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Objective: We admitted a female patient with infantile onset epilepsy (<3-month-
old). The use of oxcarbazepine exacerbated epileptic seizures in the patient. In the 
present study, we aimed to identify the genetic basis of the infantile onset epilepsy 
in the patient, and determine the correlations among genotype, phenotype, and 
clinical drug response.

Methods: We described the clinical characteristics of an infant with refractory 
epilepsy. Whole exome sequencing (WES) was used to screen for the pathogenic 
variant. Whole-cell patch-clamp was performed to determine functional 
outcomes of the variant.

Results: WES identified a novel de novo SCN2A variant (c.468 G > C, p.K156N) in 
the patient. In comparison with wildtype, electrophysiology revealed that SCN2A-
K156N variant in transfected cells demonstrated reduced sodium current density, 
delayed activation and accelerated inactivation process of Na+ channel, all of 
which suggested a loss-of-function (LOF) of Nav1.2 channel.

Conclusion: We showed the importance of functional analysis for a SCN2A 
variant with unknown significance to determine pathogenicity, drug reactions, 
and genotype–phenotype correlations. For patients suffering from early infantile 
epilepsies, the use of oxcarbazepine in some SCN2A-related epilepsies requires 
vigilance to assess the possibility of epilepsy worsening.
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Introduction

The SCN2A gene is located on chromosome 2q24.3 and encodes the voltage-gated sodium 
channel (VGSC) Nav1.2. SCN2A variants are related to epileptic seizures, intellectual disability, 
autism spectrum disorders, and periodic ataxia (Suddaby et al., 2019; Reynolds et al., 2020). 
SCN2A variants could result in a wide spectrum of epilepsy, ranging from benign self-limited 
epilepsy to severe epileptic encephalopathy. Epileptic seizures in patients with SCN2A variants 
occur early, mostly in the neonatal period or at early infancy (Wolff et al., 2019). The Nav1.2 
channel is expressed in the axon initial segment and Ranvier nodes of fetal myelinated nerve fibers, 
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which may explain the major impact of SCN2A variants on fetal neural 
development and early-onset neurological diseases (Wolff et al., 2017).

Missense mutation is the most common type of mutations in 
SCN2A gene (Wolff et al., 2017; Zeng et al., 2022). Minor changes in 
amino acid sequence caused by missense variants may lead to different 
functional outcomes in sodium channels, including gain-of-function 
(GOF), loss-of-function (LOF), or mixed dysfunctional type (GOF/LOF; 
Hedrich et  al., 2019). Previous studies have shown that hereditary 
variants mainly manifest as benign (familial) neonatal/infant epilepsy 
(Zara et al., 2013; Kim et al., 2020), whereas de novo variants mostly 
manifest as developmental and epileptic encephalopathy (DEE), such as 
Ohtahara syndrome, epilepsy of infancy with migrating focal seizures 
(EIMFS), West syndrome, Dravet syndrome, Lennox–Gastaut syndrome, 
and unclassifiable early-onset epileptic encephalopathy (EOEE; Wolff 
et al., 2017; Zeng et al., 2022). Patients with seizure onset at less than 
3-month-old often carry the SCN2A GOF variants of the SCN2A gene 
(Wolff et al., 2017). Treatment of these patients with sodium channel 
blockers (SCBs), such as oxcarbazepine (OXC), carbamazepine (CBZ), 
phenytoin (PHT), and lamotrigine (LTG) can improve seizure outcome. 
However, when epileptic seizures occur in patients over 3-month-old, 
the identified SCN2A variants are usually LOF, and SCBs will aggravate 
epileptic seizure (Wolff et al., 2017; Brunklaus et al., 2020).

In the present study, we reported a case of EOEE associated with 
a novel de novo SCN2A variant (K156N). The patient developed 
seizures on the third day after birth that were frequent and refractory 
to drug treatment. Unlike the most cases reported in the literature, the 
patient’s seizures were aggravated after treatment with oxcarbazepine. 
Finally, the patient was seizure-free following the ketogenic diet. 
Further investigation was performed to determine the pathogenicity 
of the variant, and correlations among genotype, phenotype, and 
clinical drug response.

