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Complex regional pain syndrome characterized by severe pain and dysfunction 
seriously affects patients’ quality of life. Exercise therapy is gaining attention 
because it can effectively relieve pain and improve physical function. Based on 
the previous studies, this article summarized the effectiveness and underlying 
mechanisms of exercise interventions for complex regional pain syndrome, 
and described the gradual multistage exercise program. Exercises suitable for 
patients with complex regional pain syndrome mainly include graded motor 
imagery, mirror therapy, progressive stress loading training, and progressive 
aerobic training. In general, exercise training for patients with complex regional 
pain syndrome not only alleviates pain but also improves physical function and 
positive mental status. The underlying mechanisms of exercise interventions for 
complex regional pain syndrome include the remodeling of abnormal central 
and peripheral nervous system, the regulation of vasodilation and adrenaline 
levels, the release of endogenous opioids, and the increased anti-inflammatory 
cytokines. This article provided a clear explanation and summary of the research 
on exercise for complex regional pain syndrome. In the future, more high-quality 
studies with sufficient sample sizes may provide more exercise regimens and 
better evidence of efficacy.
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1. Introduction

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by 
autonomic and inflammatory features and usually affects the distal limb (Bruehl, 2015; Smart 
et al., 2016; Goebel et al., 2019). The pathogenesis of this disorder is not fully understood, but it 
is usually triggered by a limb injury, such as trauma or surgery with or without specific nerve 
injuries. CRPS may develop after major trauma, minor injury, or surgery, and progress from 
self-limited and mild symptoms to chronic disease (Urits et al., 2018). Female and individuals 
with upper extremity injuries or suffered from a high-energy trauma are at a higher risk of 
developing CRPS (de Mos et al., 2007; Petersen et al., 2018). Patients with CRPS usually suffer 
from skin temperature changes allodynia, hyperalgesia, oedema, and impaired motor function 
(Petersen et al., 2018). In many instances, the development of CRPS is debilitating and severely 
reducing patients’ life quality, placing an enormous burden on their families (van Velzen et al., 
2014). Although some symptoms of CRPS may get better spontaneously, aggressive treatment 
should not be  delayed because progressive deterioration of symptoms are related to poor 

OPEN ACCESS

EDITED BY

Lingxiao Deng,  
Indiana University, United States

REVIEWED BY

Jacqueline Sagen,  
University of Miami, United States

*CORRESPONDENCE

Xue-Qiang Wang  
 wangxueqiang@sus.edu.cn  

Xuan Su  
 851625575@qq.com

†These authors have contributed equally to this 
work

RECEIVED 16 February 2023
ACCEPTED 17 April 2023
PUBLISHED 03 May 2023

CITATION

Li T-S, Wang R, Su X and Wang X-Q (2023) 
Effect and mechanisms of exercise for complex 
regional pain syndrome.
Front. Mol. Neurosci. 16:1167166.
doi: 10.3389/fnmol.2023.1167166

COPYRIGHT

© 2023 Li, Wang, Su and Wang. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Mini Review
PUBLISHED 03 May 2023
DOI 10.3389/fnmol.2023.1167166

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2023.1167166&domain=pdf&date_stamp=2023-05-03
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1167166/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1167166/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1167166/full
mailto:wangxueqiang@sus.edu.cn
mailto:851625575@qq.com
https://doi.org/10.3389/fnmol.2023.1167166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2023.1167166


Li et al. 10.3389/fnmol.2023.1167166

Frontiers in Molecular Neuroscience 02 frontiersin.org

prognosis (Bean et  al., 2014; Urits et  al., 2018). Appropriate 
management may hasten the recovery of CRPS (Bean et al., 2016). The 
common treatment of CRPS is symptomatic including physical 
therapies, occupational therapies, psychological therapies, anti-
inflammatories, neuropathic pain medications, and interventional 
procedures (Urits et al., 2018; Harden et al., 2022). Exercise therapy is 
an effective and affordable component of physical therapy in the 
management of CRPS (Smidt et al., 2005; McCormick et al., 2015). 
Previous studies have reported that exercise can reduce pain and 
edema volume and improve overall function in daily life activities for 
patients with CRPS (Sherry et  al., 1999; McCormick et  al., 2015; 
Sezgin Ozcan et  al., 2019; Harden et  al., 2022). Exercise can also 
reduce negative mood and improve patients’ general well-being. 
However, the potential therapeutic mechanism of exercise intervention 
for CRPS is lacking. This review summarizes the effectiveness of 
exercise on CRPS and comprehensively discusses the underlying 
mechanisms behind it to help researchers better understand the 
progress in this area.

