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The functions of the glymphatic system include clearance of the metabolic 
waste and modulation of the water transport in the brain, and it forms a brain-
wide fluid network along with cerebrospinal fluid (CSF) and interstitial fluid 
(ISF). The glymphatic pathway consists of periarterial influx of CSF, astrocyte-
mediated interchange between ISF and CSF supported by aquaporin-4 (AQP4) 
on the endfeet of astrocyte around the periarterioles, and perivenous efflux of 
CSF. Finally, CSF is absorbed by the arachnoid granules or flows into the cervical 
lymphatic vessels. There is growing evidence from animal experiments that the 
glymphatic system dysfunction is involved in many neurological disorders, such 
as Alzheimer’s disease, stroke, epilepsy, traumatic brain injury and meningitis. 
In this review, we summarize the latest progress on the glymphatic system and 
its driving factors, as well as changes in the glymphatic pathway in different 
neurological diseases. We significantly highlight the likely therapeutic approaches 
for glymphatic pathway in neurological diseases, and the importance of AQP4 
and normal sleep architecture in this process.
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1. Introduction

One of the most main characteristics of the central nervous system (CNS) is lack of the 
lymphatic system that plays an essential role in immune defense and homeostasis 
maintenance in the human body. The brain blood barrier (BBB) could compensate the 
former by restricting pathogens and other macromolecules such as antibodies in circulation 
entering into CNS. The scholars discovered the existence of lymphatic-like structures in the 
brain and their connection with cervical lymphatic node in the 19th century. In the past few 
decades, the BBB and blood cerebrospinal fluid (CSF) barrier (BCSFB) are considered as the 
main defender to maintain the homeostasis and clear the metabolic waste of CNS, until the 
discovery of glymphatic system in rodent in 2012 (Iliff et al., 2012). The glymphatic system 
concept states that the CSF is a directed flow, so that elements in CSF move with a speed 
exceeding the limit imposed by simple diffusion (Valnes et al., 2020). Subsequent studies 
have observed that the glymphatic system is also present in the human brain (Eide and 
Ringstad, 2015; Ringstad et al., 2017). One of the main characteristics of glymphatic system 
is the increased flow of CSF tracers in the sleep state and under anesthetic (Benveniste et al., 
2017; Hablitz et al., 2019). This partly explains why sleep disturbance generally precedes the 
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onset of cognitive decline and worsens clinical symptoms (Bah 
et al., 2019; Wang and Holtzman, 2020). Increasing researches over 
the past decade have shown that the glymphatic system acts as a 
‘lymphatic system’ in clearing the metabolic waste and modulating 
water transport in the brain, and the dysfunction of the glymphatic 
system is proved to be involved in various neurological diseases 
through animal experiments, such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), epilepsy, stroke, traumatic brain injury 
(TBI), mood disorder and infectious or autoimmune disease in the 
CNS (Gaberel et al., 2014; Keir and Breen, 2020; Liu et al., 2021). 
Another clinical research showed that dysfunction of the glymphatic 
system might be  associated with iron deposition in the normal 
aging brain (Zhou et  al., 2020). Due to the BBB and BCSFB 
restrictions, many drugs do not show the same efficacy in the CNS 
as they do in the peripheral organs. In this review, we summarize 
recent research advances of the glymphatic system, including the 
anatomical structure and physiological function, driving factors 
and changes in the glymphatic system in neurological diseases, and 
the underlying therapeutic approaches. We also emphasize the role 
of aquaporin-4 (AQP4) and its changes in CNS disorders and 
relative potential treatment, and the importance of sleep 
architecture for glymphatic system function and neurological 
disease progress. Finally, we give our suggestions for future studies.

2. Structure and function of the 
glymphatic system

2.1. Structure of glymphatic system

In addition to the traditional circulating pathway of CSF, there is 
another flow mode of CSF circulation, the glymphatic system, which 
is a structurally distinct fluid transport system that takes advantage of 
the perivascular space created by the outermost wall of the blood 
vessel and the vascular endfeet of astrocytes (Iliff et al., 2012). Part of 
CSF from subarachnoid space flows into the brain along the 
perivascular spaces (PVS) of arteries and pervades into brain 
parenchyma along with the arterioles, capillaries and venule (Iliff 
et al., 2012). CSF in the PVS of arterioles or capillaries mixes with 
interstitial fluid (ISF) and drains metabolic waste from the brain along 
perivenous spaces. This process is mediated by AQP4 on the astrocyte 
endfeet facing the perivascular space, which has a polarized expression 
on astrocytes (Benveniste et al., 2019b; Keir and Breen, 2020; Figure 1). 
The waste-carrying CSF in the perivenous space then leaves the brain 
via the meningeal lymphatics and deep cervical lymphatic vasculature, 
as well as the cranial and spinal nerves (Aspelund et al., 2015; Louveau 
et al., 2015). From the axial point of view, the innermost layer is the 
outer wall of the vessels and the outermost layer is the end-feet of 
astrocytes expressing abundant AQP4, which forms a cavity as the 
PVS fulfilled with the CSF (Mathiisen et al., 2010).

Until the discovery of the glymphatic system in 2012, it was 
believed that the recycling of its own protein waste was the primary 
clearing route for the metabolites of the brain (Rubinsztein, 2006). 
Only a small number of proteins are known to be transported across 
the BBB and are considered to degraded by the classical protein way, 
including autophagy and ubiquitination (Ballabh et  al., 2004; 
Thibaudeau et al., 2018).