Materials and methods

Study participant and genetic analysis

The patient was screened for pathogenic variants through whole-
exome sequencing (WES). Sanger sequencing was performed to verify 
the variants in the family. The pathogenicity of the variants was 
assessed according to the criteria recommended by the American 
College of Medical Genetics and Genomics (ACMG).

Plasmid construction

The whole length of SCN2A coding sequences was synthesized 
and cloned into pcDNA3.1 (+) vector, which was linearized by Takara’s 
restriction enzymes (SnaBI and NheI). Then primers were designed 
to perform mutagenesis in the wild-type construct 
(Supplementary Table S1). Basically, PCR was used to amplify the 
wild-type SCN2A (NM_021007.3) gene fragment and the mutated 
SCN2A gene fragment, respectively. Meanwhile, 3xFLAG was fused at 
the C terminus of SCN2A, and ClonExpress MultiS One Step Cloning 
Kit (Vazyme) was used to ligate the above-purified gene fragments 
into the linearized vector by means of homologous recombination. 
Finally, Sanger sequencing was performed to verify the accuracy of the 
cloned SCN2A gene sequence and the induced variant.

Cell culture and plasmid transfection

HEK-293 cells were inoculated into 6-well plates with DMEM 
medium of 10% fetal bovine serum and transfected with Lipofectamine 
3000 kit (Invitrogen) for 48 h. Mutated Nav1.2 α-subunit and β-subunit 
were co-expressed.

Electrophysiology

Extracellular fluid contains the following components: 140 mmol/L 
NaCl, 3.5 mmol/L KCl, 10 mmol/L D-Glucose, 10 mmol/L HEPES, 
1 mmol/L MgCl2·6H2O, 2 mmol/L CaCl2·2H2O, and 1.25 mmol/L 
NaH2PO4·2H2O (pH 7.4, NaOH modulation). Intracellular fluid contains 
the following components: 20 mmol/L KCl, 115 mmol/L K-Aspartic, 
5 mmol/L EGTA, 10 mmol/L HEPES, 1 mmol/L MgCl2·6H2O, and 
2 mmol/L Na2-ATP (pH 7.2, KOH modulation). A coverslip lined with 
cells was placed in a recording chamber under an inverted microscope. 
During the experiment, the solutions were withdrawn from the chamber 
by a peristaltic pump. The whole cell voltage clamp mode was adopted, 
with a sampling frequency of 20 KHz and series resistance of 
approximately 2 ± 0.5 MΩ. A total of 70% resistance and capacitance 
compensation was provided. Experimental data was collected by HEKA 
(HEKA Elektronik Dr. Schulze GmbH, Lambrecht, Germany) amplifiers.

Data analysis and graphing

Electrophysiological kinetic plan for sodium channels was 
performed as follows:

 1. The recording procedures for the I-V curve included the 
holding voltage set at −120 mV for 200 ms and stepped every 
5 mV to gradually increase from −100 mV to +90 mV. Following 
50 ms, the voltage was returned to −120 mV. An IV curve was 
plotted with current density (pA/pF) as the vertical coordinate.

 2. The recording procedures for the activation curve included the 
holding voltage set at −120 mV for 200 ms and stepped every 
5 mV to gradually increase from −100 to +90 mV. Following 
50 ms, the voltage was returned to −120 mV. The Boltzman 
equation was used to fit the activation curve and determine the 
pulse voltage (V1/2) and slope factor (k) when the channel 
activation reached 50%. The curve was plotted with the 
conductance G/Gmax as the vertical coordinate. The 
membrane potential ranged between −100 and 0 mV.

 3. The recording procedures for the deactivation curve included 
the holding voltage set at −120 mV for 200 ms and stepped 
every 5 mV to gradually increase from −130 to −10 mV, and 
this voltage was maintained for 1,000 ms. Then, the test voltage 
was set to −10 mV for 50 ms, and restored to −120 mV. The 
Boltzmann equation was used to fit the deactivation curve and 
determine the pulse voltage (V1/2) and the slope factor (k) upon 
the channel deactivation of 50%. The curve was plotted with 
the current I/Imax as the vertical coordinate.

