Conversely, 
exuberant levels of GDNF may be  neurotoxic to the PCs and 
contribute to cerebellar degeneration.

NGF

NGF expression has been shown in many brain regions, most 
prominently in the cerebellum (Shelton and Reichardt, 1986). Studies 
from our and other groups have reported expression of NGF in CGNs 
(Matsui et al., 1990; Cohen-Cory et al., 1993; Kisiswa et al., 2018). 
NGF can bind two distinct receptors, TrkA and p75NTR, where 
activation of TrkA induces multiple signaling pathways such as 
PI3K-Akt and MAPK that regulate cellular survival, differentiation, 
and neurite outgrowth (Crowder and Freeman, 1998; Kaplan and 
Miller, 2000). The proform of NGF, proNGF is thought to induce 
apoptosis when bound to p75NTR in the presence of sortilin, but also 
acts as a growth factor and induces neurite outgrowth when bound to 
TrkA in the absence of p75NTR (Nykjaer et al., 2004; Buttigieg et al., 
2007). In the cerebellum, p75NTR is expressed in PCs and CGNs (Pioro 
and Claudio Cuello, 1988; Kisiswa et al., 2018). TrkA, on the other 
hand, is not expressed in the healthy cerebellum, indicating that NGF 
signals through p75NTR to exert its neurotrophic capacities.

NGF has been implicated as a differentiation and a survival factor 
for PCs in vitro in the presence of BDNF/TrkB signaling support 
(Cohen-Cory et al., 1991; Legrand and Clos, 1991; Mount et al., 1998; 
Florez-McClure et al., 2004). Not only in PCs, NGF also promotes the 
proliferation of immature granule cells and the postmitotic survival of 
newly differentiated CGNs (Legrand and Clos, 1991; Muller et al., 
1994). The in vitro and in vivo survival effect of NGF on CGNs is 
RIP2-dependent and leads to an increase in NF-κB activity 
(Khursigara et al., 2001). In the absence of RIP2, however, NGF can 
induce JNK-dependent apoptosis (Kisiswa et al., 2018). The ability of 
the NGF-p75NTR complex to induce cell death in CGNs is normally 
suppressed or masked by concurrent activation of NF-kB signaling 
(Vicario et al., 2015). proNGF, on the other hand, displays proapoptotic 
activity through the increase of c-Jun phosphorylation via the 
JNK-dependent pathway. Therefore, NGF and proNGF function in an 
antagonistic manner, and their balance is key deterministic in CGN 
survival during postnatal cerebellar development. It is worth noting 
that immature granule neuron-derived NGF can induce an increase 
in intracellular calcium through the ryanodine receptor, which is 
followed by a rapid release of glutamate via the p75NTR-dependent 
pathway. Such release of glutamate from PF terminals is important for 
the strengthening of PF-PC synapses (Numakawa et al., 2003).

NGF in cerebellar-related 
neurodevelopmental disorders

ADHD has recently been associated with the cerebellum, although 
the degree of cerebellar contribution to ADHD pathophysiology 
requires further studies (Mackie et al., 2007; Sathyanesan et al., 2019). 
Nevertheless, the levels of NGF in ADHD animal models and in 
children with ADHD is significantly increased in blood samples 
(Clemow et al., 2000; Syed et al., 2007; Tiveron et al., 2013; Guney 
et al., 2014; Bilgiç et al., 2017). However, like GDNF, the current data 
indicate that the alteration of NGF in these patients is a global effect 
and not cerebellar-specific. Considering the beneficial effect of NGF 
on cerebellar neurons, we speculate that the increase of NGF could 
be  a compensatory mechanism to protect the cerebellum from 
impairment caused by ADHD.

Patients with multiple sclerosis (MS) and animal models of 
experimental autoimmune encephalomyelitis (EAE) often display 
cerebellar ataxia. This pathophysiological phenomenon is partly 
caused by abnormal PC firing as a result of an imbalance in sodium 
channel expression. NGF acting via p75NTR has the ability to modulate 
the expression of sodium channel Nav1.8  in PCs and, therefore, 
contribute to the regular PC firing rate. In a murine EAE model, it was 
revealed that levels of NGF and p75NTR are increased which leads to 
the upregulation of Nav1.8 channels (Damarjian et al., 2004).

