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Background: Alzheimer’s disease (AD) is the most common neurodegenerative

disease, imposing huge mental and economic burdens on patients and society.

The specific molecular pathway(s) and biomarker(s) that distinguish AD from other

neurodegenerative diseases and reflect the disease progression are still not well

studied.

Methods: Four frontal cortical datasets of AD were integrated to conduct

differentially expressed genes (DEGs) and functional gene enrichment analyses.

The transcriptional changes after the integrated frontal cortical datasets

subtracting the cerebellar dataset of AD were further compared with frontal

cortical datasets of frontotemporal dementia and Huntingdon’s disease to

identify AD-frontal-associated gene expression. Integrated bioinformatic analysis

and machine-learning strategies were applied for screening and determining

diagnostic biomarkers, which were further validated in another two frontal

cortical datasets of AD by receiver operating characteristic (ROC) curves.

Results: Six hundred and twenty-six DEGs were identified as AD frontal

associated, including 580 downregulated genes and 46 upregulated genes. The

functional enrichment analysis revealed that immune response and oxidative

stress were enriched in AD patients. Decorin (DCN) and regulator of G protein

signaling 1 (RGS1) were screened as diagnostic biomarkers in distinguishing AD

from frontotemporal dementia and Huntingdon’s disease of AD. The diagnostic

effects of DCN and RGS1 for AD were further validated in another two datasets of

AD: the areas under the curve (AUCs) reached 0.8148 and 0.8262 in GSE33000,

and 0.8595 and 0.8675 in GSE44770. There was a better value for AD diagnosis

when combining performances of DCN and RGS1 with the AUCs of 0.863 and

0.869. Further, DCN mRNA level was correlated to CDR (Clinical Dementia Rating

scale) score (r = 0.5066, p = 0.0058) and Braak staging (r = 0.3348, p = 0.0549).
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Conclusion: DCN and RGS1 associated with the immune response may be

useful biomarkers for diagnosing AD and distinguishing the disease from

frontotemporal dementia and Huntingdon’s disease. DCN mRNA level reflects the

development of the disease.

KEYWORDS

Alzheimer’s disease, neurodegenerative diseases, bioinformatic analysis, machine
learning strategies, biomarkers

Introduction

Alzheimer’s disease (AD) is the most common
neurodegenerative disease that is pathologically characterized
by brain β-amyloid (Aβ) deposition forming extracellular
plaques, Tau hyperphosphorylation aggregating to intracellular
neurofibrillary tangles, and the progressive reduction of synapses
and neurons causing brain atrophy (Alzheimer’s Association,
2021). More and more studies also suggest that glial activation
underlying neuroinflammation, brain glucose hypometabolism,
mitochondrial dysfunction, and oxidative stress also participate
in the occurrence and progression of the disease (Liu et al., 2019;
Long and Holtzman, 2019). Yet, the pathogenesis of AD remains
elusive and the ideal diagnostic biomarkers reflecting the outcome
of the disease are still rare.

Genome-wide studies have disclosed the complexity of
networks in altered expressions of genes contributing to
the pathogenesis of AD. The abnormal modules in immune
and microglia-specific activities (Zhang et al., 2013), neural
communication, amyloid-β clearance (Magistri et al., 2015),
cerebral vasculature (Magistri et al., 2015), and synaptic
transmission (Williams et al., 2021) have been indicated
the involvement in the disease pathogenesis according to
transcriptomics studies on postmortem brain samples of AD
patients. The selective regional vulnerability of these involvements
and the correlation with clinical outcomes further enhance
the complexity (Wang et al., 2016). It leads to significant
difficulties in exploring the real pathogenic factor(s) and ideal
diagnostic biomarkers for the disease. The recently emerging
integrated bioinformatic analysis and machine learning strategy
may help to address this challenge. AD, frontotemporal lobar
degeneration (FTD), and Huntington’s disease (HD) are all
classified into neurodegenerative diseases and they share
common neurodegeneration and some clinical symptoms
such as cognitive decline (Walker, 2007; Boeve et al., 2022),
metabolic changes (Vercruysse et al., 2018; Moll et al., 2020),
behavioral and psychological disorders (Santacruz Escudero
et al., 2019; Menculini et al., 2021) and so forth, which causes
clinically misdiagnosis and mistreatment (Boeve et al., 2022).
Accurate diagnostic differentiation also requires expensive PET or
aggressive cerebrospinal fluid tests. Meanwhile, these diseases are
heterogeneous in pathological mechanisms such as susceptibility
of different types of synapses and neuronal cell death (Kamat
et al., 2016; Smith-Dijak et al., 2019; John and Reddy, 2021; Wang
et al., 2022), which provides the theoretical basis for identifying
the differential biomarkers and AD specific pathogenesis. Previous
studies have indicated that plasma phosphorylated tau 217