2. Effect of exercise on CRPS

For patients with CRPS, starting exercise rehabilitation early 
provides the best probability of a good outcome and minimizes 
distress according to the practical guidelines (Goebel et  al., 2019; 
Harden et al., 2022). The guideline for the management of CRPS from 
the European Pain Federation Working Group in 2019 recommended 
that patients with CRPS take appropriate, generally gentle, and graded 
exercises as soon as possible in the presence of pain and avoid 
immobilization of the CRPS limb (Goebel et  al., 2019). Another 
guideline published in 2022 recommended that the principle of 
functional restoration for CRPS is based on a gradual and steady 
advancement: from activation of premotor and primary motor 
cortices to very gentle active movements, to stress loading and aerobic 
training, then to movements that comprise more active load bearing, 
and finally to vocational rehabilitation, thereby preparing to resume 
patients’ daily life and work (Harden et al., 2022).

Graded motor imagery consists of limb laterality recognition, 
motor imagery, and consecutive mirror therapy, which is designed 
specifically for patients with longstanding CRPS to shorten the 
prognostic course of CRPS (Moseley, 2004). Mirror therapy is among 
the most effective treatments to improve functional impairment for 
patients with acute CRPS (Cacchio et  al., 2009a). Moseley (2006) 
reported that 6 weeks of graded motor imagery training significantly 
improved pain severity and functional impairment in patients with 
CRPS, and the effect was maintained at 6 months of follow-up. Mirror 
therapy and graded motor imagery can significantly relieve pain and 
improve motor control by helping the patients focus on the affected 
extremity, increase perceived ownership of that extremity, reduce 
kinesiophobia, and correct the mismatch between the motor and 
sensory systems (Cacchio et al., 2009a; Mccabe, 2011). Gentle active 
movements like initiating from active range of motion are performed to 
manage edema and conduct preliminary desensitization (Stanton-Hicks 
et al., 1998). A case reported that a female patient with CRPS-type 1 had 
pain and edema relief and function improvement after 20 days of range 
of motion exercise (Oh et al., 2019). Stress loading and aerobic training 
are also recommended. Although stress loading may initially increase 
symptoms in the affected extremities, pain and swelling usually decrease 
after several days (Harden et al., 2022). Watson and Carlson (1987) 

reported that 3 years of stress loading training for 41 CRPS patients 
remarkably improved pain and dysfunction, enhanced muscle strength, 
and greatly return to daily activities. Pain exposure physical therapy 
involves a progressive loading exercise program and management of 
pain avoidance behavior. Two studies found that 4 weeks to 3 months 
of pain exposure physical therapy for patients with CRPS-type 1 
substantially reduced pain and functional limitations (van de Meent 
et al., 2011; Barnhoorn et al., 2015). Aerobic training contributes to 
manage edema, optimize range of motion, and improve circulation. A 
single-blind randomized controlled trial concluded that 4 weeks of 
aerobic exercise significantly reduced the signs and symptoms of CRPS-
type 1 compared with conventional therapy (Topcuoglu et al., 2015). In 
addition, aquatic therapy is especially valuable for patients with CRPS 
(Harden et  al., 2022). The gentle compressive force provided by 
hydrostatic pressure gentle around the extremity may reduce the 
widespread edema, dampen sympathetic nerve activity, and finally 
relieve pain (Yamazaki et al., 2000; Hall et al., 2008; Harden et al., 2022). 
Aquatic therapy is also beneficial to reduce extremity weight loading, 
and buoyancy may facilitate early recovery of functional activities 
(Saquetto et al., 2019; Harden et al., 2022). Sezgin Ozcan et al. (2019) 
reported that patients with CRPS-type 1 achieved better improvements 
on neuropathic pain and edema volume after performing active range 
of motion exercises in the water compared with the conventional 
rehabilitation program. Details of studies on exercise interventions for 
CRPS are presented in Table 1.

3. Underlying therapeutic mechanisms 
of exercise on CRPS

Abnormal remodeling of the central nervous system is common 
in chronic pain, and CRPS is often secondary to damage of the 
nervous system, such as stroke (Baliki et al., 2011; Yang and Chang, 
2019; Martins et al., 2022). When nervous system injury or abnormal 
nervous system function (central sensory signal amplification) occurs, 
the spinal cord and brain regions involved in pain processing can 
undergo great changes (Costigan et al., 2009; Coppieters et al., 2016). 
Patients with CRPS often present with extensive hypersensitivity to 
pain, decreased pain threshold, and increased duration of pain 
(Mendell, 2014; Birklein et al., 2015). Exercise can induce hypoalgesia 
(Rice et al., 2019; Wewege and Jones, 2021), and the analgesic effect of 
proximal motor site and distal nonmotor sites induced by aerobic 
exercise showed an overall effect (Zheng et al., 2021). Therefore, the 
analgesic effect of exercise on patients with CRPS may also involve a 
combination of various mechanisms (Figure 1).