2.2. Probable function of glymphatic 
system

CNS metabolic waste was previously thought to be cleared by 
cellular degradation and slow diffusion or active transport by the 
BBB (Tarasoff-Conway et al., 2015). Recent advances in the study 
of the glymphatic system through animal models have been 
remarkable with the development of in vivo imaging techniques. 
Iliff et al. (2012) used real-time two-photon imaging techniques 
to delineate a brain-wide fluid system that relies on polarized 
expression of AQP4 and is functionally similar to the peripheral 
lymphatic system, in which they named as glial-lymphatic or 
glymphatic system. Over the past decade, the glymphatic system 
has been suggested to have a significant effect on brain waste 
clearance and intracranial pressure balance maintenance. The 
currently great interest of the glymphatic system is that the 
glymphatic system has been proved to have crucial effect on 
protein clearance, such as amyloid β (Aβ), α-synuclein and other 
proteins, which are involved in the pathogenesis of AD, PD and 
other neurodegenerative diseases (Iliff et  al., 2012; Jucker and 
Walker, 2013; Xu et  al., 2015; Da Mesquita et  al., 2018). 
Interchange between ISF and CSF promotes the clearance of 
metabolic waste in the brain (Louveau et al., 2017). Besides the 
waste clearance, the glymphatic system is involved in the 
modulation of intracranial pressure and the transport of excess 
interstitial fluid in the brain (Ringstad et al., 2017; Nedergaard 
and Goldman, 2020). Based on the high density of astrocyte-
related lipoproteins and lipid transporters, the glymphatic system 
is also contributing to the lipid transport and glucose supply 
(Rangroo Thrane et al., 2013; Lundgaard et al., 2015). Recent work 
found that fluid stress opened N-methyl-D-aspartic acid (NMDA) 
receptors in astrocytes, increasing calcium current, suggesting 
that the glymphatic system might play a role in signal transduction 
(Plog and Nedergaard, 2018), which may a potential direction in 
future research.

2.3. Relations among glymphatic system, 
the BBB, and meningeal lymphatic system

The role of cervical lymph nodes in the CSF flow has been 
observed in the 19th century. Researchers found that there are 
paravascular pathways in experimental hydrocephalus that go 
beyond the classical CSF pathway. At the same time, cervical 
lymph nodes and pia mater were also found to be involved in CSF 
reflux (Zhang et al., 1990). In the recent years, Aspelund et al. 
(2015) described the structure and function of the meningeal 
lymph system in 2015. They found a network of lymphatic vessels 
in the dura mater that drain CSF from the adjacent subarachnoid 
space and brain ISF via the glymphatic system (Aspelund et al., 
2015). Finally, these lymph vessels transported fluid to the deep 
cervical lymph nodes via foramina at the base of the skull 
(Aspelund et al., 2015). A growing body of evidence has revealed 
that meningeal lymphatics have key effects on metabolite 
clearance, immune surveillance, and glymphatic flow out of the 
brain (Alves de Lima et al., 2020; Ding et al., 2021; Graham and 
Mellinghoff, 2021). Surgical ligation of the cervical lymphatic 
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vessels prevented the flow of tracers into the deep cervical lymph 
nodes and the accumulation of tracers in the meningeal lymphatic 
vessels. In the capillary cross section, the BBB is composed of 
endothelial cells, pericytes, basement membrane and astrocytes 
from the inside to the outside (Lv et al., 2021). The structural 
anatomy of BBB and the glymphatic system partially overlaps, but 
how they interact is unclear in detail. Astrocytes participate in 
both the BBB function and glymphatic flow. Previous clinical 
study has demonstrated that enlarged PVS in the basal ganglia is 
associated with a higher BBB leakage rate, supporting the 
possibility that the dysfunction of glymphatic flow is a risk factor 
for BBB disruption (Li et al., 2019).

In summary, the BBB is a restricted structure between the 
parenchyma and circulating blood, which regulates the entry of blood 
nutrients into the brain, defends brain tissue from toxic components 
of the blood, participates in the metabolic efflux of the CNS. The 
glymphatic pathway is a convective system in which CSF originates in 
the arachnoid space, passes through the parenchyma and finally ends 
at the deep cervical lymph nodes. The most remarkable function of 
the glymphatic system that has yet been accepted is the clearance of 
metabolic waste in the brain. Meningeal lymphatics are primarily 
found in the dura mater and are one of the efflux pathways of the 
glymphatic system.

2.4. Expression of AQP4 in glymphatic 
system

AQP4 is the most highly expressed AQP in the mammalian brain. 
Except the supraoptic nucleus and the subfornical organ, which AQP4 
is uniformly expressed in the astrocyte membrane. In the other 
domain of the brain, AQP4 is highly concentrated in astrocytic endfeet 
enwrapping the cerebral blood vessels (Nielsen et al., 1997; MacAulay, 
2021). An early quantitative immunogold analysis on retinal macroglia 
indicated that glial endfeet contain a 10-fold higher density of AQP4 
than non-endfeet membranes (Nagelhus et  al., 1998). One study, 
through a survey of 123 healthy participants, showed that the AQP4-
gene harbored an 8-SNP haplotype associated with AQP4 expression. 
The AQP4-haplotype is associated with a distinct modulation of slow 
waves in non-rapid eye movement stage (NREM) and also with a 
modulation of subjective and objective responses to prolonged 
wakefulness (Rainey-Smith et  al., 2018; Ulv Larsen et  al., 2020). 
Burfeind et al. (2017) found that none of the five AQP4 SNPs were 
associated with rates of AD diagnosis, age at onset of dementia, 
histology of AD pathology, but they were associated with the cognitive 
decline progression in AD patients. The majority of AQP4 functions 
depend on the polarized expression. Another study demonstrated that 
perivascular AQP4 localization was significantly associated with AD 