and phosphorylated tau 181 could differentiate AD from FTD
(Thijssen et al., 2020, 2021), while a few studies suggested potential
biomarkers only on diagnosis of HD without reporting the
differential effect from AD (Wild et al., 2008; Battaglia et al., 2011;
Caron et al., 2022). Therefore, analyzing the differences in gene
expressions of AD, FTD, and HD may provide help for further
understanding the pathogenesis and exploring new diagnostic
biomarkers of AD differentiating from other neurodegenerative
disease.

In this study, we integrated four frontal cortical datasets from
the GEO database into an integrated dataset which was used
to be compared to one cerebellar dataset of AD, one frontal
cortical dataset of FTD, and one frontal cortical dataset of HD,
and the results were further verified in another two frontal
cortical datasets of AD. We aim at discovering novel pathways
and key genes that may serve as valuable diagnostic biomarkers
for distinguishing AD from normal patients, FTD, and HD by
bioinformatic analysis combined with machine learning strategies.
Furthermore, the correlations between the biomarkers with the
CDR (Clinical Dementia Rating scale) scores and Braak staging
of AD patients were analyzed to explore whether they could also
reflect the development of the disease.

Materials and methods

Data collection and data processing

The microarray datasets referred to profiles of gene expressions
with frontal cortical tissue of brain samples of AD patients
were retrieved in National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database1 with the
following keywords including “Alzheimer’s disease,” “Expression
profiling by array” and the species was selected as “Homo sapiens.”
Four datasets including GSE5281 (10 control and 23 AD samples),
GSE131617 (52 control and 19 AD samples), GSE48350 (48
control and 21 AD samples), and GSE84422 (15 control and
24 AD samples) originated from frontal cortical samples with
the diagnosis of AD, which are all from the same platform of
Affymetrix. Based on the annotation from corresponding datasets,
probes were transformed into gene symbols. And if there were
more than one probe referring to the same gene symbol, the
gene expression values would be assigned as an average value
of them. The four AD frontal cortical datasets were normalized

1 https://www.ncbi.nlm.nih.gov/geo/
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with the “SVA” package in R to compensate for the batch effect
and merged into an integrated dataset (Leek et al., 2020). The
“SVA” package can help remove batch effect in two ways, including
estimating surrogate variables for unknown sources of variation
and directly removing known batch effects using the “Combat”
function (Leek and Storey, 2007, 2008). The integrated AD frontal
cortical dataset subtracted the expressed genes in dataset GSE44768
of AD cerebellum to screen frontal-associated genes. Then, the
frontal-associated genes of AD were further compared with that
in the FTD frontal cortical dataset GSE13162 and HD frontal
cortical dataset GSE3790 to identify the candidates of diagnostic
biomarkers for AD. More detailed information about the included
datasets is summarized in Supplementary Table 1.

Differential gene expression analysis

Differentially expressed genes (DEGs) were analyzed with the
“limma” package in R and identified with the thresholds that |
log2FC| (fold change) was larger than 2 and the adjusted p-value
was less than 0.05. After subtracting the DEGs of the AD cerebellar
dataset and comparing them with that in FTD and HD frontal
cortical datasets, DEGs only expressed in AD frontal cortex were
identified. Besides, heatmaps and volcano plots were conducted
with “pheatmap” and “EnhancedVolcano” packages in R. Venn
diagrams were used to visualize the overlapping or unique genes
among AD cortex, AD cerebellum, HD, and FTD (Bardou et al.,
2014).