 4. The recording procedures for the recovery curve included the 
holding voltage set at −120 mV with double-pulse stimulation. 
First, −10 mV pre-voltage was set and maintained for 50 ms 
to deactivate the sodium current, and then stepped to 
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−120 mV for different time periods to restore the sodium 
current. Next, the test voltage was set to −10 mV for 50 ms to 
test the current after the restoration, and then restored to 
−120 mV. The recovery curve was plotted with the current 
Itest/Ipre as the vertical coordinate, and the recovery time 
ranged 0–30 ms. The recovery time constant (τrec) of the 
sodium channel was obtained by fitting the curve with the 
exponential equation.

Statistical analysis

All results are expressed as the mean ± standard error of the mean 
(m ± SEM). Statistical significance between the mutant type and wild 
type were calculated using unpaired Student’s t-test. A significance 
level of p < 0.05 was considered statistically significant. Data were 
analyzed by IBM SPSS 26.0 (SPSS, Inc., Chicago, IL, United States) 
software and GraphPad Prism 8.0 software (GraphPad Software, La 
Jolla, CA, United States).

Results

Clinical characteristics of the patient

The female patient was delivered by cesarean section at full 
term, without medical records of birth injury, asphyxia, or special 

family history. Her mother was healthy during pregnancy. She 
developed convulsions 3 days after birth and was diagnosed with 
neonatal convulsions that were treated with oral phenobarbital. 
One month and 3 days after birth, she had a second episode of 
cluster tics that lasted for up to 1 min. Cranial MRI did not show 
significant abnormalities. Routine blood test, blood biochemistry, 
as well as blood and urine metabolic screening indicated no 
abnormalities. Video electroencephalogram (EEG) showed 
multifocal sharp waves (Figure  1). Levetiracetam (LEV) was 
given orally to control epileptic seizures, but the effect was poor. 
Twenty days later, the patient had recurrent episodes of clustered 
focal seizures that occurred several times a day. She was then 
treated with oxcarbazepine (OXC) afterwards. However, the 
frequency of episodes increased to dozens of seizures a day after 
OXC treatment. OXC was discontinued and replaced by 
topiramate (TPM) combined with micropump infusion of 
midazolam for stopping the seizures but resulted in no effect. 
Three days later, the patient still had frequent convulsions, thus 
propofol and sodium valproate (VPA) injection were added, but 
neither one produced any effect. The ketogenic diet was 
introduced eventually, and the frequency of seizures gradually 
decreased. Within 1 week after initiating the ketogenic diet, the 
patient was seizure-free. Currently, the patient remains seizure 
free, without recurrence of epilepsy. But she still has delayed 
intellectual and motor development. At 1 year and 8 months old, 
she has been able to walk alone and say “Mom, Dad.” Meanwhile, 
she has demonstrated ataxia, with the manifestation of 
paroxysmal gait instability and slurred speech.

FIGURE 1

Ictal EEG. The patient developed rhythmic jitter of the left limb, and EEG showed mixed fast and slow waves and sharp waves in the right hemisphere.
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A novel de novo variant in the SCN2A was 
identified via WES

Genetic testing suggested a de novo missense variant in the 
SCN2A gene (NM_021007.3) c.468G > C (p.K156N; Figure 2A). The 
variant has neither been previously reported in the literature, nor 
included in the disease variant database and public population 
databases, such as ClinVar, HGMD and gnomAD. Multiple software 
have predicted that the variant tends to be deleterious (REVEL = 0.81). 
It is predicted to be likely pathogenic (PS2, PM2, PM5, PP2, PP3) 
according to ACMG guidelines. The variant is located in the 
transmembrane structure, fragment 2 of structural domain 
I (Figure 2B). Three-dimensional structure stimulation suggested that 
this variant did not cause significant changes to the conformation of 
the protein (Figures 3A,B) except for a slight difference in the residues 
(Figures 3C,D).