Neuregulins

Neuregulins are a group of trophic factors that are part of the large 
EGF superfamily and have an essential role in both the developing 
brain and during synaptic plasticity in the adult brain (Wong and 
Guillaud, 2004). The neuregulins which are composed of neuregulin-1 
(or heregulin), neuregulin-2, neuregulin-3, and neuregulin-4 interact 
with the ErbB family of receptors (Chang et  al., 1997). Both the 
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neuregulins and their receptors are expressed in a spatiotemporal 
manner within the developing cerebellum. Neuregulins and ErbB2, 
ErbB3 and ErbB4 are all expressed in CGNs while ErbB4 is also 
expressed in radial glial cells such as the Bergmann glia (Rio et al., 
1997; Ozaki et  al., 1998; Rahman et  al., 2019). In the maturing 
cerebellum, neuregulins are concentrated in glutamatergic MFs that 
innervate CGNs located in the IGL (Ozaki et al., 1997). Several studies 
found that in murine primary cultures of CGN, neuregulin-1 signals 
through the ErbB4 receptor to regulate its interaction with PSD95 
which is crucial for CGN differentiation. The C-terminal part of the 
ErbB4 receptor associates with PSD95 leading to the assembly of the 
nitric oxide synthase (NOS)-1 complex, a process which is thought to 
be mediated via the MAPK pathway (Krainock and Murphy, 2001a,b; 
Murphy and Bielby-Clarke, 2008). Neuregulin-1 also promotes 
differentiation and morphogenesis of Bergmann glia which in turn, 
enhances migration of CGNs (Rio et al., 1997; Yacubova and Komuro, 
2002; Buffo and Rossi, 2013).

One in vivo study found that neuregulin–ErbB signaling initiates 
dendritogenesis and maturation of postsynaptic compartments in the 
developing murine cerebellum (Rieff and Corfas, 2006). Neuregulins 
have the ability to serve as cell adhesion molecules on CGNs for 
synaptic recognition of MFs, leading to the formation of the cerebellar 
MF system (Ozaki et al., 2000; Ozaki, 2001). These growth factors are 
not only essential for glutamatergic circuit wiring as they have also 
been ascribed a role in the GABA system as well. More specifically, 
neuregulin-1 through activation of the ErbB4 receptor tyrosine kinase 
effectively induces expression of the GABAA receptor β2 subunit via 
the MAPK, PI3K, and the cyclin-dependent kinase-5 (cdk5) pathway 
in primary CGN cultures (Xie et al., 2004). Activation of cdk5 leads 
to recruitment of PSD95 which in turn facilitates the effects of 
neuregulin through its interaction with ErbB4. As a result, this 
mechanism functions as a positive feedback system to neuregulin 
signaling and consequent expression of the GABAA β2 subunit (Xie 
et al., 2007). Extrinsic delivery of neuregulin causes an increase in the 
GABAA receptor β2 subunit expression of CGN cultures in vitro which 
is paralleled by an increase in functional GABAA receptors (Rieff 
et al., 1999).

It has been reported that neuregulin can mediate synaptogenesis 
via two distinctive mechanisms. First, the soluble form of neuregulin 
can be proteolytically cleaved from the membrane-associated form as 
a result of protein kinase activation. This soluble form is then able to 
transsynaptically and in a paracrine manner act as a neurotrophic 
factor and regulate the expression of the NMDA receptor subunit 
NR2C (Ozaki et  al., 2000). The soluble form of neuregulin-1 can 
be  shedded in a frequency-dependent manner due to electrical 
stimulation in both CGN and pontine nucleus neurons that form MF 
afferents and synapse onto CGN. Such cleaved neuregulin-1 is thus 
important for synaptic transmission across MF-CGN synapses (Ozaki 
et al., 2004). Second, the membrane-anchored form in both CGNs and 
MF terminals can serve as a cell-recognition molecule to stimulate 
MF-CGN synapse formation (Ozaki et al., 2000). However, there is 
some debate on neuregulins’ role in synaptogenesis as one study found 
that neuregulin/ErbB signaling to CGNs is dispensable for the normal 
development of their synaptic inputs as compared to previous in vitro 
experiments (Gajendran et  al., 2009). Nevertheless, expression of 
NR2C is specifically induced during synaptogenesis of CGNs within 
the IGL, leading to dramatic changes in the NMDA receptor 
composition during development. As neuregulins are expressed in the 

MFs that innervate CGNs located in the IGL, one study found that 
cultured cerebellar slices stimulated with a neuregulin isoform 
dramatically increase the expression of NR2C messenger RNAs. This 
mechanism is mediated by the binding of neuregulins onto its 
receptors ErbB2 and ErbB4 located on CGNs. In conclusion, cell-
autonomous signaling of NRG1/ErbB can modulate both 
glutamatergic and GABAergic neurotransmitter receptor composition 
during development and regulate synaptic plasticity (Ozaki et  al., 
1997; Fenster et al., 2012).