Functional enrichment analysis

Gene ontology (GO) enrichment analysis was performed
under three hierarchical categories of biological process, molecular
function, and cellular component with the “clusterProfiler” package
in R (Yu et al., 2012). Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was applied to do the pathway enrichment
analysis with the “clusterProfiler” package in R (Yu et al., 2012; Yu
and He, 2016; Minoru et al., 2017; Jassal et al., 2020).

Machine learning for potential diagnostic
biomarkers

We employed three machine learning strategies to identify
potential diagnostic biomarkers differentiating Alzheimer’s disease
from other neurodegenerative diseases. Least absolute shrinkage
and selection operator (LASSO) logistic regression was applied to
identify the diagnostic genes associated with discrimination with
the “glmnet” package in R (Tibshirani, 1996; Bühlmann, 2011).
Support vector machine-recursive feature elimination (SVM-
RFE) was conducted in R using the “e1071” package with 5-
fold cross-validation (Suykens and Vandewalle, 1999; Weston
and Guyon, 2012). Random forest (RF) was performed in R
with the “randomForest” package (Breiman, 2001; Qi, 2012).
Then, the overlapping genes of the above three machine-learning
strategies were identified and would be further verified as candidate
biomarkers.

Validation and evaluation of candidate
biomarkers

Two additional AD frontal cortical datasets (GSE33000
and GSE44772) were applied as the validation datasets. The
overlapping genes with differential expression identified in the
above three mentioned machine-learning strategies were validated.
The receiver operating characteristic curves (ROCs) analysis was
conducted and the area under the curves (AUCs) was calculated to
evaluate the diagnostic efficacy of the selected biomarkers (Seshan
et al., 2013). Besides, CDR scale is an informant-based global
clinical instrument which has been widely applied for clinical
grading of dementia severity (Schafer et al., 2004; Huang H. et al.,
2021). Based on the neurofibrillary tangle topographic distribution
in the brain, the Braak staging is strongly associated with the degree
of cognitive impairment (Braak and Braak, 1991; Nelson et al.,
2012; Lowe et al., 2018). Thus, the correlation analysis between the
diagnostic biomarkers and the CDR scores and Braak staging was
also performed in dataset GSE84422 to explore whether they could
reflect the development of the disease.

Results

Identification of differentially expressed
genes in the frontal cortex of AD

A diagram of the workflow of the bioinformatics analyses
combined with machine learning strategies is shown in Figure 1.

After removing batch effects, the data of expression profiles of
frontal cortical samples of AD from four GEO datasets (GSE5281,
GSE131617, GSE48350, and GSE84422) were merged into an
integrated dataset, including frontal cortical samples of 87 AD
patients and 125 control subjects. Firstly, the DEGs in the frontal
cortical samples of AD from the integrated dataset, cerebellar
samples of AD (GSE44768), frontal samples of FTD (GSE13162),
and HD (GSE3790) patients were all analyzed. Secondly, the
frontal-associated genes of AD were screened, and selected the
DEGs in the frontal cortex of AD patients as compared with
control subjects, while not in the cerebellum of AD patients as
compared with control subjects. Then, the frontal-associated genes
were further compared with those in FTD and HD datasets to
finally identify the candidates of diagnostic biomarkers for AD.
The results showed that 626 DEGs were AD-associated, including
580 downregulated genes and 46 upregulated genes. The Venn
diagram showed the intersection of the DEGs from the above-
mentioned datasets (Figure 2A). The volcano plot described AD
frontal associated gene distribution (Figure 2B), and the heatmap
illustrated the remarkable differences (Supplementary Figure 1).