Electrophysiology results suggested K156N 
resulted in loss-of-function of Nav1.2 
channel

To determine the functional outcomes of the variant, 
we performed whole-cell patch-clamp electrophysiology. The current 
density-voltage relationship showed that the cells harboring K156N 
channels exhibited a current density of −459.72 ± 58.13 pA/pF, 
significantly reduced compared to −805.89 ± 69.75 pA/pF for wild-
type channels (Figure 4; Table 1; p < 0.05). Figure 5 shows the voltage 
dependence of activation curves. In contrast to wild-type channels 
(−37.87 ± 0.86 mV), the half-maximal activation potential (V1/2) of 
K156N (−30.02 ± 0.85 mV) shifted by ∼7 mV in the depolarized 
direction (Table 1; p < 0.01). The steady-state inactivation curves are 
shown in Figure 6. The fast-inactivation curve of K156N channels 
exhibited a ∼ 8 mV hyperpolarizing shift of V1/2 (−67.29 ± 0.81 mV) as 
compared to wild-type (−59.16 ± 0.73 mV; see Table 1; p < 0.01). The 
slope factor K of the curves of wild-type and K156N variant 

were − 5.17 ± 0.11 and − 5.55 ± 0.10, respectively (see Table 1; p < 0.05). 
The fast-inactivation recovery time constant τrec obtained for K156N 
(11.92 ± 0.42 ms) did not differ significantly from that for wild-type 
(12.93 ± 0.48 ms; Figure 7; Table 1; p > 0.05). These results revealed that 
K156N variant induced LOF change of the Nav1.2 channel.

Discussion

Phenotype of EOEE patients

The patient had focal paroxysmal seizures within the first 3 days 
after birth. EEG showed widespread multifocal discharges, and several 
anti-seizure medications (ASMs) were ineffective. Finally, epileptic 
seizures stopped after ketogenic diet therapy. She showed delayed 
development after seizure control and ataxia later in life, which is 
consistent with the diagnosis of early-onset epileptic encephalopathy 
due to variants in SCN2A gene. EOEE usually exists as refractory 
epilepsy during the neonatal period, with 20%–40% of cases diagnosed 
within approximately 3 months after birth (Ben-Shalom et al., 2017; 
Wolff et al., 2017). EOEE displays a variety of seizure types, including 
focal seizures, spastic seizures, tonic seizures, generalized tonic–clonic 
seizures, atonic seizures, and myoclonic seizures (Shi et  al., 2012; 
Wolff et al., 2017). Focal seizures and spastic seizures are the most 
common, and focal seizures tend to be clustered. With the widespread 
use of next-generation sequencing technologies in clinical practice, 
multiple SCN2A variants have been reported in patients with severe 
EOEE, most of which are de novo (Wolff et al., 2017). Patients with de 
novo variants have more severe phenotypes, such as delayed 
intellectual and psychomotor development. Patients with 
developmental delays show little improvement even after epilepsy is 
controlled, further suggesting that de novo variants may have a 
significant impact on brain development. As a patient grows, the 
function of Nav1.2 was gradually replaced by Nav1.6 encoded by 
SCN8A. At that time, the SCN2A gene is predominantly expressed in 
cerebellar granule cells and unmyelinated nerve fibers (Vacher et al., 

A

B

FIGURE 2

(A) P: Mutation genotype of the patient c.468G > C (p.K156N)，W: wildtype genotype of the patient’s parents. (B) Topology diagram of the human Nav1.2 
channel’s α subunit. The location of the K156N variant described in the study is shown by a red circle.

https://doi.org/10.3389/fnmol.2023.1159649
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Hu et al. 10.3389/fnmol.2023.1159649

Frontiers in Molecular Neuroscience 05 frontiersin.org

A B

C D

FIGURE 3

(A) Overview of the three-dimensional structure of the SCN2A wild-type protein. (B) Overview of the three-dimensional structure of the SCN2A K156N 
variant protein. (C) Details structure of the SCN2A wild-type protein around the mutated site. (D) Details of the SCN2A K156N variant protein around 
the mutated site. The red arrow indicates the difference between wild-type and variant protein residues.