3.1. Improvement of sensitization of the 
central and peripheral nervous systems

CRPS pain and punctuate mechanical hyperalgesia can predict the 
cortical reorganization in the central nervous system (Maihöfner et al., 
2003). Various studies have confirmed that exercise can regulate 
cortical reorganization (Carey et al., 2002; Pleger et al., 2005; Laible 
et  al., 2012). The magnetoencephalography showed extensive 
reorganization of the primary somatosensory cortex contralateral to 
the affected side of CRPS, and pain reduction in CRPS correlated with 
recovery from cortical reorganization (Maihöfner et al., 2003, 2004). 
Pleger et al. (2005) concluded that one to six months of behavioral 
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TABLE 1 General characteristics of clinical studies on exercise for complex regional pain syndrome.

First 
author, 
year

Participants Exercise intervention Adjuvant 
therapies

Outcomes Results

Sample size 
(women/
men)

Mean age Type Course Type Duration

Saha et al. 

(2021)
38 (1/2)

EG:59.7

CG:57.4

CRPS-type 1 

of the 

unilateral 

upper 

extremity

Time since 

stroke: EG:13.27 

mon CG:13.47 

mon

Exercise administered 

in front of mirror 

(neurodevelopmental 

facilitation techniques, 

range of motion 

exercises, stretching 

and task training)

30 min/day, 5 days/

week, 4 weeks

Continue regular 

medications

 (1) Pain: Neuropathic pain 

rating scale

 (2) Oedema: wide tape 

measure

 (3) Functional status: 

Functional independence 

measure

 (1) Achieving 35% improvement at post-

treatment (−2.14pts) and 43% 

improvement (−2.6pts) at follow-up 

(p < 0.05), significantly better than the CG 

(p < 0.05).

 (2) Significant improvement at post-treatment 

(−2.53 cm) and follow-up (−3.07 cm), 

better than the CG (p < 0.05).

 (3) Significant improvement at post-treatment 

(−15.86) and follow-up (−19.6), better than 

the CG (p < 0.05).

Sezgin Ozcan 

et al. (2019)
30 (3/2)

EG:62.6

CG:63.5

CRPS-type 1 

of the 

unilateral 

upper 

extremity

Time since 

stroke: EG: 4 

mon CG:5 mon

Active range of motion 

exercises in water

20 min/session, 5 

sessions /week, 15 

sessions

NR

 (1) Pain: VAS at rest and with 

activity

 (2) Neuropathic Pain: The 

painDETECT questionnaire

 (3) Oedema: Volumetric 

measurements

 (4) Motor recovery: 

Brunnstrom motor recovery 

stages

 (5) Functional status: 

Functional independence 

measure

 (1) Achieving 33.3% improvement at rest 

(−2pts) and 37.5% improvement during 

activity (−3pts) after the intervention 

(p < 0.05), but no significant intergroup 

difference.

 (2) Significant improvement after the 

intervention, better than the CG (p < 0.05).

 (3) Significant improvement (−40 mm) after 

the intervention, better than the CG 

(p < 0.05)

 (4) Significant improvement after the 

intervention (p < 0.05), but no significant 

intergroup difference.

 (5) Significant improvement after the 

intervention (p < 0.05), but no significant 

intergroup difference.

(Continued)
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TABLE 1 (Continued)

First 
author, 
year

Participants Exercise intervention Adjuvant 
therapies

Outcomes Results

Sample size 
(women/
men)

Mean age Type Course Type Duration

Barnhoorn 

et al. (2015)
56 (45/11)

EG:43.7

CG:43.1
CRPS-type 1 7.2 mon

Pain exposure physical 

therapy (Progressive-

loading exercise and 

management of pain 

avoidance behavior)

40 min/session, 5 

sessions

No drugs during 

intervention

 (1) Pain: VAS

 (2) Joint mobility: active range 

of motion

 (3) Disability: Pain disability 

index

 (1) Achieving 43% improvement (−2.66pts) 

after 9 months (p < 0.05), but no significant 

intergroup difference.

 (2) Significant improvement after the 

intervention, better than the CG (p < 0.05).