Functional enrichment analyses

Based on the DEGs in AD frontal cortex, GO analysis was
performed to explore the main cell functions, most of which were
associated with the immune response and oxidative stress-related
such as response to lipopolysaccharide, neutrophil activation,
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FIGURE 1

The workflow of the analysis process.

FIGURE 2

Identification of specific differentially expressed genes in the frontal cortex of Alzheimer’s disease. (A) Venn diagram showed the intersection of
differentially expressed genes in frontal cortical samples of Alzheimer’s disease (AD), cerebellar samples of Alzheimer’s disease (CR), frontal cortical
samples of frontotemporal lobar degeneration (FTD), and frontal cortical samples of Huntington’s disease (HD). (B) Volcano plot of frontal specific
differentially expressed genes between Alzheimer’s disease and controls.
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response to oxidative stress, reactive oxygen species metabolic
process, etc. (Figure 3A and Supplementary Table 1). KEGG
pathway analysis was also conducted and suggests significant
enrichment in pathways of the cGMP-PKG signaling pathway,
Peroxisome, Ras signaling pathway, etc. (Figure 3B).

Screening and verification of the
diagnostic markers

Least absolute shrinkage and selection operator logistic
regression algorithm identified 17 potential diagnostic markers
from AD frontal-associated DEGs (Figure 4A). SVM-RFE and RF
analysis showed there were 25 and 30 potential diagnostic markers
for AD, respectively (Figures 4B, C). Among these potential
biomarkers, there were two overlapping genes including decorin
(DCN), and regulator of G protein signaling 1 (RGS1) (Figure 4D).

The differential expressions of DCN and RGS1 were further
validated in two additional datasets GSE33000 and GSE44770,
and the results suggested that both of them were significantly
upregulated (Figure 5 and Supplementary Table 1). The ROC
analysis of DCN and RGS1 was conducted to assess the diagnostic
efficacy. The AUCs of DCN and RGS1 were 0.8148 and 0.8262 in
dataset GSE33000, and 0.8595 and 0.8675 in GSE44770 (Figure 5E).
The AUCs of the combination of the two biomarkers as a diagnostic
tool for AD were 0.863 and 0.869 (Figure 5F). DCN mRNA level
was correlated to CDR (Clinical Dementia Rating scale) score
(r = 0.5066, p = 0.0058) and Braak staging (r = 0.3348, p = 0.0549)
(Figures 6A, B). RGS1 mRNA level correlates with Braak staging
(r = 0.3141 p = 0.0675) and CDR score (r = 0.1184, p = 0.2908)
(Figures 6C, D).

Discussion

Cerebellum has always been viewed as a less affected or
even neglected area of AD because autopsy studies found that
the two main neuropathological hallmarks of AD including
amyloid plaques and neurofibrillary tangles are both present first
in the cerebral cortex while the cerebellum could escape from
neurofibrillary tangles (Larner, 1997). Although the emerging
role of the cerebellum in AD has gained some attention, recent
studies revealed that the genomic changes mainly occurred in
the cortex instead of the cerebellum, especially excitatory neurons
are preferentially vulnerable to pathological changes in AD (Fu
et al., 2019; Leng et al., 2021; Miller et al., 2022). Multiple cerebral
regions have been reported to be related to AD (Mu and Gage,
2011; Aggleton et al., 2016; Cogswell et al., 2021), among which
the frontal cortex is more predictive of cognitive impairments
and early disturbance of daily activities, which gives rise to more
sensitivity to subclinical changes (Stoeckel et al., 2013; Marshall
et al., 2019). Therefore, to identify biomarkers that are more related
to the pathogenesis and clinical manifestations of AD and avoid
interference from non-AD-associated genes, we selected DEGs in
the frontal cortex of AD patients as compared with control subjects,
while not in cerebellum AD patients as compared with control
subjects. Those DEGs were defined as AD-associated genes.