FIGURE 1

The glymphatic pathway. CSF from the subarachnoid space flows into the periarterial space along with the major arteries on the brain surface. CSF in 
the periarterial space is driven into the parenchyma by the pulsation of the arteries as it branches into the arterioles and capillaries. CSF enters the 
parenchyma with the support of AQP4, which then it mixes with ISF and drains metabolic waste from the parenchyma along perivenous space. In 
addition to the arachnoid granules, CSF exit sites include the olfactory nerve, cranial nerves, spinal nerves and meningeal lymphatics. CSF in the fossa 
cranial anterior flows into the cervical lymph nodes along with the olfactory nerve through lymphatic vessels of the nasal mucosa. Cranial and spinal 
nerves, as well as the meningeal lymphatics have been proved to carry CSF toward the cervical lymph nodes. CSF, cerebrospinal fluid; AQP4, 
aquaporin-4; ISF, interstitial fluid.

https://doi.org/10.3389/fnmol.2023.1138769
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnmol.2023.1138769

Frontiers in Molecular Neuroscience 04 frontiersin.org

status independent of age (Zeppenfeld et al., 2017), suggesting that not 
only the quantity but also the localization is necessary to maintain the 
function of the glymphatic system. AQP4 plays an essential role in 
brain water transport and waste clearance (Figure 1).

3. Driving factors of the glymphatic 
system

The fluid transport and waste clearance of the glymphatic system 
is affected by several factors (Plog and Nedergaard, 2018). It is 
commonly believed that the sleep–wake cycle may affect the 
glymphatic activity. Intact sleep architecture, which consists of NREM 
and rapid eye movement stage (REM), is the premise for the 
glymphatic activity. Based on the electroencephalographic (EEG) 
characteristics, NREM is classified as NREM 1 ~ NREM 3, which 
NREM 1 sleep is light, and NREM 3 sleep is the deepest sleep stage 
and is characterized by slow-wave (delta wave) EEG activity. During 
NREM3, the resistance to glymphatic flow is reduced. The velocity of 
glymphatic flow is strongly related to the depth stage of sleep. 
Glymphatic flow is highest during NREM 3 and decreases as sleep 
depth decreases (Figure 2). After sleep deprivation, subsequent NREM 
sleep was both longer and deeper than normal, and increased slow 
waves in the EEG were detected during recovery sleep (Hablitz et al., 
2019; Nedergaard and Goldman, 2020). One human study provided 
in vivo evidence that one night of total sleep deprivation impaired 
clearance of the tracer from the human parenchyma. The results 

provide that the impaired of cerebral molecular clearance in the sleep-
deprived group was not compensated by subsequent sleep over the 
next few days (Eide et al., 2021). Previous human study has shown that 
CSF influx increases at NREM 3, when nutrients and blood flow to the 
brain are reduced (Fultz et al., 2019). A recent study has shown that in 
mice, independent of the light–dark cycle, there is an increasing in 
glymphatic influx and clearance of small tracers from the brain during 
the day compared to the night, corresponding to a day-night variation 
in AQP4 localization (Hablitz et  al., 2020). Another example 
illustrating the importance of normal sleep architecture for glymphatic 
function is the anti-anxiety and anti-insomnia medication, 
benzodiazepines, which reduce the stage of slow-wave activity during 
sleep (Lancel, 1999). Epidemiologic studies have revealed that there is 
an association between a higher exposure to benzodiazepines and 
dementia (Gomm et al., 2016; Tapiainen et al., 2018). This corresponds 
to the tendency between glymphatic clearance and sleep- wake cycles. 
This leads in a new direction to the desired replacement of 
benzodiazepines by new drugs with enhanced slow-wave activity to 
reduce the occurrence of dementia.

Glymphatic movement is also linked to the arterial pulsation and 
heart rate. A previous study of mice models showed that internal 
carotid artery ligation slowed the rate of perivascular CSF-ISF 
exchange, while dobutamine, an inotropic adrenergic agonist, 
increased the heart rate and the rate of paravascular CSF-ISF exchange 
(Iliff et al., 2013). It is well known that cardiovascular diseases could 
affect sleep quality. Previous studies have found that glymphatic 
function is suppressed in hypertensive rats (Mortensen et al., 2019; 

FIGURE 2

Changes in sleep architecture and glymphatic flow in young and old individuals. Sleep architecture changes with age, which is reflected by a decrease 
in sleep depth and an increase in waking frequency. One of the most significant causes of decreased glymphatic flow in older people is a change in 
sleep architecture, with lighter sleep depths and interrupted sleep stages. This figure shows the variation trend of the variability of the glymphatic 
clearing function between older and younger age groups. The green broken line and yellow broken line represent the sleep architecture and 
glymphatic flow speed of the young and the old, respectively. The area under the curve (AUC) reflects the accumulative waste removal of glymphatic 
system in the brain during sleep. As one gets older, the curve moves down and the AUC gets smaller, which means that the metabolic waste clearance 
of the brain decreases. This figure may also reflect the effect of pulsation on the function of the glymphatic system with age by replacing the sleep 
depth on the left axis with pulsation.
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Xue et al., 2020). The ejection pressure of blood from the left ventricle 
is partially absorbed by the elastic arteries, causing the pulsations 
consistent with the cardiac cycles. Pulsations in the large arteries 
continuously transmit pressure waves along the major vessels. When 
the artery continues into the CSF-filled subarachnoid space, part of 
the ejection pressure is converted into kinetic energy of the CSF 
convection (Figure 1), thereby driving CSF into the parenchyma along 
the periarterial spaces (Iliff et al., 2012; Nedergaard and Goldman, 
2020). Cardiovascular diseases associated with reduced cardiac output 
and arterial compliance, including congestive heart failure, atrial 
dysrhythmias, and hypertension, are thought to disrupt glymphatic 
function. Humberto et al. found that the pulsation of the arterial wall 
matched that the CSF flow rhythm, suggesting that arterial wall 
motion was the domain driving mechanism, via a process known as 
perivascular pumping. Increasing blood pressure does not alter the 
diameter of the artery, but changes the pulsations of the arterial walls, 
and thus reducing the net flow in the PVS (Mestre et al., 2018). All 
these findings demonstrate that arterial pulsation is a key driver of 
glymphatic flow.