 (3) Significant improvement after the 

intervention (p < 0.05), but no significant 

intergroup difference.

Topcuoglu 

et al. (2015)
52 (9/11)

EG:66.0

CG:67.5

CRPS-type 1 

on the 

hemiplegic 

side

Time since 

stroke: EG:2.5 

mon CG:2.7 

mon

Upper extremity 

aerobic exercise

30 min/day, 5 days/

week, 4 weeks

 (1) Medications: 

Non-steroidal 

anti-

inflammatory 

medication, 

diclofenac Na 

and paracetamol

 (2) Others: 

Transcutaneous 

electrical nerve 

stimulation,

 (3) cold-pack, 

massage, and 

contrast baths

 (1) Pain: Neuropathic pain 

rating scale

 (2) Quality of life: Nottingham 

health profile

 (3) Mood: Beck depression 

scale

 (1) Achieving 89.9% improvement after the 

intervention (p < 0.05), significantly better 

than the CG (p < 0.05).

 (2) Significantly better than the CG (p < 0.05).

 (3) Significantly better than the CG (p < 0.05).

(Continued)

TABLE 1 (Continued)
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First 
author, 
year

Participants Exercise intervention Adjuvant 
therapies

Outcomes Results

Sample size 
(women/
men)

Mean age Type Course Type Duration

Van De Meent 

et al. (2011)
20 (NR) 38.9 CRPS-type 1 6.5 mon

Pain exposure physical 

therapy (Progressive-

loading exercise and 

management of pain 

avoidance behavior)

1 h, a maximum of 6 

sessions, 

4 weeks-3 months

No drugs during 

intervention

 (1) Maximal pain: VAS

 (2) Total pain intensity: McGill 

Pain Questionnaire

 (3) Grip strength

 (4) Disability

 (5) Walking Capacity: 

10-meter walking speed

 (6) Quality of life: Short- form 

36

 (1) Achieving 35% improvement at post-

treatment (−20pts) and 57% improvement 

(−33.1pts) at follow-up (p < 0.05), 

compared to the baseline (p < 0.05).

 (2) Significant improvement at post-treatment 

(27%) and follow-up (48%) compared to 

the baseline (p < 0.05).

 (3) Significant improvement with a smaller 

difference between sides by 52% (p < 0.05).

 (4) Achieving 60% improvement at post-

treatment compared to the baseline 

(p < 0.05).

 (5) Achieving 29% improvement at post-

treatment compared to the baseline 

(p < 0.05).

 (6) Achieving 26.9% improvement at post-

treatment compared to the baseline 

(p < 0.05).

Cacchio et al. 

(2009a)
48 (13/11)

EG:57.9

CG:58.8

CRPS-type 1 

of the 

unilateral 

upper 

extremity

EG:2.8 mon 

CG:2.6 mon
Mirror therapy

30 min (for the first 

2 weeks) and 1 h (for 

the last 2 weeks), 

4 weeks

NR

 (1) Pain: VAS (rest, movement 

and tactile allodynia)

 (2) Function: Wolf Motor 

Function Test

 (3) Disability: Motor Activity 

Log

 (1) Achieving 43% improvement at rest 

(−3.3pts), 41% on movement (−3.6pts), 

and 44% on allodynia (−3pts) after the 

intervention (p < 0.05); achieving 38% 

improvement at rest (−2.9pts), 45% on 

movement (−3.9pts), and 49% on allodynia 

(−3.3pts) at follow-up (p < 0.05); 

significantly better than the CG (p < 0.05).

 (2) Significant improvement after the 

intervention and at follow-up (p < 0.001), 

better than the CG (p < 0.01).

 (3) Significant improvement after the 

intervention and at follow-up (p < 0.001), 

better than the CG (p < 0.01).

(Continued)

TABLE 1 (Continued)
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TABLE 1 (Continued)

First 
author, 
year

Participants Exercise intervention Adjuvant 
therapies

Outcomes Results

Sample size 
(women/
men)

Mean age Type Course Type Duration

Moseley (2004) 13 (9/4)
EG:35.0

CG:38.0

CRPS-type 1 

of the 

unilateral 

upper 

extremity

Time since 

stroke: EG:12 

mon CG:15 mon

Graded motor imagery 

training (including limb 

laterality recognition, 

motor imagery, and 

mirror therapy)

2 weeks for limb 

laterality 

recognition, 2 weeks 

for motor imagery, 

2 weeks for mirror 

therapy

Continue regular 

medications

 (1) Pain: Neuropathic pain 

scale

 (2) Oedema: The girth of the 

base of the fingers

 (1) Significantly improvement compared to 

the baseline (p < 0.001).