A B

FIGURE 4

(A) Representative current recordings from WT and K156N Nav1.2 obtained using the voltage protocol shown in Figure 5B. (B) Current density for 
Nav1.2 wild-type(n = 15) and K156N variant(n = 15).
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2008), which explains why our patient had neonatal or infantile 
epilepsy early in life and then developed ataxia later. These phenotypes 
are similar to reports from other SCN2A variants, such as A263V, 
R1883G, and S987I (Schwarz et al., 2016, 2019).

Properties of the SCN2A variant

In the present study, the patient had a novel missense variant of 
the SCN2A gene, namely K156N. Zeng et al. (2022) reported another 
amino acid variant at the same locus in SCN2A, K156Q, which had a 
phenotype similar to our case and was diagnosed as EOEE. However, 
the patient’s seizures remained uncontrolled at follow-up until the age 
of 1 year and 4 months, and the use of ASMs was unknown (Zeng 
et al., 2022).

Nav1.2 is a pseudotetrameric protein that consists of four highly 
similar structural domains (I, II, III, IV). Each structural domain 
contains six transmembrane fragments from S1 to S6, of which S1 to 
S4 form a voltage-sensitive structural domain. S4 constitutes a voltage 
sensor sensitive to the difference in charge between the intracellular 
and extracellular sides of the membrane, and S5 to S6 form a pore loop 
and DEKA-selective filter (de Lera Ruiz and Kraus, 2015). Several 
disease-related hotspot variants in Nav1.2 are centered on S4 and S5 in 
the voltage-sensitive domain, the intracellular N- and C-terminal 
domains, and the pore loop around the ion-selective filter (Sanders 
et al., 2018). K156 is located in the S2 transmembrane region of DI, 

and variants in this transmembrane region have rarely been reported. 
Previous studies have suggested that over 80% of the SCN2A variants 
detected in patients with developmental retardation are located in the 
transmembrane region (Zeng et al., 2022). In consistent with mild 
phenotype of the patient, the three-dimensional protein model of the 
variant suggested that the changes were only observed in amino acid 
residues, which delivered little overall effect on the protein structure.

Unfavorable oxcarbazepine treatment and 
functional study

This case is similar to some patients with Dravet syndrome. The 
patient had focal epileptic seizures, but the attacks were more frequent 
and did not show the feature of fever-sensitivity. Both SCN2A and 
SCN1A variants are responsible for Dravet syndrome. Different from 
SCN1A LOF variants, SCN2A GOF variants can also cause Dravet 
syndrome, and oxcarbazepine treatment is usually effective (Zeng 
et al., 2022).

For infants with epileptic seizures within 3 months after birth, 
SCBs, such as OXC, PHT, and CBZ are more effective, as the function 
of the variation of SCN2A is considered to be more likely to be GOF 
(Adney et al., 2020). Therefore, we selected OXC for treatment based 
on the genetic test results, but the result was contrary to our 
expectation. The patient’s seizures worsened with OXC. A study by 
Zeng et al. (2022) revealed that only 27% of patients with epileptic 

TABLE 1 Biophysical parameters of Nav1.2 wild-type and K156N variant.

Peak current 
density

Voltage dep. of steady-state 
activation

Voltage dep. of steady-state 
inactivation

Recovery from 
inactivation

Mean peak 
amplitude (pA/pF)

V1/2 (mV) k V1/2 (mV) k τrec(ms)

Wild-type (n = 15) −805.89 ± 69.75 −37.87 ± 0.86 3.51 ± 0.38 −59.16 ± 0.73 −5.17 ± 0.11 12.93 ± 0.48

K156N (n = 15) −459.72 ± 58.13* −30.02 ± 0.85** 4.37 ± 0.17 −67.29 ± 0.81** −5.55 ± 0.10* 11.92 ± 0.42

Data are presented as means ± SEM, τrec is time constant, ∗p < 0.05, ∗∗p < 0.001.