Respiratory-related pulsatile cycles are another driving factor 
of glymphatic flow. Centripetal venous fluid flow, which increases 
with respiratory rhythm, may augment the venous space and drive 
glymphatic outflow (Kiviniemi et  al., 2016). Body posture also 
affects the glymphatic flow, and the authors found that waste 
removal was most efficient at lateral position in the mice model (Lee 
et al., 2015).

Most of the driving factors discussed above are related to 
another force of the glymphatic flow, the aging. Sleep duration and 
depth, arterial pulsation and the respiratory pulsation cycles, all of 
these functions decline with age. As with many other disorders, 
glymphatic function reduced with aging. Compared with the young, 
clearance of intraparenchymally injected Aβ was impaired by 40% 
in the old mice. CSF-ISF exchange decreases with 27% reduction of 
intracortical arterioles and loss of polarized expression of AQP4 
along the penetrating arteries (Kress et al., 2014). We speculated 
that the glymphatic flow declines with aging as many other 
disorders, leading to the accumulation of metabolic waste, which 
causes the occlusion in the glymphatic pathway and further 
deteriorates the glymphatic flow.

4. Changes of glymphatic system in 
different neurological disease

Previous studies have indicated that glymphatic flow and clearance 
activity decrease with aging and participate in a broad spectrum of 
diseases, especially those associated with sleep disturbance and 
neurological disorders with cognitive decline (Nedergaard and 
Goldman, 2020). In addition, it is involved in the pathology of other 
neurological diseases, such as epilepsy, and immune dysfunction. The 
glymphatic system participates in the process of a general and 
non-selective clearance route of toxic metabolites, and targeting 
glymphatic system fluid transport may contain novel therapeutic 
pathways for neurological disorders such as AD, PD, depression, 
epilepsy, cerebrovascular disease, infection and inflammation in the 
CNS (Xia et al., 2017; Liu et al., 2021; Zhang et al., 2021; Generoso 
et al., 2022).

4.1. Chronic neurological disorders

The dysfunction of the glymphatic system involved in animal 
models of chronic neurological diseases is primarily due to a decline 
in the clearance of waste proteins in the brain. Over the last decade, a 
growing number of studies have revealed the relation between AD and 
glymphatic dysfunction. Pathologically AD is characterized by the 
accumulation of Aβ plaques and neurofibrillary tangles of 
hyperphosphorylated protein tau (Xuan et al., 2022). Aβ, which plays 
a physiological role in synaptic regulation and neuronal survival, is 
degraded and cleared via multiple pathways, including phagocytosis, 
degradation, and drainage into the circulation through the BBB and 
glymphatic system (Zuroff et al., 2017; Reeves et al., 2020). Although 
the 75% drainage of Aβ depends on BBB transportation, recent studies 
have revealed that glymphatic flow plays a crucial part in the 
pathological process of AD. Pre-clinic research suggests that 
glymphatic pathway is a substantial factor in the clearance of Aβ (Iliff 
et al., 2012; Xu et al., 2015). In a mouse model of AD study, glymphatic 
failure significantly preceded Aβ deposits, which may be an early 
biomarker of AD (Peng et al., 2016). Recent mice study presented that 
CSF-ISF exchange and AQP4 polarization were impaired in tauopathy, 
the authors found that the use of TGN-020, a novel AQP4 inhibitor, 
could dramatically impair glymphatic CSF-ISF exchange and 
accelerate tau protein deposition in a mouse model. It demonstrated 
that AQP4 is not only plays a central role in the glymphatic system, 
but is also a novel target for the treatment of AD and other 
neurodegenerative diseases (Harrison et  al., 2020). Previous 
radiological study of glymphatic system on AD patients found that the 
water diffusivity along perivascular spaces is positively correlated with 
mini mental state examinations (MMSE) score, which indicating that 
the glymphatic dysfunction is associated with AD severity (Taoka 
et al., 2017). Recent clinical study showed that the concentration of 
AQP4 in CSF was higher in neurodegenerative diseases compared 
with the subjects not affected by neurodegenerative diseases and 
AQP4 was positively corelated with total tau levels in CSF (Arighi 
et al., 2022). All discussed above predict that AQP4 may be a crucial 
factor in neurodegenerative disease in the future.

Age-related decline in CSF production, AQP4 polarization 
decreasing in astrocyte endfeet and Aβ aggregation all impede 
glymphatic flow and disturb waste clearance in the brain. The reduced 
clearance efficiency of the glymphatic system accelerates the plaque 
formation, which creates a vicious cycle in the progression of AD and 
deteriorates the exchange efficiency of CSF and ISF, as well as BBB 
transport (Peng et al., 2016; Xuan et al., 2022). One of the hallmarks 
of AD is disrupted sleep. One study in mice suggested that the 
glymphatic clearance of Aβ was double during sleep compared with 
the awake state (Xie et al., 2013). Another study in human revealed 
that sleep deprivation led to increasing Aβ level in parenchyma and 
interruption of NREM results in elevated CSF Aβ levels (Ju et al., 
2017), which is consistent with the relation between sleep depth and 
the velocity of glymphatic flow. Additionally, amyloid plaques could 
accelerate cerebral amyloid angiopathy (CAA), and CAA promotes 
arteriosclerosis and reduces arterial pulsation, which further inhibits 
the clearance efficiency of glymphatic function (Weller et al., 1998; 
Peng et al., 2016).