 (2) 50% of patients improved and no longer 

fulfilled the diagnostic criteria for CRPS 

after 6 weeks training.

McCabe et al. 

(2003)
8 (5/3) 33.0 CRPS-type 1

Early stage: 3 

people 

Intermediate 

stage: 2 people 

Chronic stage: 3 

people

Mirror visual feedback Every day, 6 weeks

Opioid, non-

steroidal anti-

inflammatory drug

 (1) Pain: VAS

 (2) Vasomotor: Infrared 

thermography

 (1) Achieving 100% pain reduction in the 

early CRPS after the intervention, but not 

obvious in the intermediate CRPS and no 

change in the chronic CRPS.

 (2) Reversal of vasomotor changes and 

normalization of function in the early and 

intermediate CRPS, but no change in the 

chronic CRPS.

Pervane Vural 

et al. (2016)
30 (13/9) EG:68.9CG:61.4

CRPS-type 1 

of the upper 

extremity

Time since 

stroke: EG: 4 

mon CG:6 mon

Mirror therapy

30 min/session, 5 

sessions /week, 

4 weeks

NR

 (1) Pain: VAS

 (2) Motor recovery: 

Brunnstrom recovery stages

 (3) Motor function: the Fugl-

Meyer Assessment

 (4) Functional status: 

Functional independence 

measure-motor

 (1) Achieving 50% improvement (−3pts) after 

the intervention (p < 0.05), better than the 

CG (p < 0.01).

 (2) Significant improvement after the 

intervention (p < 0.05).

 (3) Significant improvement after the 

intervention (p < 0.05).

 (4) Significant improvement after the 

intervention (p < 0.05), better than the CG 

(p < 0.05).

Cacchio et al. 

(2009b)
24 (13/11) 62.0

CRPS-type 1 

of a paretic 

arm

Time since 

stroke:14 mon
Mirror therapy

30 min/day, every 

day, 4 weeks

No drugs during 

intervention

 (1) Pain: VAS

 (2) brush-induced allodynia

 (3) Function: Wolf motor-

function test

 (4) Oedema

 (1) Significant pain reduction (−51pts) in 88% 

of patients after the intervention (p < 0.01).

 (2) Improved after the intervention.

 (3) Improved after the intervention.

 (4) Improved after the intervention.

(Continued)

https://doi.org/10.3389/fnmol.2023.1167166
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Li et al. 
10

.3
3

8
9

/fn
m

o
l.2

0
2

3.116
716

6

Fro
n

tie
rs in

 M
o

le
cu

lar N
e

u
ro

scie
n

ce
0

7
fro

n
tie

rsin
.o

rg

First 
author, 
year

Participants Exercise intervention Adjuvant 
therapies

Outcomes Results

Sample size 
(women/
men)

Mean age Type Course Type Duration

Oh et al. 

(2019)
1 (One female) 19.0

CRPS-type 1 

of the right 

upper 

extremity

3 mon
Passive range of motion 

exercise

under sedation 

(30 min, 2 days) and 

without sedation 

(30 min, twice daily, 

18 days)

Midazolam

 (1) Pain: Neuropathic pain 

rating scale

 (2) Oedema: the 

circumference of hand, 

wrist, and elbow

 (3) Strength: Manual muscle 

test

 (4) Function: Jebsen–Taylor 

hand function test

 (1) Achieving 33% improvement (−7pts) after 

intervention (p < 0.05).

 (2) Decreased 5 cm at hand, 2 cm at wrist, and 

6 cm at elbow.

 (3) Significant improvement after the 

intervention (p < 0.05).

 (4) The score increased from 0 to 43.

Watson and 

Carlson (1987)
52 (25/27) 53.0 CRPS-type 1 5.4 mon

Active stress loading 

program (active 

traction and 

compression exercises)

Every day, 3 years
No drugs during 

intervention

 (1) Pain: VAS

 (2) Joint mobility: active range 

of motion

 (3) Grip strength

 (4) Daily activity level

 (1) Achieving 65% improvement (−5pts) in 

88% of patients after the intervention 

(p < 0.05).

 (2) Significant improvement in 95% of patients 

(p < 0.05).

 (3) All patients showed an improvement.

 (4) 95% of patients returned to their normal 

activities.

Sherry et al. 

(1999)
103 (87/16) 13.0 CRPS-type 1 2 mon

An intensive exercise 

program (aerobic 

exercise training, 

functional activities, 

and aquatic aerobic 

training)

4 h/day, 14 days Acetaminophen

 (1) Pain: VAS

 (2) Dysfunction: self-report 

and observation

 (1) Achieving 99% improvement(−75pts) in 

92% of patients at follow-up.