Neuregulins in cerebellar-related 
neurodevelopmental disorders

Multiple studies have suggested that the neuregulin-1 gene 
(NRG1) serves as an important risk gene for schizophrenia that is 
thought to be  characterized by deficits in glutamatergic 
neurotransmission (Kircher et al., 2009; Nickl-Jockschat et al., 2014). 
In patients with schizophrenia, it was found that gene expression of 
the NMDA receptor subunit 2D (NMDAR2D) was significantly 
increased in the cerebellum, which results in a hyperexcitability of the 
NMDA receptor, and which may be a secondary upregulation due to 
a dysfunctional receptor. In patients with the NRG1 risk variant, they 
found that expression of the NMDAR2C subunit was significantly 
reduced which could lead to hypofunctionality of the NMDA receptor, 
that in turn may lead to dysfunction of the GABA system (Schmitt 
et  al., 2010). Accordingly, from post-mortem studies, there is 
accumulating evidence that GABAergic signaling is decreased in the 
cerebellum of schizophrenia patients (Yeganeh-Doost et al., 2011). 
Not only NRG1, but also its receptors, ErbB2 and ErbB4 are candidate 
susceptibility genes for schizophrenia. While deletion of ErbB2 and 
ErbB4 does not affect brain anatomy on a macroscopic scale, it can 
lead to impaired spine maturation as well impaired interactions with 
postsynaptic scaffold proteins, such as PSD95, with glutamate 
receptors which in turn leads to behavioral abnormalities (Barros 
et al., 2009).

MB is associated with decreased activity of the mitogen sonic 
hedghehog (shh). Under normal conditions, shh downregulates the 
expression of ErbB4, while in MB subsets, there is accumulation of 
both ErbB2 and ErbB4. This leads to both anti-apoptotic and loss of 
cell growth arrest signaling in neuronal progenitors of the cerebellum 
(Gilbertson et al., 1998; Di Marcotullio et al., 2006).

NT-3

In the developing cerebellum, NT-3 and its high-affinity tyrosine 
kinase receptor TrkC are expressed by both the differentiated CGNs 
of the IGL and their precursors in the EGL as well as in PCs (Neveu 
and Arenas, 1996; Doughty et al., 1998). In the rodent cerebellum, 
levels of NT-3 markedly decrease after the first 10 postnatal days 
(Katoh-Semba et al., 2000).

Formation of the PC arbor and competitive dendritogenesis in the 
mouse cerebellum is regulated by NT-3, expressed in CGNs, a process 
which is TrkC-dependent (Neveu and Arenas, 1996; Joo et al., 2014; 
Tepper et al., 2020). In cultured PCs, NT-3 effectively increases cell 
numbers via the PKC-dependent pathway while enhancing their 
survival and phenotypic differentiation (Lärkfors et al., 1996; Mount 
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et al., 1998). Concomitant to BDNF, CAPS2-mediated NT-3 release is 
known to be involved in the development and maturation of synapses 
and the balance between inhibitory and excitatory synapses (Sadakata 
et al., 2014; Shinoda et al., 2019). In addition, NT-3 promotes initial 
olivary axonal outgrowth to the cerebellar cortex and early CF 
synaptogenesis onto PCs (Sherrard and Bower, 2002).