Cerebral small vessel disease (CSVD), mainly featured as enlarged 
perivascular spaces and white matter hyperintensities, is a common 
instigator of dementia in the aging population. The pathological 
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changes of CSVD are also presented as multiple atherosclerosis of the 
arteries, capillaries, and venules and cerebral amyloid angiopathy. The 
present research demonstrates that the glymphatic system plays a key 
role in the initiation and progression of SVD, and that both 
hypertension and diabetes participate in this process (Benveniste and 
Nedergaard, 2022).

Previous study on human has demonstrated that the cognitive 
decline is associated with the expression of AQP4 and the sleep–wake 
cycle (Ulv Larsen et  al., 2020). The authors found that AQP4-
haplotype is associated with NREM slow wave activity, which is 
strongest during the early sleep phase and is mirrored by changes in 
sleepiness and response times during extended wakefulness. Further 
studies have found that patients with various AQP4 SNPs show 
varying levels of cognitive decline after diagnosis of AD, and the 
polarized localization of AQP4 in astrocytes is disrupted with AD but 
preserved in older people with intact cognitive function (Burfeind 
et al., 2017; Zeppenfeld et al., 2017). The deletion of AQP4 accelerated 
amyloid plaque formation but did not modify the related proteins 
involved in synthesis or degradation of Aβ, suggesting that deletion of 
AQP4 leads to reduction clearance of Aβ in the brain (Xu et al., 2015). 
These studies suggest that regulation of AQP4 could be  a clue to 
treatment of AD in the future. Glymphatic dysfunction also has been 
shown to be  involved in other neurodegenerative disease, such as 
amyotrophic lateral sclerosis (Hirose et al., 2021), Huntington disease 
(Wu et al., 2020), idiopathic normal pressure hydrocephalus (Bae 
et al., 2021), and multiple sclerosis (Fournier et al., 2019).

The identification of glymphatic function has been presented for 
only a decade, and a growing number of studies have shown that 
glymphatic dysfunction is participated in the occurrence of various 
diseases. More studies could focus on both the pathogenic mechanisms 
and therapeutic function of the glymphatic system in neurological 
disease in the future.

4.2. Acute neurological disorders

Glymphatic flow has been elucidated to be  involved in the 
pathophysiology of many acute neurological diseases, especially 
stroke. Stroke, classified as ischemic and hemorrhagic stroke, is the 
second leading cause of death and the third leading cause of disability 
in the world (Feigin et al., 2017; Campbell et al., 2019).

Subarachnoid hemorrhage (SAH) is a typical example to illustrate 
the changes of glymphatic flow in the course of stroke. Following 
SAH, blood components, particularly fibrin and fibrinogen, flow into 
the subarachnoid space from the ruptured vessel and then into the 
PVS along with the CSF. The inflow of blood components increases 
the formed elements and viscosity of the CSF, which leads to occlusion 
of the PVS and dysfunction of the glymphatic system. The occlusion 
of the PVS reduces CSF influx and ISF clearance, ultimately worsening 
cerebral ischemia and edema (Goulay et al., 2017). A recent study of 
mice SAH model, established by injecting autologous blood into the 
cisterna magna, showed a decrease in the influx of fluorescent tracer 
into the parenchyma and drainage to the deep cervical lymph nodes. 
Moreover, SAH impairs the polarization of AQP4 in the astrocytes 
and induces the accumulation of tau protein and immune cells in a 
study of mice models (Pu et al., 2019). In a non-human primates 
model study of SAH, researchers found that the parenchymal CSF 
circulation was severely impaired by SAH, as described in the 

glymphatic system of rodents. They suggested that the impaired 
glymphatic flow was associated with the delayed cerebral ischemia, 
which is a severe complication of SAH (Goulay et  al., 2017). 
Interestingly, in a rodent stroke model, the authors reported that 
glymphatic dysfunction after SAH could be  improved by 
intracerebroventricular injection of tissue-type plasminogen activators 
(Gaberel et al., 2014), which may be a novel target for improving the 
delayed cerebral ischemia complications of SAH.

Intracerebral hemorrhage (ICH) is another subtype stroke 
generally accompanied with hypertension or diabetes. Studies about 
the relation between ICH and glymphatic function is limited. Most 
studies have focused on the role of dilated PVS in ICH. A study 
involving 1678 participants displayed that dilated PVS was an 
independent risk factor for ICH (Duperron et al., 2019). In addition, 
dilated basal ganglia PVS has been found to be a novel risk factor for 
oral anticoagulants associated with ICH (Best et al., 2020), and dilated 
PVS is thought to be associated with ICH recurrence (Raposo and 
Viswanathan, 2020). Several studies have showed that reduction in 
AQP4 expression may alleviate cerebral edema and astrocyte injury 
following ICH (Chen et al., 2020; Zhang et al., 2020). However, other 
studies have presented otherwise about AQP4 in ICH. Tang et al. 
found that AQP4 deletion exacerbated neurological deficits, including 
cerebral edema formation, BBB damage, and neuronal apoptosis 
(Tang et al., 2010). AQP4 knock-out led to larger hematoma volume 
and more severe BBB disruption in another study (Chu et al., 2020), 
and in a study of mice ICH model, the researchers found that AQP4 
deletion increased apoptosis following ICH via the modulation of 
cytokines, especially TNF-α and IL-1β (Chu et al., 2014). It is unclear 
how the glymphatic system is involved in ICH pathology and what the 
role AQP4 plays in the ICH development, positive or negative? 
Further studies are needed to clarify the mechanisms of the glymphatic 
system in ICH and how AQP4 acts on the pathological factor of ICH.