 (2) 92% of patients had full functional 

recovery at follow-up.

Wu et al. 

(1999)
26 (NR) NR CRPS-type 1 Late stage Qigong exercise

40 min/session, 6 

sessions for 3 weeks
NR

 (1) Pain: VAS

 (2) Mood: Anxiety assessment

 (1) 82% of patients reduced pain after the first 

training session, and 91% reduced pain 

after the last training session in the EG.

 (2) Significant improvement, better than the 

CG (p < 0.05).

(Continued)

TABLE 1 (Continued)
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treatments consisting of graded sensorimotor retuning resulted in a 
sustained reduction in pain intensity for CRPS patients with 
intractable pain, which was accompanied by recovery of the impaired 
tactile discrimination and cortical map size in contralateral 
somatosensory cortexes. Brain functional magnetic resonance 
imaging in patients with CRPS revealed structural or functional 
changes in thalamus, hippocampus, amygdala, somatosensory cortex, 
primary motor cortex, prefrontal cortex (PFC), anterior cingulate 
cortex (ACC), insula cortex, and other brain areas (Bolwerk et al., 
2013; Erpelding et al., 2016) involved in pain perception (Izquierdo-
Alventosa et al., 2020). Bolwerk et al. (2013) found that the functional 
connectivity of sensorimotor cortex and intraparietal sulcus was more 
diffuse within other brain regions in CRPS patients. Physical exercise 
has been proved to induce structural plasticity in the human brain 
(Colcombe et  al., 2006). Rogge et  al. (2018) found that balance 
training for 12 weeks in healthy adults increased the cortical thickness 
in the superior frontal sulcus, the superior temporal cortex, the 
posterior cingulate cortex, the visual association cortices, and the 
precentral gyrus. Several studies revealed decreased gray matter 
volume in the PFC regions in CRPS patients compared with healthy 
subjects, and the atrophy in the PFC was correlated with the duration 
and intensity of CRPS pain (Geha et al., 2008; Barad et al., 2014; Lee 
et al., 2015). Exercise increased brain activities in the PFC and the 
anterior insula (Ellingson et al., 2016), and long-term brisk walking 
can increase the gray matter volume of PFC and ACC in healthy old 
people (Colcombe et al., 2006). The white matter integrity is widely 
affected in patients with CRPS (Geha et al., 2008; Hotta et al., 2017). 
The structural integrity of the prefrontal white matter in CRPS 
patients was lower than in healthy people due to the high degree of 
pain catastrophizing (Im et  al., 2021). Mendez Colmenares et  al. 
(2021) observed positive changes in the myelinating regions after 6 
months of aerobic walking and dance intervention in healthy adults, 
thereby signifying that aerobic exercise training can induce the 
plasticity of white matter regions. Motor skill training activates 
neurons to release neurotransmitters, which promote the formation 
of mature myelinated oligodendrocytes (Gibson et al., 2014; Guo et al., 
2020). In a mice model of chronic incomplete spinal cord injury, 
exercise induced oligodendrogenesis, increased axonal 
oligodendrocyte interactions, promoted white matter plasticity, and 
thus reduced hyperalgesia and neuropathic pain behavior (Faw 
et al., 2021).

CRPS pain is also related to gray matter hypertrophy in the left 
amygdala, left posterior hippocampus, and right hypothalamus (Barad 
et al., 2014). The two regions are generally associated with emotional 
intensity encoding and limbic reward processing (Rolls, 2015; Corbett 
et al., 2020). Aerobic training was showed to increase hippocampal 
volume in young healthy adults and old people without dementia 
(Erickson et  al., 2011; Rogge et  al., 2018). There was a positive 
correlation between increasing fitness levels and changes in the 
hippocampal perfusion after 3 months of intervention (Maass et al., 
2016). Another study reported that mind–body exercise increased 
gray matter volume in the right hippocampus and in the bilateral ACC 
in people with mild cognitive impairment (Tao et al., 2019). Patients 
with CRPS were accompanied with bilateral decreases in gray matter 
density in the putamen and functional connectivity changes among 
the putamen, cerebellum and pre/postcentral gyri (Azqueta-Gavaldon 
et  al., 2020). These abnormalities affected pain processing and 
implicated movement disorders. Nagamatsu et al. (2016) reported that T
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healthy individuals with the greatest improvement in mobility had the 
greatest left putamen volume retention after 12 months of training.