NT-3 also has an important role in CGN development. In the 
murine cerebellum, NT-3 promotes the differentiation of premigratory 
granule cells, accelerating the cell cycle exit (Neveu and Arenas, 1996; 
Doughty et al., 1998; Takumi et al., 2005). It does this via either direct 
autocrine signaling, indirect via PCs, or by a combination of both and 
synergistically to BDNF (Minichiello, 1996). More recently, it was 
found that proNT-3, and not mature NT-3, affects GCP proliferation 
and differentiation. ProNT-3 binds to p75NTR and the co-receptor 
SorCS2, which is a member of the sortilin receptor family, to 
antagonize the shh-induced proliferation of GCPs and initiate cell 
cycle exit (Zanin et al., 2016, 2019; Zanin and Friedman, 2022). NT-3, 
on the other hand, aids the migration of newly differentiated GCPs 
from the EGL in vivo, an effect which is antagonized by p75NTR (Neveu 
and Arenas, 1996). Since GCPs express p75NTR during their 
proliferative but not their migratory state, p75NTR effectively prevents 
GCPs from migrating by maintaining elevated levels of active RhoA, 
a member of the Rho-GTPase family that plays a role in neuronal 
migration (Zanin and Friedman, 2022). Once CGPs have differentiated 
to CGNs and completed proliferation, NT-3 provides maturation 
support to these neurons (Segal et al., 1992). In vitro, NT-3 is known 
to support the survival of mature CGNs via TrkC (Bates et al., 1999; 
Katoh-Semba et al., 2000; Joo et al., 2014) and provide neuroprotective 
capacities in low K+ cultured CGNs (Kubo et al., 1995; Shimoke et al., 
1997; Bates et al., 1999; Katoh-Semba et al., 2000; Joo et al., 2014).

NT-3 in cerebellar-related 
neurodevelopmental disorders

Abnormalities in the expression of NT-3 have been associated 
with autism spectrum disorders. Exorbitant levels of NT-3 affect 
normal axonal targeting and synapse formation, and result in a 
decrease in PC numbers, all of which are effects seen in ASD pathology 
(Sajdel-Sulkowska et al., 2009, 2011). CAPS2 is essential for the release 
of NT-3 from CGNs, however, in patients with ASD, an alternative 
splice variant of CAPS2 that lacks exon 3, namely dex3, alters the 
release of NT-3. In a representative mouse model, NT-3 is markedly 
reduced in the axons of CGNs, an effect that results in reduced PC 
arborization and GCP proliferation. This leads to both a smaller 
vermal volume, as well as impaired paired-pulse facilitation at PF-PC 
synapses which is in line with autistic phenotypes (Sadakata 
et al., 2014).

NT-4

NT-4 has similar properties to BDNF within the developing 
cerebellum, although its expression levels peak higher during the first 
postnatal week (Proenca et al., 2016). NT-4 signals predominantly 
through the TrkB receptor and has a functional role in both CGN and 
PC maturation as well as survival and inhibitory synaptogenesis 

(Proenca et al., 2016). On the one hand, NT-4 improves the survival 
of isolated PCs (Morrison et al., 1988) as well as their phenotypic 
differentiation in vitro (Morrison et al., 1988; Lärkfors et al., 1996). In 
CGNs, on the other hand, NT-4 promotes survival as well as neurite 
extension and dendritic arborization in a similar manner to BDNF, via 
the TrkB-dependent pathway (Gao et  al., 1995). In murine CGN 
cultures, NT-4 has a cytoprotective capacity and can circumvent 
glutamate-induced oxidative death via activation of the PI3K or 
MAPK pathway (Kubo et al., 1995; Shimoke et al., 1997; Skaper et al., 
1998). NT-4 has similar capacities to BDNF and NT-3 in promoting 
correct circuit wiring of the cerebellar cortex and, concomitant to 
BDNF, NT-4 aids inhibitory synaptogenesis (Seil, 1999). Additionally, 
NT-4 promotes initial olivary axonal growth to the cerebellar plate 
and CF synaptogenesis as well as axonal outgrowth and survival of 
pontocerebellar MF neurons (Rabacchi et  al., 1999; Sherrard and 
Bower, 2002).

NT-4 in cerebellar-related 
neurodevelopmental disorders

In a murine model for CMD, expression of NT-4 is markedly 
reduced in the cerebellum, in the spinal cord, and hindlimb muscles. 
Such a marked decrease may contribute to the progressive 
degeneration of muscle fibers and, due to its role in CGN and PC 
survival, cerebellar hypoplasia (Sakuma et al., 2002).

