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Background: Age-related macular degeneration (AMD) is the leading cause of 
vision loss in the developed world and the detection of its onset and progression 
are based on retinal morphological assessments. MicroRNA (miRNA) have been 
explored extensively as biomarkers for a range of neurological diseases including 
AMD, however differences in experimental design and the complexity of human 
biology have resulted in little overlap between studies. Using preclinical animal 
models and clinical samples, this study employs a novel approach to determine a 
serum signature of AMD progression.

Methods: Serum miRNAs were extracted from mice exposed to photo-oxidative 
damage (PD; 0, 1, 3 and 5 days), and clinical samples from patients diagnosed 
with reticular pseudodrusen or atrophic AMD. The expression of ~800 miRNAs 
was measured using OpenArray™, and differential abundance from controls 
was determined using the HTqPCR R package followed by pathway analysis with 
DAVID. MiRNA expression changes were compared against quantifiable retinal 
histological indicators. Finally, the overlap of miRNA changes observed in the 
mouse model and human patient samples was investigated.

Results: Differential miRNA abundance was identified at all PD time-points and in 
clinical samples. Importantly, these were associated with inflammatory pathways 
and histological changes in the retina. Further, we were able to align findings in 
the mouse serum to those of clinical patients.

Conclusion: In conclusion, serum miRNAs are a valid tool as diagnostics for the 
early detection of retinal degeneration, as they reflect key changes in retinal health. 
The combination of pre-clinical animal models and human patient samples led to 
the identification of a preliminary serum miRNA signature for AMD. This study is 
an important platform for the future development of a diagnostic serum miRNA 
panel for the early detection of retinal degeneration.
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1. Introduction

Age-related macular degeneration (AMD) is the leading cause of 
irreversible blindness in the elderly population in the western world 
(Klein et  al., 2007; Heath Jeffery et  al., 2021). In many cases, the 
disease is slow progressing and chronic with early stages presenting as 
relatively asymptomatic (Deloitte Access Economics et  al., 2011). 
Current diagnosis and disease grading is predominantly based on the 
presentation of small, subretinal lipid deposits called drusen, pigment 
changes in the central macular region, and self-reported scotomas or 
‘blind spots’ (Fine et al., 2000; Klein et al., 2007; Ardeljan and Chan, 
2013). In addition, a newly classified form of drusen, reticular 
pseudodrusen (RPD), has demonstrated clinical significance as a risk 
factor of progression to one of two forms of late-stage AMD, atrophic 
AMD (geographic atrophy (GA)) or neovascular AMD (Boddu et al., 
2014; Domalpally et al., 2019). However, retinal imaging is used for 
clinical stratification and therefore is of little use in understanding 
molecular complexity of AMD, especially when considering that 
molecular events likely precede histopathological changes. Thus, 
we propose a combinatorial approach that utilizes both imaging data 
and serum biomarkers, which is easily explored in pre-clinical animal 
models as these limit the variability derived from confounding factors 
such as co-morbidities. The photo-oxidative damage (PD) mouse 
model, which exposes the rodent retina to bright light (Natoli et al., 
2016), has been used extensively to explore molecular facets common 
to AMD, including oxidative stress, chemokine response, activation of 
the complement cascade, and immune cell recruitment (Noell et al., 
1966; Chen et al., 2004; White et al., 2007; O’Koren et al., 2016; Song 
et al., 2017). Thus, the model provides a controlled system, enabling 
detailed investigation into the nuanced molecular changes and their 
correlations to retinal disease progression especially regarding retinal 
inflammatory diseases, such as AMD.