3.2. Regulation of vasodilation and 
adrenaline levels

CRPS-type 1, known as reflex sympathetic dystrophy, is a 
sympathetically mediated peripheral pain condition. After the injury 
occurred, nociceptive fibers in the injured area initiate to express 
adrenergic receptors. Reduced sympathetic outflow following peripheral 
nerve injury leads to compensatory up-regulation of local adrenergic 
receptor sensitivity in the affected limb (Raja et al., 1992; Bruehl, 2010). 
This up-regulation may lead to exaggerated catecholamine 
responsiveness, which leads to excessive vasoconstriction, thereby 

causing the classic symptoms of cool blue extremity in chronic 
CRPS. Topcuoglu et al. (2015) suggested that an endothelium-related 
vasodilation mechanism caused by exercise could alleviate the situation. 
Mortensen et al. (Mortensen et al., 2014) found that 8 weeks of exercise 
training reduced the vasoconstrictor response to sympathetic nerve 
activity and improve the ability to override sympathetic vasoconstrictor 
activity. Another study indicated that physical training in patients with 
chronic heart failure restored endothelial dysfunction by enhanced 
endothelial release of nitric oxide to coordinate tissue perfusion (Hornig 
et al., 1996). In addition, catecholamine-induced nociceptive firing may 
promote central sensitization by maintaining elevated peripheral 
nociceptive input (Gracely et al., 1992). Central sensitization causes an 
increase in pain and catecholamine release that further causes a vicious 
cycle (Gracely et al., 1992). Therefore, a decrease in epinephrine levels 
caused by exercise is possibly beneficial (Kiilavuori et al., 1999). Animal 

FIGURE 1

Underlying mechanisms of exercise on complex regional pain syndrome. ACC, anterior cingulate cortex; PFC, prefrontal cortex; PCC, posterior 
cingulate cortex; TNF, tumor necrosis factor; IL, interleukin; 5-HT, 5-hydroxytryptamine.
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experiments showed a decrease in vascular sensitivity after immediate 
exercise and long-term exercise training (Izawa et  al., 1996), and 
exercise normalized sympathetic outflow by central antioxidant 
mechanisms (Gao et al., 2007). Negative emotions are also associated 
with increased catecholamine release (Charney et al., 1990; Light et al., 
1998; Bruehl, 2010). Severe depressive symptoms were related to an 
elevated level of plasma epinephrine (Harden et al., 2004). Exercise may 
indirectly regulate the release of catecholamines by improving mood, 
and finally achieve pain relief in CRPS.

3.3. Release of endogenous opioids

Endogenous opioids, such as endorphin and enkephalin, may play 
a vital role in exercise-induced reduction of CRPS pain (Misra et al., 
2017). A study suggested that failed opioid modulation in the regional 
sympathetic ganglia may trigger or contribute to CRPS-type 1 
accompanied by intense pain (Hannington-Kiff, 1991). One 
explanation for this mechanism is the characteristic of CRPS that 
complicates minor injuries, indicating that minor injury fails to start 
or maintain adequate opioid modulation in the regional sympathetic 
ganglia. The alternative explanation is the developing tolerance to 
regionally increase opioid activity (Hannington-Kiff, 1991). A study 
showed that immunoreactive β-endorphin levels in peripheral blood 
mononuclear cells were significantly lower in the CRPS patients 
(Takahashi et al., 2000). These findings suggest that regional increases 
in endogenous opioids might be effective. Adequate exercise intensity 
and duration were demonstrated to increase circulating β-endorphin 
and enkephalin levels (Goldfarb et  al., 1990). Physical therapy 
combined with active use of the affected limb may offer a conducive 
way to sustain regional opioid modulation and safeguard the limb 
from CRPS-type 1 (Hannington-Kiff, 1991). The results of Pierce et al. 
showed a remarkable increase in β-endorphin levels after 45 min of 
high-intensity aerobic exercise (Pierce et  al., 1993). Plasma beta-
endorphin concentration was elevated after light load blood flow 
restriction resistance exercise (Hughes and Patterson, 2020). Another 
study, which included 59 healthy women, found a significant increase 
in plasma proenkephalin peptide F with acute exercise, and this effect 
was greater in the combination of strength and endurance training 
group (DuPont et al., 2017). Furthermore, in a mice model of CRPS-
type 1, Martins et  al. found that swimming exercise decreased 
allodynia, and the antiallodynic effect induced by exercise was 
reversed by the pretreatment with a nonselective opioid receptor 
antagonist (naloxone), confirming the role of the endogenous opioid 
in the antiallodynic effect of exercise (Martins et al., 2013). Chromaffin 
cells of the adrenal medulla are thought to be  rich source of 
endogenous opioids. Results from a study showed that the bilateral 
adrenalectomy in mice suppressed the analgesia effects of high 
intensity swimming exercise, suggesting that endogenous opioids 
released by adrenal glands may conduce to the analgesia effect induced 
by exercise (Mazzardo-Martins et al., 2010).