PGRN

PGRN is the precursor protein for granulin, expressed in both the 
periphery and central nervous system (Townley et  al., 2018). The 
propeptide is mainly delivered into lysosomes as it plays a role in 
regulating protein homeostasis via the lysosomal pathway (Paushter 
et  al., 2018). It has also been hypothesized to have neurotrophic 
capacities and function as an autocrine neuronal growth factor (Van 
Damme et al., 2008; Paushter et al., 2018). The expression levels of 
PGRN are thought to be  regulated by the sortilin receptor which 
mediates its lysosomal endocytosis (Kao et al., 2017). However, PGRN 
can also exert its neurotrophic properties in a sortilin-independent 
manner, via prosaposin which carries PGRN into the lysosomes and 
regulates its expression (Zhou et al., 2015). PGRN is highly expressed 
in the cerebellar PCs during the late stages of postnatal development 
(Matsuwaki et al., 2015).

Matsuwaki et al. (2015) found that in PGRN-deficient mice, the 
PC dendritic density is significantly increased, possibly due to a lack 
of synaptic pruning, while no changes occur in the number of PCs. 
Taken together, this suggests that PGRN affects PC dendritogenesis 
but not neurogenesis and/or survival. However, in a study by Wang 
et  al. (2022), it was found that PGRN aids neuronal survival and 
synaptic development via activation of the PI3K-Akt signaling 
pathway. In accordance with its role in synapse formation, PGRN also 
plays a role in defining CFs as a PC-derived regulator, by both 
counteracting redundant CFs and reinforcing the strongest CF inputs 
via the sortilin-dependent pathway. This retrograde mechanism is 
driven by voltage-gated calcium channels and the mGLuR1 signaling 
cascade (Uesaka et al., 2018).
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PGRN in cerebellar-related 
neurodevelopmental disorders

PGRN has previously been implicated in cerebellar-associated 
degenerative but also in neurodevelopmental disorders (Matsuwaki 
et al., 2015; Simonati and Williams, 2022). It has been shown that 
PGRN is essential for PC dendritogenesis and CF-PC synaptogenesis 
and that abnormalities in PGRN expression may lead to synaptic 
disturbances as well as behavioral deficits, such as impaired motor 
function and coordination, reduced social preference, and increased 
repetitive behaviors (Matsuwaki et al., 2015; Uesaka et al., 2018; Wang 
et  al., 2022). These behavioral phenotypes are all characteristic of 
those seen in ASD patients. Wang et al. (2022) found that abnormal 
spatiotemporal expression of PGRN is related to neurodevelopmental 
impairments in an ASD murine model.

TGF-β

TGF-β is a multipotent cytokine which is generally induced by 
acute or chronic brain injury, however, it also has cell differentiation, 
proliferation and apoptotic capacities during development (Dobolyi and 
Palkovits, 2008). Nonetheless, TGF- β does not only exert a 
neuroprotective function, as it can also induce neuronal and glial 
degeneration after injury (Wang et al., 1995; Yamashita et al., 1999). 
TGF-β exists as three isoforms in mammals, namely TGF-β1, TGF-β2, 
and TGF-β3 (Voisin et al., 2020). Under normal conditions, TGF-β is 
scarcely expressed within the cerebellum, however, TGF-β2 expression 
can be found in GCPs of the EGL and post-mitotic CGNs located in the 
IGL of the developing cerebellar cortex until postnatal day 10. It does 
remain expressed in PCs during both development and adulthood 
(Constam et al., 1994; Kane et al., 1996). TGF-β1 expression, on the 
other hand, is low during early postnatal stages but increases after 
postnatal day 12 and remains high until postnatal day 30 (Araujo et al., 
2016). TGF- β signaling is initiated by the binding of extracellular 
TGF-β ligands to their respective receptors forming a complex. This 
complex formation allows phosphorylation of Smad proteins which 
then translocate to the cell nucleus to regulate the expression of multiple 
early target genes, including those that have a role in cell proliferation 
and differentiation, for example ID1-3, CDKN1A, OVOL1 and JUNB 
(Kowanetz et al., 2004; Zhang et al., 2016). However, their effects on 
cerebellar neurons are yet to be unraveled. We, therefore, propose that 
more studies are warranted for delineating cellular mechanisms 
regarding cerebellar-related neurodevelopmental disorders.