Acute ischemic stroke affects millions of people each year. 
Findings from the previous studies suggest that the glymphatic system 
is involved in the process of post-stroke cerebral edema. Acute 
ischemic stroke impaired CSF inflow at 3 h after occlusion of the 
middle cerebral artery and recovery 24 h after spontaneous arterial 
recanalization (Gaberel et al., 2014). In another study, the authors 
found that the extracellular fluid in liquefactive necrosis was toxic to 
cortical and hippocampal neurons for at least 7 weeks following a 
stroke. Toxic molecules in the liquefactive necrosis may leak through 
the glial scar and be cleared by a combination of glymphatic flow and 
microglial endocytosis, and they believed that the mechanism of post-
stroke neurodegeneration was that the glial scar could not protect 
normal brain tissue from the leakage of toxic molecules in the 
liquefactive necrosis (Zbesko et al., 2018). But there is no consensus 
on how glymphatic function changes, and what role the glymphatic 
system plays in the course of acute ischemic stroke. A recent mice 
model study revealed that diffuse ischemia drives CSF influx into the 
PVS, which is the primary cause of immediate edema after acute 
ischemic stroke (Mestre et al., 2020). CSF influx drives acute ischemic 
tissue swelling, a pathogenic process triggered by ischemia spreading 
depolarization with subsequent vasoconstriction. They showed that 
the spreading edema depends on AQP4 expression (Mestre 
et al., 2020).

Traumatic brain injury (TBI) is defined as an alteration in brain 
function, or additional evidence of brain pathology caused by an 
external force (Menon et al., 2010). In mice models, TBI impaired 

https://doi.org/10.3389/fnmol.2023.1138769
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnmol.2023.1138769

Frontiers in Molecular Neuroscience 07 frontiersin.org

glymphatic function and disrupted polarized localization of AQP4. 
Glymphatic flow was reduced by ~60% and persisted for at least 
1 month after TBI (Iliff et al., 2014). A recent study on mice has shown 
that the polarized expression of AQP4 on astrocytes was reversed after 
1-12 h TBI. During this period, the abundance of AQP4 on the 
astrocytic membrane increased, but the polarized position of AQP4 
on the astrocytic endfeet decreased. After 12 h, the polarized position 
of AQP4 was reduced, presenting a shift from the endfeet membrane 
to the cytomembrane (Lu et al., 2020). The importance of polarized 
expression of AQP4 for glymphatic flow is verified again. Additional 
animal studies have shown that genetic knockout of AQP4 exacerbates 
glymphatic dysfunction and promotes the development of 
neurofibrillary plaque and neurodegeneration after TBI by reducing 
the clearance of tau protein, glial fibrillary acidic protein, S100B, and 
neuron-specific enolase (Plog et al., 2015; Piantino et al., 2022).

The glymphatic system affects the outcome of TBI mainly through 
two mechanisms. First, the loss of polarized location of AQP4 after 
TBI suppresses waste clearance and glymphatic flow movement, 
which leads to increased intracranial pressure and may be related to 
postconcussive headaches. Second, previous studies have revealed that 
sleep disturbances are observed in 30–70% of patients with TBI 
(Collen et al., 2012; Ouellet et al., 2015). As discussed in the front 
section, sleep disturbance impairs the glymphatic function and results 
in the accumulation of metabolic waste in the parenchyma, which may 
be associated with post-traumatic dementia (Piantino et al., 2022). 
Modulation of sleep and drugs targeting to AQP4 may be  new 
therapeutic strategies for TBI in the future.

In addition to stroke and TBI, glymphatic dysfunction is also 
involved in more acute neurological diseases. A study on mice found 
that cerebral edema after status epilepticus may lead to glymphatic 
dysfunction, which may be  an important factor in the p-tau 
aggregation and the onset of neurocognitive impairment after status 
epilepticus. The authors also demonstrated a temporary increase in 
AQP4 expression and depolarization of AQP4 after a state of status 
epilepticus (Liu et al., 2021). Dysfunctional glymphatic system is also 
observed in pneumococcal meningitis. A recent study of mice models 
presents that pneumococcal meningitis results in glymphatic 
dysfunction. The authors demonstrated that accumulation of bacterial 
components in the CSF is associated with the disruption of the AQP4 
due to a detachment of the astrocyte endfeet from the BBB vascular 
cells, but not the altered AQP4 expression (Generoso et al., 2022). 
Another study also emphasized the glymphatic system is a potential 
key player in bacterial meningitis (Oggioni and Koedel, 2022). 
Interestingly, glymphatic system dysfunction also participates in 
cluster headache (Kim et  al., 2022). More and more studies have 
emphasized the importance of glymphatic function in different 
neurological diseases. As a widely distributed clearance system in the 
brain, the glymphatic system may affect many neurological disorders, 
providing a new direction for future study on disease mechanisms 
and treatments.