In the current studies, in order to solve the problem of
the small sample size of existing individual databases originating
from frontal samples of AD patients, we first integrated four
homogeneous databases into an integrated database with a larger
sample size. Then, the frontal-associated DEGs of AD were
screened by comparing the differences in the DEGs between the
integrated and cerebellar datasets (Figure 2A). AD, HD, and
FTD are neurodegenerative diseases with cognitive impairment,
which clinically need differential diagnosis. To further identify the
potential biomarkers for AD diagnosis, the frontal-associated DEGs
and the DEGs from the datasets of FTD and HD frontal samples
were analyzed. The 626 AD-associated DEGs were identified,
including 580 upregulated genes and 46 downregulated genes
(Figure 2B). The functional enrichment analysis revealed that
the immune response and oxidative stress-related processes were
highly enriched such as neutrophil activation, immunological
synapse formation, response to oxidative stress, reactive oxygen
species, and so forth (Figure 3). As mounting genetic and
functional evidence indicates, neuroinflammation is a prominent
manifestation of AD, and the immune response does matter a lot
in the pathogenesis of the disease (Gjoneska et al., 2015; Shi and
Holtzman, 2018). The immune response in AD is mobilized by the
immune components in the central nervous system (CNS) mainly
including complement and microglia, which function as a “double-
edged sword.” Complement proteins not only act as the first line
of defense to help synaptic pruning, mediate Aβ clearance and
maintain neural circuits (Schafer et al., 2012; Hong et al., 2016)
but associate with Aβ plaques causing the surrounding neuronal
atrophy and synapse loss (Hong et al., 2016; Jevtic et al., 2017; Shi
et al., 2017). As one of the prominent immune cells of the CNS,
microglia rapidly respond to stimuli and pathogens performing
immune surveillance, phagocytosis, and neuroprotection (Streit
et al., 1999; Davalos et al., 2005; Nimmerjahn et al., 2005). However,
the inflammatory cytokines and oxidative stress produced by
microglia also lead to neural impairment (Heneka et al., 2013;
McIntosh et al., 2019; Marschallinger et al., 2020; Hashioka et al.,
2021). Recent studies also suggest that oxidative stress causes
neuronal damage in various pathways, and plays a critical or
even center role pathogenesis and mechanism of AD (Jiang et al.,
2016; Bai et al., 2022). Oxidative stress promotes the expression
of amyloid precursor protein (APP) and upregulates the activity
of β-secretase contributing to the aggregation of Aβ (Tamagno
et al., 2012; Butterfield and Boyd-Kimball, 2018). Oxidative stress
can also enhance the Tau phosphorylation by producing reactive
oxygen species (ROS) and directly interacting with glycogen
synthase kinase-3 (GSK3) (Su et al., 2010; Du et al., 2022).

Most importantly, DCN and RGS1 were identified to be useful
diagnostic biomarkers by integrated bioinformatic analysis and
machine-learning strategies. The diagnostic efficacies of DCN and
RGS1 were verified by ROC analysis with the AUCs of 0.8148 and
0.8262 in dataset GSE33000, and 0.8595 and 0.8675 in GSE44770.
And the combination of the two biomarkers as a diagnostic tool for
AD owned even higher AUCs of 0.863 and 0.869 in the validated
datasets. Furthermore, the correlation analysis indicated that DCN
was significantly correlated to the CDR score and may be correlated
to the Braak stage, and the RGS1 showed a significant correlation
to the Braak stage. The CDR is one of the most widely used
global clinical rating scales to evaluate the development of disease
(Morris, 1993). Braak staging is based on the neurofibrillary tangle
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FIGURE 3

Functional enrichment analysis to investigate the potential function of differentially expressed genes (DEGs). (A) GO analyses of DEGs. (B) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs.

