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Microglial activating transcription 
factor 3 upregulation: An indirect 
target to attenuate inflammation 
in the nervous system
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International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, 
Canada

Activating Transcription Factor 3 (ATF3) is upregulated in reaction to several 
cellular stressors found in a wide range of pathological conditions to coordinate 
a transcriptional response. ATF3 was first implicated in the transcriptional reaction 
to axotomy when its massive upregulation was measured in sensory and motor 
neuron cell bodies following peripheral nerve injury. It has since been shown 
to be critical for successful axon regeneration in the peripheral nervous system 
and a promising target to mitigate regenerative failure in the central nervous 
system. However, much of the research to date has focused on ATF3’s function 
in neurons, leaving the expression, function, and therapeutic potential of ATF3 in 
glia largely unexplored. In the immunology literature ATF3 is seen as a master 
regulator of the innate immune system. Specifically, in macrophages following 
pathogen or damage associated molecular pattern receptor activation and 
subsequent cytokine release, ATF3 upregulation abrogates the inflammatory 
response. Importantly, ATF3 upregulation is not exclusively due to cellular stress 
exposure but has been achieved by the administration of several small molecules. 
In the central nervous system, microglia represent the resident macrophage 
population and are therefore of immediate interest with respect to ATF3 induction. 
It is our perspective that the potential of inducing ATF3 expression to dampen 
inflammatory microglial phenotype represents an unexplored therapeutic target 
and may have synergistic benefits when paired with concomitant neuronal ATF3 
upregulation. This would be of particular benefit in pathologies that involve both 
detrimental inflammation and neuronal damage including spinal cord injury, 
multiple sclerosis, and stroke.
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1. Introduction

Activating Transcription Factor 3 (ATF3) is a basic leucine zipper (bZIP) transcription 
factor (Hai et al., 1989) that is immediately upregulated in response to cellular stress (Liang 
et al., 1996; Hai et al., 1999; Kristensen et al., 2013) to regulate target gene expression. Since 
ATF3’s precise DNA binding site depends on which bZIP transcription factor it dimerizes 
with (Tsukada et  al., 2011; Rodríguez-Martínez et  al., 2017), ATF3’s effect on cellular 
phenotype is dependent on its context. Given the wide range of stimuli that can trigger a 
cellular stress response, ATF3 is relevant in a number of pathologies (Allen-Jennings et al., 
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2002; Wu et al., 2010; Li et al., 2017). ATF3 was first identified in 
the injured nervous system when its robust upregulation was 
observed following peripheral nervous system injury in the cell 
bodies of motor and primary afferent neurons (Tsujino et  al., 
2000). Since then, it has been shown to contribute to the successful 
regeneration of axotomized neurons in the peripheral nervous 
system (PNS) (Gey et al., 2016; Holland et al., 2019); classifying it 
as a regeneration associated gene. Despite the failure of ATF3 
overexpression to initiate a successful neuronal regenerative 
response in the central nervous system (CNS) (Seijffers et  al., 
2007), it may still have important prosurvival functions in neurons 
(Kole et al., 2020; Seijffers et al., 2014). The majority of research 
done to date on ATF3 and its effect in the nervous system has 
focused on its neuronal functions, leaving the role of ATF3 in glia 
largely unexplored (see Figure 1).

2. ATF3 as an immune regulator

In the immunologic context, ATF3 is considered a negative 
regulator of innate immune activation (Gilchrist et  al., 2006; 
Suganami et al., 2009). Macrophages, following damage associated 
molecular pattern (DAMP) or pathogen associated molecular 
pattern activation (PAMP) of toll-like receptor 4 (TLR4), initiates a 
signal transduction cascade that ultimately results in a 
pro-inflammatory phenotype and the secretion of inflammation 
propagating signals (Gong et  al., 2019; Orecchioni et  al., 2019). 
ATF3 is upregulated in response to TLR4 activation where it 
functions to suppress pro-inflammatory gene expression, at least 
partially, through the regulation of histone acetylation (Nguyen 
et al., 2020). The importance of ATF3’s immunosuppressive function 
is highlighted in several the disease models where a loss of ATF3 is 

FIGURE 1

Schematic depicting the activation of the innate immune system following primary injury in the nervous system and the inflammation attenuation 
effect of Activating Transcription Factor 3 upregulation.
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detrimental including endotoxic shock (Hoetzenecker et al., 2011), 
atherosclerosis (Gold et al., 2012), and ischemia reperfusion injury 
(Rao et al., 2014).

ATF3 is also implicated in regulating the innate immune 
reaction to microbial infection by coordinating the macrophage 
interferon (IFN) response. ATF3 deficient macrophages following 
TLR3 or STING stimulation increase IFNβ production compared to 
wildtype cells (Labzin et  al., 2015). IFNβ also increases ATF3 
expression (Labzin et al., 2015), suggesting that much like in TLR4 
signaling, ATF3 functions as part of an IFN negative feedback loop. 
Interestingly, using a neuronal cell line that is deficient in IFN 
I  synthesis ATF3 upregulation is observed in response to viral 
infection (Sood et  al., 2017); implying the IFN signaling is not 
strictly required for inducing ATF3 expression. The demonstration 
of ATF3 upregulation via multiple pattern recognition receptors 
(TLR4, TLR3, STING) further supports the idea that ATF3 is a hub 
gene that broadly functions to mitigate an excessive macrophage 
inflammatory response.