A B

FIGURE 5

(A) Representative current recordings. (B) Voltage dependence of channels activation for wild-type (n = 15) and K156N variant (n = 15) using the voltage 
protocol shown as an inset.
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seizures within 3 months after birth were controlled by OXC. In 
addition, OXC resulted in exacerbation of seizures in three other 
patients (< 3-month-old) carrying three SCN2A variants, V424A, 
K1508I, and G1645R, respectively. Electrophysiology experiments in 
the present case showed a decrease of current density, slowed 
activation process, and accelerated inactivation process of the K156N 
variant. This finding suggested that the K156N variant presented a loss 
of channel function, which was considered to be the cause of seizure 
exacerbation after the administration of OXC.

Like SCN1A LOF variants in Dravet syndrome, recent studies 
described the expression of NaV1.2 channels in inhibitory neurons, 
indicating the mechanism of epilepsy due to SCN2A loss-of-function 
variants could also be the imbalance of excitatory/inhibitory neurons. 
A knockin mouse model carrying a patient-derived nonsense SCN2A 
variant resulted in absence-like seizures at 6–11 weeks of age. Further 
investigations suggested that LOF variants in SCN2A could reduce the 
excitability of inhibitory neurons expressing NaV1.2 and thus lead to 
epileptic seizures (Ogiwara et  al., 2018). Besides, SCN2A loss-of-
function promotes seizure by preventing potassium channels from 
properly repolarizing neurons between action potentials (APs), 

advancing the timing of subsequent APs, thus increasing the overall 
excitability (Spratt et al., 2021).

Promising effect of ketogenic diet in 
treating epilepsy patients less than 
3-month-old

In the present study, our patient had refractory epilepsy, but 
eventually achieved seizure-free immediately within 1 week after the 
application of ketogenic diet. A follow-up of over 1 year and 6 months 
showed that the patient had manageable seizure control. A higher 
percentage of patients less than 3-month-old with variants in the 
SCN2A gene have shown that ketogenic diet therapy is effective 
compared with patients over 3-month-old (Wolff et al., 2017; Su et al., 
2018; Turkdogan et al., 2019; Kim et al., 2020; Miao et al., 2020; Tian 
et al., 2021). Turkdogan et al. (2019) reported a patient with a M136I 
variant that was diagnosed with Ohtahara syndrome. The patient was 
treated with ketogenic diet on the 39th day after birth and became 
seizure-free. Su et al. (2018) reported a patient with a W191C variant 

A B

FIGURE 6

(A) Representative current recordings. (B) Voltage dependence of fast inactivation for wild-type(n = 15) and K156N variant(n = 15) channels using the 
voltage protocol shown as an inset.

A B

FIGURE 7

(A) Representative current recordings. (B) Time-dependent recovery from steady state inactivation for wild-type(n = 15) and K156N variant(n = 15) using 
the voltage protocol shown as an inset.
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that initially presented with focal seizures and evolved into infantile 
spastic epilepsy on the third day after birth. Treatment with OXC and 
PHT did not show significant improvement in seizures. However, the 
patient achieved seizure-free after the application of the ketogenic 
diet. Ketogenic diet can also increase the threshold of convulsion in 
the Dravet syndrome mouse model with SCN1A variant, and reduce 
the convulsion attack (Dutton et al., 2011); Using ketogenic diet can 
inhibit the transmission of glutamate and activate ATP-sensitive K+ 
channel, reduce the transmission of chromosome junction and the 
excitability of neurons (Simeone et al., 2017). These maybe explain the 
anti-seizure mechanisms of ketogenic diet in SCN2A variants.

In conclusion, we described a case of an infant with EOEE due to 
a missense variant in the SCN2A gene. The patient was diagnosed with 
drug-refractory epilepsy due to epileptic seizures within 3 months 
after birth. The patient suffered an increase in frequency of epileptic 
seizures following the application of OXC. Finally, she became seizure-
free after the ketogenic diet. Functional analysis showed a LOF SCN2A 
variant suggesting that some <3-month-old patients with epileptic 
seizures may not all exhibit GOF. Therefore, we still need to be alerted 
to the possibility of seizures worsening upon the application of SCBs.

This analysis has several limitations. We  did not use sodium 
channel openers to further verify whether the mutant effect can 
be remedied. The effective mechanism of ketogenic diet treatment also 
needs further study.
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