5. Drug delivery barriers and potential 
approaches

Drug concentrations in the CNS are markedly lower than those in 
the systemic circulation due to the restriction of biological barriers, 
including BBB and arachnoid barriers. The concentration of 

therapeutic antibodies in CSF under intravenous treatment is only 
0.01–0.1% of that in the systemic circulation (St-Amour et al., 2013). 
Compared with the dose of anti-Aβ antibodies directly injected into 
the brain, intravenous dose is 1,000 times to reverse cognitive 
impairments similarly (Banks et al., 2007). Due to the frequent side 
effects of intraventricular injection, such as bleeding and CNS 
infection, the most commonly used administration to avoid the BBB 
is the lumbar intrathecal route, which closely corresponds to the 
intracisternal injection in animal studies of glymphatic system (Lohela 
et  al., 2022). With the development of nanomaterials technology, 
implantable intrathecal nanoparticle drug delivery systems for the 
treatment of CNS diseases are on the rise (Bottros and Christo, 2014; 
Fowler et al., 2020). The continuous nanorelease system avoids the 
damage caused by repeated intrathecal injections, leading to a more 
effective and less painful treatment method for CNS disorders. It has 
been successfully used in the treatment of spasticity with baclofen, 
which is the only FDA-approved GABAb agonist for the potential 
treatment of spasticity (Kent et al., 2020).

6. Therapeutic targets of glymphatic 
system for neurological disease

As discussed above, the glymphatic system is involved in many 
neurological diseases due to its clearing function, fluid transport and 
wide distribution. Therefore, one or more of the major functional 
components of the glymphatic system would be a pharmacological 
target for the treatment of neurological diseases. In this section, 
we  discuss several potential therapeutic targets of the glymphatic 
system for the treatment of neurological diseases.

6.1. Modulation of sleep architecture

Slow-wave activity in the EEG is consistent with deep NREM, 
which is the optimal stage for glymphatic flow to clear metabolic 
waste. Previous study has shown a positive correlation between 
glymphatic influx and cortical delta power in EEG recordings and a 
negative correlation between beta power and heart rate (Hablitz et al., 
2019). Subsequently, it was shown that slow oscillating neural activity 
precedes coupled waves of blood and CSF flow in the brain (Fultz 
et al., 2019). Natural sleep or anesthesia are associated with a 60% 
increase in the interstitial space, resulting in a striking increase in 
convective exchange of CSF with ISF, which increased the rate of Aβ 
clearance during sleep (Xie et al., 2013). The effect of anesthesia on the 
glymphatic system is an appropriate example to illustrate how sleep 
architecture changes glymphatic flow. Different choices of anesthetics 
agent result in different rates of glymphatic CSF influx and efflux 
(Benveniste et al., 2017; Hablitz et al., 2019; Benveniste et al., 2019a). 
Dexmedetomidine, a selective α2-adrengergic agonist routinely used 
for sedation and commonly with markedly extensive slow-wave 
activity in EEG, could elevate the MRI contrast agent clearance rate in 
rat (Benveniste et  al., 2017). Compared to isoflurane-only, the 
combined administration of dexmedetomidine and isoflurane clearly 
promotes CSF influx and has been shown to correlate directly with 
delta power in EEG (Hablitz et al., 2019). In addition, changing the 
sleep architecture is not the only mechanism by which anesthetics 
promote glymphatic flow. Preclinical studies have shown that 
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anesthetic at high concentrations may induce cerebral 
vasoconstriction, which leads to enlarged perivascular spaces and 
promotes CSF influx into the brain (Ganjoo et al., 1998). Therefore, 
we speculate that targeting to the sleep architecture modulation would 
be a novel therapeutic modality not only for the neurodegenerative 
disease but also beneficial for stroke, TBI and other diseases.

6.2. Modulation of AQP4

As one of the most important constituent elements of the 
glymphatic system, AQP4 is a potential therapeutic target for many 
neurological diseases. Both genetic modification and pharmacological 
inhibition of AQP4 expression have been shown to reduce brain 
edema and improve outcomes of ischemic stroke through animal 
experiments (Yao et al., 2015; Pirici et al., 2017). TGN-073, an AQP4 
facilitator, has been shown to promote ISF circulation within the BBB 
(Huber et al., 2018). Consistent with this, overexpression of AQP4 in 
mice has been shown to accelerate edema and poor prognosis after 
water intoxication (Yang et al., 2008).

Although AQP4 is an important potential target for neurological 
diseases, there are still many points that must be considered. The first 
is that AQP4 is also expressed outside of the CNS, in the sarcolemma 
of skeletal muscle, the inner medullary collecting duct of the kidney, 
the parietal cells of the stomach, and the epithelium of the exocrine 
gland (Frigeri et al., 1995; Verkman et al., 2017). Therefore, targeting 
AQP4 on astrocytes while avoiding binding to peripheral AQP4 must 
be considered to avoid side effects. In addition to the difficulties of 
crossing BBB in CNS drug delivery, off-target binding is another 
common occurrence. The second is that AQP4 has two main isoforms, 
a longer M1 isoform and a shorter M23 isoform, which form two 
distinct tetramers, a homotetramer consisting of all M1 or M23 
isoforms, and a hetero-tetramers consisting of a mixture of M1 and 
M23 (Verkman et al., 2017). Drug specificity to different tetramers is 
another point to consider.