Deletion of Smad4, a critical mediator of TGF-β, results in 
Purkinje and GABAergic interneuron cell loss which leads to 
neurobehavioral deficits, including motor dysfunction (Zhou et al., 
2003). Another study found that Smad2, another mediator of TGF-β 
signaling and highly expressed in the mouse brain during early 
postnatal development, is necessary for proper cerebellar foliation. 
Absence of Smad2 results in aberrant PC dendritic arborization and 
cell loss as well as other cerebellar deficits such as increased apoptosis 
and defect migration of CGNs which leads to motor dyscoordination 
(Wang et al., 2011).

TGF-β has a pro-survival and pro-growth effect on GCPs (Elvers 
et al., 2005). TGF-β1 effectively increases the number of glutamatergic 
synapses in CGN cultures, an effect which is dependent on binding to 
its receptor, TβRII. TGF-β1 thus mediates excitatory synapse 
formation in CGNs (Araujo et al., 2016). Moreover, TGF-β1 has the 

capacity to change the electrophysiological properties and voltage-
dependent ion currents of CGNs after injury which leads to functional 
changes in the CNS (Ondáčová et al., 2017). However, TGF-β can also 
serve as a pro-apoptotic agent in low K+ cultured CGNs (de Luca et al., 
1996a). More specifically, TGF-β1 has a neurotoxic effect on mixed 
neuronal and astrocytic cultures as the CGNs become dependent on 
astrocytes for survival. TGF-β1 acts as a cytokine and inhibits the 
ability of astrocytes to clear glutamate, which leads to an increase in 
the glutamate concentration within the media that is toxic to the 
CGNs and eventually decreases their survival (Brown, 1999). TGF-β2, 
on the other hand, differently regulates proliferation and survival of 
CGNs, depending on the media conditions. TGF-β2 functions as a 
proliferative agent in serum-treated media, while it inhibits 
proliferation in serum-free media, indicating that as it requires 
exogenous regulatory factors (Constam et al., 1994; Kane et al., 1996).

TGF-β in cerebellar-related 
neurodevelopmental disorders

MB is thought to arise from disruptions in cerebellar development 
and growth factors, such as TGF-β, are thought to play a role in its 
progression (Marino, 2005; Roussel and Hatten, 2011; Santhana 
Kumar et al., 2018). The canonical TGF-β signaling pathway involves 
activation of Smad3 in a subset of GCPs that possibly represents the 
putative cells of origin for MB (Aref et al., 2013).

In a murine model of autism, TGF-β1 expression is significantly 
decreased within the cortex, hippocampus, and cerebellum. This is in 
line with a previous study which found reduced levels in patients with 
ASD (Ferretti and Hollander, 2015; Xu et al., 2017).

Cerebellar ataxia (CA) is usually accompanied by microglia-
mediated neuroinflammation, yet how it contributes to cerebellar 
pathogenesis remains unsolved. In one study of CA model rats, it was 
found that exogenous administration of anti-inflammatory TGF-β1 
reduces neuronal loss and microglial activation in both brain stem and 
cerebellum, and consequently ameliorates motor deficits as seen in CA 
(Cao et al., 2020). In another study of cerebellar ataxia, it was found 
that TGF-β1 is significantly upregulated, likely as a result of increased 
neuroinflammation (Jiang et al., 2015).

Conclusion

Neurotrophic factors and their receptors exert different cellular 
functions, and their spatiotemporal expression is crucial for the normal 
development of the cerebellar cytoarchitecture. In this review, we mainly 
focused on the purpose of these factors during the postnatal 
development of cells within the cerebellar cortex. However, several are 
also expressed during adulthood and play a role in both short-term and 
long-term synaptic plasticity. Because of their multifaceted features in 
neuronal differentiation, survival, synaptogenesis, and circuit wiring, it 
is inferred that the ablation of these factors can lead to serious defects 
on the tissue, cellular and molecular levels. A range of neurological 
disorders with a cerebellar component and abnormalities in either 
neurotrophic factor expression and/or activity have been discussed. It 
is important to note that this is not restricted to motor disorders, which 
are known to involve the cerebellar system, but also non-motor 
disorders. This indicates that the cerebellum, supplementing its role in 
motor performance, also plays a crucial role in cognitive and emotional 
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development. Further studies regarding neurotrophic factors and the 
effector downstream signaling mechanisms within the cerebellar system 
could illuminate whether they might serve as pharmacological agents 
to moderate certain disease models.
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