3.4. Increased levels of anti-inflammatory 
cytokines

Persistent inflammatory activities in patients with CRPS lead to 
visible signs, such as edema, severe pain, temperature increase, and 

hyperalgesia. Pain catastrophizing in patients with CRPS is related to 
elevated pro-inflammatory cytokine activity in reaction to painful 
stimuli (Edwards et al., 2008). Cytokines cause pain and hyperalgesia 
through the sensitization of nociceptors and release abundant 
neuropeptides (Birklein et al., 2015). In the samples of CRPS patients’ 
serum and cerebrospinal fluid, increased levels of proinflammatory 
cytokines (interleukin–6, interleukin-12, tumor necrosis factor alpha 
receptors), decreased levels of anti-inflammatory cytokine, and 
increased levels of neuropeptides (bradykinin, calcitonin substance P 
and gene-related peptide) were found (Marinus et al., 2011). Exercise 
may participate in inhibiting regulated neuropeptide signaling and 
inflammatory mediator expression and reversing nociceptive 
sensitization. A study in the mouse model of CRPS found that 4 weeks 
of running wheel exercise can reverse the upregulation of neuropeptide 
and inflammatory mediator expression (Shi et al., 2018). However, the 
pain behaviors recurred when exercise stopped for 2 weeks, this 
nociceptive sensitization was related to increased neuropeptide levels, 
interleukin-6, and nerve growth factor expression (Shi et al., 2018). 
Evidence from animal and clinical studies showed that exercise can 
increase anti-inflammatory cytokines and reduce the levels of 
pro-inflammatory cytokines (Kohut et  al., 2006; Tsai et  al., 2017; 
Paolucci et al., 2018). Six weeks of high-intensity interval training 
decreased the level of tumor necrosis factor alpha in healthy adults 
(Paolucci et  al., 2018). Two weeks of treadmill exercise improved 
neuropathic pain (mechanical hyperalgesia and avoidance behavior) 
in mice. Meanwhile treadmill exercise increased the levels of M2 
macrophages which secretes anti-inflammatory cytokines, decreased 
the levels of M1 macrophages which secretes proinflammatory 
cytokines, and increased anti-inflammatory cytokine concentrations 
(interleukin-4, interleukin-1ra, and interleukin-5; Bobinski et  al., 
2018). Therefore, exercise modulates the immune system to promote 
healing and analgesia (Sluka et al., 2018; Simpson et al., 2021).

4. Conclusion

The exercise rehabilitation for patients with CRPS is important and 
beneficial. As a complementary treatment, exercise including graded 
motor imagery, progressive stress loading training, and aerobic training 
can improve patients’ pain and disabilities. This article briefly 
summarized the effectiveness of different types of exercise on CRPS and 
indicated the underlying mechanisms of the alleviating effect of exercise 
on CRPS, including the remodeling of abnormal brain structure and 
brain function, the reduction in peripheral sensitization, the regulation 
of vasodilation and adrenaline levels, the release of endogenous opioids, 
and the increased anti-inflammatory cytokines. Therefore, exercise is a 
feasible and effective treatment for patients with CRPS to improve pain 
intensity, physical function, and mental health. In addition, the 
characteristics of capricious symptom, difficult diagnosis, and refractory 
of CRPS indicate the need for the matched graded multi-professional 
care. Some complementary treatments such as medications, 
transcutaneous electrical nerve stimulation (Sutbeyaz et  al., 2005; 
Anandkumar and Manivasagam, 2014; Bilgili et al., 2016), acupuncture 
(Peng et al., 2018), and manual lymphatic drainage (Duman et al., 
2009), have also shown great effect to improve pain and oedema in 
combination with exercise therapy (Melf-Marzi et al., 2022). Given the 
comprehensive search, we  found a lack of sufficient high- quality 
clinical studies about CRPS to carry out deeper analyses, which is one 
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of the limitations of this study. Besides, direct evidence of 
neurophysiological changes in CRPS patients is also unclear. Thus, more 
clinical studies with larger sample size and detailed protocol in the 
future could provide more valuable insights. The parameters of different 
exercise therapy for different stages of CRPS and the integration of 
exercise therapy and other methods still need further exploration.
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