6.3. Modulation of CSF flow in perivascular 
space

CSF from the subarachnoid space flows into the parenchyma via 
the PVS, providing a mode of drug delivery. A previous study 
demonstrated that the influx of tracers from the subarachnoid space 
into the brain parenchyma depends on molecular weight. They found 
that as the molecular weight decreased, more tracers entered the brain 
parenchyma (Iliff et al., 2012). The FITC-d2000 (size as 2000 kD) was 
confined in the perivascular space. TR-D3 (size as 3kD) was more 
widely distributed than FITC-d2000, which is mainly entered into 
PVS. The lower-molecular weight A594 (size as 759D) moved quickly 
into parenchyma and only a bit constricted in the PVS. Pizzo et al. 
(2018) found that solute entry into the brain is consistent with 
diffusive transport and exhibits a clear solute size dependence, and 
co-injection of mannitol significantly increasing the speed of IgG flow 
into PVS in a dose-dependent manner. They found that single-domain 
antibodies (lower molecular weight as ~16.8 kD) could easier enter 
into PVS compared with IgG (higher molecular weight as ~150 kD). 
Another way of regulating the PVS flow is the regulation of arterial 
pulsations and cardiac cycles. Enlarged PVS was a predisposing factor 

for degenerative impairment and was observed to be  dilated in 
hypertension by MRI. Glymphatic transport is compromised in both 
chronic hypertension and AngII-induced acute hypertension on mice 
models, which is probably due to decrease of the arterial pulsation and 
dilated PVS (Mortensen et  al., 2019). The association between 
glymphatic flow and hypertension may in part explain the association 
between vascular pathology and AD (Mortensen et al., 2019). Systemic 
administration of dobutamine, an adrenergic agonist, has been proven 
to increase the rate of perivascular CSF-ISF exchange via enhancing 
arterial pulsation and cardiac contractility (Iliff et al., 2013). It is also 
explained that cardiac failure potentially reduced glymphatic flow 
exchange and accelerated cognition decline. Epidemiological study 
also showed that patients with cardiovascular diseases (such as heart 
failure, hypertension and atrial fibrillation) have a higher risk of AD 
(Cermakova et  al., 2015). Conventional opinion in cardiac 
insufficiency patients at high risk for AD has attributed it to 
hypoperfusion of the brain, but with more research on glymphatic 
function, weakened vascular pulsation is a new pathological 
mechanism. Therefore, the regulation of pulsations and cardiac cycles 
is a new perspective for the treatment of neurological diseases. 
Increasing plasma osmolarity transiently is another effective way to 
promote glymphatic flow without affecting consciousness (Plog et al., 
2018). However, it is often accompanied by pontine myeloysis 
syndrome (Lohela et al., 2022).

6.4. Other strategies

Adrenergic drugs are another way to improve glymphatic flow. 
Acute focal ischemia induces cortical spreading depolarization, 
which is featured as an increase in extracellular K+ and a suppression 
of neural activity. Systemic administration of adrenergic receptor 
antagonism before or after ischemic stroke in mice models 
accelerates the normalization of extracellular K+, promotes recovery 
of neural activity, reduces infarct volume, conserves AQP4 polarized 
expression on astrocytes (Monai et al., 2019). The authors suggested 
that adrenergic inhibitors promoted the exchange between CSF and 
ISF, accelerated extracellular K+ clearance, and are a potential 
treatment for stroke (Monai et al., 2019). A retrospective cohort 
study suggested that the β-blockers as highly BBB permeable drugs 
reduce the risk of AD compared with low permeability drugs in the 
process of hypertension treatment (Beaman et  al., 2022). They 
hypothesized that β-blockers slowed down the development of AD 
due to improving metabolic waste clearance in the brain (Beaman 
et al., 2022). Activation of β-receptors reduces extracellular space 
volume and expands astrocytic processes (Sherpa et al., 2016). The 
administration of adrenergic receptors drugs modulated not only the 
ISF-CSF exchange and astrocyte, but also the cardiac cycle and 
arteriole pulsation, and further researches are needed to prove the 
systemic function of β-blockers in glymphatic pathway. In addition 
to those presented above, there are several non-pharmacological 
interventions could promote the CSF flow to ISF, including body 
gestures, exercise, and excess intake of polyunsaturated fatty acids 
(Lee et al., 2015; von Holstein-Rathlou et al., 2018; Liu et al., 2020). 
High alcohol intake reduces CSF influx, but low doses of alcohol 
promote glymphatic function, and vagus nerve stimulation 
enhanced CSF entry into the brain (Lundgaard et al., 2018; Cheng 
et al., 2020).
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7. Discussion

Due to the difficulties of CNS drug delivery into brain, the 
severity of CNS disease, and the increasing incidence of 
neurodegenerative diseases in aging populations, a growing number 
of researchers are paying significant attention to the CSF/ISF 
exchange and the transport of metabolic wastes in the CNS. The main 
role of CSF in the CNS was considered to be as a buffer system until 
the discovery of the glymphatic system. Over the past decade, the 
glymphatic system has been shown to be  involved in the 
pathophysiological processes such as metabolic waste clearance, 
water transport, and intracranial pressure modulation in the 
CNS. The discovery of the glymphatic system provides a deeper 
understanding mechanism of CNS diseases. At the same time, the 
glymphatic system supplies a new direction for the treatment of 
neurological diseases. We have elaborately discussed the changes in 
the glymphatic system in neurological diseases and potential targets 
for treatments. There are still a few concerns. Firstly, the pia mater 
and endfeet-PVS are permeable to small molecules and restricted to 
large molecules, which necessitates the selection of the correct 
molecular size of the drug in studies of glymphatic drug delivery. 
Secondly, based on the characteristics of the glymphatic system, 
we  speculate that drug treatment for CNS diseases focused on 
nighttime (natural sleep stage) or sedation is more efficient than the 
traditional daytime dosing, because the glymphatic system is in a 
strong flow state in natural sleep stage and sedation or use drugs with 
longer half-lives during the day. Finally, intrathecal and 
intraventricular injections have not been widely used in clinical 
practice, due to the risk of invasions and probable infection. With the 
development of nanomedicine technology, the clinical application of 
these two therapeutic approaches will be  greatly promoted. 

We  propose that the glymphatic pathway provides a novel high-
efficiency drug delivery pathway for CNS diseases.
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