The immunomodulatory function of ATF3 however is not 
limited to macrophages: ATF3 deficient neutrophils produce 
excessive CCL2 (a chemokine) but paradoxically are deficient in 
chemotaxis (Boespflug et  al., 2014). Mice with ATF3 deficient 
natural killer (NK) cells control murine cytomegalovirus better than 
wildtype NK cells, likely through increased IFNγ production 
(Rosenberger et al., 2008). In T cells, ATF3 is upregulated upon 
CD4+ Th1 but not Th2 differentiation; notably a knockdown of 
ATF3 function in these differentiated cells correspond to decreased 
IFNγ production (Filén et al., 2010). ATF3 regulates the phenotype 
of a variety of immune cells however its precise function is 
dependent on the exact cell type and context.

3. Means of ATF3 upregulation

PAMP or DAMP activation is one avenue by which ATF3 can 
be upregulated, but given its role responding to cellular stress there 
are additional signals that will induce ATF3. Ultraviolet and ionizing 
radiation induce ATF3 expression in response to DNA damage 
through both p53 dependent and independent pathways (Fan et al., 
2002). Given its association with DNA damage it is no surprise that 
ATF3 is overexpressed in cancer (Yan et  al., 2017) although its 
function is dependent on the degree of malignancy (Yin et al., 2008). 
Amino acid or glucose deprivation, and the latter’s subsequent stress 
on the endoplasmic reticulum is another pathway by which ATF3 
upregulation has been achieved (Pan et  al., 2003). The multiple 
avenues that lead to its upregulation has given rise to the idea that 
ATF3 is the hub of an adaptive response network that ultimately 
functions to counteract inflammation (Hai et al., 2010).

In the literature there have been reports of small molecules that 
induce ATF3 expression with varying results. One of the first uses 
of an exogenous molecules demonstrated to upregulate ATF3 was 
anisomycin (Liang et al., 1996), an antibiotic and partial protein 
synthesis inhibitor, and at low concentrations is used to activate 
stress response kinases (Kallunki et al., 1994). Utilizing an unbiased 
screen, the topoisomerase I inhibitor camptothecin was identified 
as another small molecule capable of upregulating ATF3, and when 
tested in vivo was found to enhance peripheral nerve regeneration 

(Cheng et  al., 2021). Dimethyl itaconate, a cell permeable 
electrophile was used to upregulate ATF3 and shown to attenuate 
inflammation in activated macrophages (Bambouskova et al., 2018). 
These examples prove the principle that ATF3 upregulation is 
achievable through the administration of small molecules; making 
ATF3 a potential indirect drug target.

4. Aberrant innate immune activation 
in the CNS

In the CNS microglia are effectively the resident macrophages 
and represent the primary regulators of the innate immune 
response (Li and Barres, 2017; Bachiller et  al., 2018). While 
microglial function includes synapse pruning and modulation, 
they are classically known to survey their environment and initiate 
an innate immune response if infection or damage is detected. 
This innate immune reaction can be paradoxically detrimental as 
it may propagate the initial insult and contribute to a subsequent 
wave of injury further damaging the parenchyma. An aberrant 
activation of the innate immune system is a unifying underlying 
pathology in several diseases. Following a spinal cord injury 
(SCI), the initial damage to the neural tissue results in 
uncontrolled cell death that triggers an inflammatory response 
thought to contribute to the larger secondary wave of injury 
(Donnelly and Popovich, 2008); mitigating this inflammatory 
response has been identified as a potential neuroprotective 
strategy (Kwon et al., 2004). Multiple Sclerosis is an autoimmune 
disease that targets the myelin sheath resulting in focal 
inflammatory lesions throughout the CNS (Filippi et al., 2018); 
several immunomodulatory drugs are currently in use to mitigate 
the damage and functional impairment exacerbated by the 
uncontrolled inflammation (Faissner et al., 2019). Much like in 
SCI, acute ischemic stroke and intracerebral hemorrhage begins 
as an initial insult that propagates to a secondary injury, a 
component of which is caused by uncontrolled inflammation (Shi 
et al., 2019). A strategy to mitigate the microglial inflammatory 
response would be broadly applicable to a number of CNS diseases 
by targeting a common pathology.

5. Discussion

It is the authors’ perspective that targeting microglial ATF3 
upregulation to mitigate inflammation is an unexplored therapeutic 
avenue across a range of CNS disease. Utilizing small molecules to 
induce ATF3 in addition to the canonical PAMP/DAMP signaling 
has been shown to be feasible and blood brain barrier permeability 
may not be necessary as it is already compromised in many of the 
applicable conditions. While ATF3 may already be elevated in sterile 
microglial activation, targeting additional ATF3 upregulation may 
result in a faster resolution of inflammation, more cells ceasing to 
release pro-inflammatory cytokines, or providing a different cellular 
context to alter the precise downstream regulatory effects. Achieving 
microglial ATF3 induction may also have synergistic benefits when 
paired with concomitant neuronal ATF3 upregulation given its well-
established role as a regeneration associated gene.
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