MicroRNAs (miRNA) have been shown to be  regulated in 
response to retinal degenerations (Saxena et al., 2015; Chu-Tan et al., 
2018; Fernando et al., 2020; Aggio-Bruce et al., 2021; Chu-Tan et al., 
2021). MiRNAs are short non-coding RNAs that repress messenger 
RNA (mRNA) translation by binding to their 3′ untranslated region 
(Andreeva and Cooper, 2014). As only a short region of 
complementarity is required for binding, a single miRNA can regulate 
a large number of targets, often within the same biological pathway 
(Bandyra Katarzyna et  al., 2012). Consequently, miRNAs control 
almost all biological processes in health and disease and are highly 
conserved across species (Lu et  al., 2008; McCreight et  al., 2017). 
Because of their regulatory role, the modulation of miRNAs also 
occurs in disease (Askou et al., 2017; Berber et al., 2017; Romano et al., 
2017; Chu-Tan et al., 2018), making them ideal targets to determine 
disease states. Therefore, miRNAs have been explored as a diagnostic 
tool in many biological systems (Chen et al., 2008; Gilad et al., 2008; 
Mitchell et  al., 2008; Roy and Sen, 2011; Weiland et  al., 2012), 
including the retina (Ertekin et  al., 2014; Grassmann et  al., 2014; 

Szemraj et al., 2015; Ménard et al., 2016; Berber et al., 2017; Ren et al., 
2017; Romano et al., 2017; Szemraj et al., 2017; ElShelmani et al., 
2020). Additionally, miRNAs are abundant in biofluids including 
tears, saliva, urine, plasma, and serum, making them easily accessible 
using minimally invasive methods (Chen et al., 2008; Mitchell et al., 
2008; McDonald et al., 2011). Further, serum miRNAs are highly 
stable due to resistance to ribonuclease digestion, integration with 
RNA-binding proteins and incorporation into extracellular 
nanovesicles, including exosomes (Chen et al., 2008; Jung et al., 2010; 
Arroyo et al., 2011; Sanz-Rubio et al., 2018). This high stability and 
their role in pathology has accelerated research into miRNAs as 
prognostic tools for disease such as cancer, cardiovascular disease, and 
neurodegenerative diseases, including retinal degenerations (Chen 
et al., 2008; Gilad et al., 2008; Lu et al., 2008; Mitchell et al., 2008; 
McManus and Ambros, 2011; Lukiw et al., 2012; Grasso et al., 2014).

During the last decade, studies into the use of miRNAs as a 
biomarker for AMD has identified numerous candidates for disease 
prediction (Grassmann et al., 2014; Szemraj et al., 2015; Ménard et al., 
2016; Berber et  al., 2017; Ren et  al., 2017; Romano et  al., 2017). 
However, due to differing methodologies in the fractionation and 
collection of samples [serum, tears and plasma (Berber et al., 2017; 
Roser et al., 2018; Felekkis and Papaneophytou, 2020)], complexities 
in histological presentation, and the presence of co-morbidities, there 
is little consensus between studies (Keller et al., 2017). Additionally, a 
limitation of these studies has been their primary focus on 
intermediate to late stages of retinal degeneration (Grassmann et al., 
2014; Ren et  al., 2017; Romano et  al., 2017; Elbay et  al., 2019; 
ElShelmani et  al., 2020), with little reported for early disease 
manifestation. However, the development of a diagnostic panel that 
can identify changes in circulation that reflect early retinal 
degenerations is essential for successful therapeutic intervention.

In the current study, global serum miRNA analysis was performed 
to elucidate potential circulating biomarkers for AMD disease 
progression. Using the pre-clinical PD model, we identified circulating 
miRNA changes that correlated to changes in overall retinal miRNA 
expression and abundance. MiRNAs dysregulated as a consequence of 
progressive degeneration were further associated with inflammatory 
and apoptosis pathways. Moreover, samples of patients with RPD or 
GA demonstrated changes in miRNA abundance which correlated to 
retinal volume. We found the expression of several serum miRNAs, 
including miR-26a/b-5p, let-7d-5p, miR-19a-3p and miR-574-3p, to 
be similarly altered in both clinical and PD samples, demonstrating 
the suitability of this study in overcoming the limitations of current 
biomarker development. Taken together, these results demonstrate a 
serum miRNA signature, important for the early detection of 
retinal degeneration.

2. Materials and methods

2.1. Animal handling and photo-oxidative 
damage

All experiments were conducted in accordance with the ARVO 
Statement for Use of Animals in Ophthalmic and Vision Research. The 
study was approved by the Australian National University (ANU) 
Animal Experimentation Ethics Committee (Application ID: 
2017/41).