FIGURE 4

Screening candidate biomarkers of Alzheimer’s disease via machine-learning strategies. (A) Least absolute shrinkage and selection operator (LASSO)
logistic regression. (B) Support vector machine-recursive feature elimination (SVM-RFE) analysis. (C) Random forest (RF) analysis. (D) Venn diagram
showed the intersection of diagnostic markers obtained by the three machine learning strategies.
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FIGURE 5

Validating the differential expressions of diagnostic biomarkers in verification datasets. (A) Validation of the expression levels and diagnostic efficacy
of DCN in dataset GSE33000. (B) Validation of the expression levels of RGS1 in dataset GSE33000. (C) Validation of the expression levels of DCN in
dataset GSE44770. (D) Validation of the expression levels of RGS1 in dataset GSE44770. (E) ROC analysis of DCN, RGS1, and the combination of the
two biomarkers as a diagnostic tool in the validation dataset GSE33000. (F) Receiver operating characteristic (ROC) analysis of DCN, RGS1, and the
combination of the two biomarkers as a diagnostic tool in the validation dataset GSE44770.

topographic distribution in the brain and is strongly associated with
cognitive impairment (Braak and Braak, 1991). Therefore, DCN
and RGS1 may reflect the development of the disease.

Decorin is an extracellular matrix proteoglycan associated with
collagen fibril formation (Reed and Iozzo, 2002). Recent researches
have shown that it also plays a critical role in autoimmune and
inflammatory diseases (Dong et al., 2022), antifibrotic (Järvinen
and Ruoslahti, 2019), antioxidant, and antiangiogenic properties

(Sofeu Feugaing et al., 2013; Järveläinen et al., 2015). DCN was
found significantly increased in both AD mouse models and
CSF of AD patients, predicting well innate immune activation
and potential choroid plexus dysfunction (Jiang et al., 2022).
Other studies also demonstrated that endothelial-activated DCN-
positive astrocytes contributed to vascular amyloid deposits but not
parenchymal amyloid plaques in AD mouse models and AD/CAA
patients (Taylor et al., 2022). Our study here confirmed that DCN
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FIGURE 6

Correlation analysis of the diagnostic biomarkers and the development of disease. (A) Correlation analysis of DCN and CDR score. (B) Correlation
analysis of DCN and Braak staging. (C) Correlation analysis of RGS1 and CDR score. (D) Correlation analysis of RGS1 and Braak staging.

was significantly increased in AD brain parenchyma at the mRNA
level and could perform as a useful diagnostic marker. Future study
is still needed to clarify the source and function of AD pathogenesis.

RGS1 is one of the members of the RGS family and is identified
as an immediate early gene responding to B cell activation signals
(Liang et al., 2018). RGS1 serves as a negative regulator to inhibit
the chemotaxis of cytotoxic T lymphocytes and TH1 cells toward
tumor-associated chemokines (Huang D. et al., 2021). It was also
found to regulate the homeostasis and trafficking of B and T cells to
inflammatory diseases and attract macrophages to atherosclerotic
plaques (Patel et al., 2015). At present, research on the association
between RGS1 and AD is limited. Only one study has shown that
RGS1 was upregulated in the PBMCs of AD patients (Leandro
et al., 2018). Therefore, RGS1 is expected to be a blood-based
diagnostic marker, and the role of RGS1 in AD is worthy of
further study.

There are some limitations to our study. First, although we
carefully select the same frontal lobe of brain samples of AD
from the same platforms of Affymetrix and have validated them
in another two datasets, the results still need to be thoroughly
confirmed experimentally. Second, limited by the sample size,
the availability of the biomarkers in differentiating from other
neurodegenerative diseases and reflecting the development of
the disease needs further clinical exploration. Third, lacking
appropriate datasets of the frontal cortex with a diagnosis of HD
and FTD from the same platform as the selected datasets of AD,
we failed to further evaluate the differential effect of biomarkers

distinguishing AD from HD and FTD. We would like to update
this evaluation, once there were appropriate datasets.

Conclusion

We applied an approach of integrated bioinformatic analysis
combined with machine learning strategies to identify AD frontal-
associated biomarkers differentiating from normal subjects, FTD
and HD. The results revealed that DCN and RGS1 associated with
immune response are useful biomarkers for diagnosing AD and
distinguishing from FTD and HD, and their mRNA levels may also
reflect the development of the disease.
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