Abbreviations: AMD, age related macular degeneration; ARVO, association for 

research in vision and ophthalmology; ANU, Australian National University; DR, 

dim-reared; GA, geographic atrophy; IBA-1, ionized calcium-binding adaptor 

molecule 1; INL, inner nuclear layer; miRNA, microRNA; ONL, outer nuclear layer; 

PD, photo-oxidative damage; RPD, reticular pseudodrusen; TUNEL, terminal 

deoxynucleotidyl transferase dUTP nick end labeling.
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C57BL/6 J mice (Jackson Laboratories, MA, United States) were 
raised in dim (5 lux), 12-h cyclic light conditions, and were used as 
dim-reared (DR) controls for this study. To induce PD, C57BL/6 J 
mice at postnatal day 60 were exposed to 100 K lux natural emission 
LED light for 1, 3 and 5 days with free access to food and water. 
Animals were euthanised by administration of CO2, and eyes and 
retinas collected and processed for histological and molecular analysis 
as described previously (Natoli et  al., 2016). Whole blood was 
collected from the left eye into 1.5 ml Eppendorf tubes (Eppendorf, 
Germany) by a qualified technician, via retro-orbital bleeds using 
non-heparinised capillary tubes. Serum was separated by first clotting 
whole blood samples at room temperature for 20 min followed by 
centrifugation at 1000 x g for 10 min at 4°C.

To control for possible circadian rhythm and gender effects, blood 
was collected at the same time each day and female animals only were 
used across the experimental groups. Four mice were used for each 
sample, with four to six samples per experimental group. Prior to 
starting this study, we  obtained advice from the ANU Statistical 
Consulting Unit. We  further considered the ANU’s ethical 
requirements of replace, reduce, refine as well as Mead’s resource 
equation of diminishing returns. Together, these suggested that our 
animal numbers are sufficient for these experiments. Histology was 
assessed for each rodent retina and the results averaged within 
each sample.

2.2. Clinical samples, ethics approval and 
consent to participate

This work adhered to the tenets of the Declaration of Helsinki and 
was approved by the University of Western Australia Human Research 
Ethics Committee (protocol: RA/4/1/7916 and 2021/ET000151). 
Patients were recruited through the Lions Eye Institute (Perth, 
Western Australia, Australia). Before commencing the study, written 
informed consent was obtained from the study participants.

Ten patients clinically diagnosed with the presence of reticular 
pseudodrusen in one or both eyes (early AMD; age: 76 ± 6 years), and 
five patients with late-stage AMD (geographic atrophy (GA); age: 
74 ± 5 years) were included in this study (Supplementary Table S1). 
RPD diagnosis was made independently by two clinicians (FKC and 
RCHJ) and was based on the presence of five or more hyporeflective 
lesions using near-infrared reflectance imaging, which coincided with 
a hyperreflective deposit above the retinal pigment epithelium (RPE) 
using spectral domain-optic coherence tomography (SD-OCT) (Wu 
et al., 2016) imaging. GA was defined by a well demarcated area of 
outer retinal layer and RPE loss associated with hypoautofluorescence 
(Holz et al., 2017). The control group consisted of 10 age-matched 
(72 ± 2 years) participants with no signs of AMD or other retinal 
pathologies graded by the same clinicians. Venous blood was collected 
in sterile, dry vacutainer tubes and serum was separated by 
centrifugation at 2,000 x g for 15 min at 4°C. Serum was stored 
at-80°C until further processing.

Retinal images were processed using the Heidelberg Spectralis 
OCT software (Heidelberg Engineering, Germany). The outer nuclear 
layer (ONL) thickness was measured for each segment at a 1, 2.22, 
3.45 mm diameter circles centered around the macular region. The 
1 mm volume was used as an indicator of foveal integrity. As this small 
central zone is often spared in early stages of degeneration, the 

3.45 mm volume was also measured as it encompassed the primary 
lesion on all patients.

2.3. TUNEL

Retinal cryosections, cut in the parasagittal plane, were prepared 
and cell death analyzed using a terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) kit (Roche Applied Science, 
Germany), as described previously (Natoli et  al., 2010). For 
quantification of photoreceptor cell death, TUNEL+ cells in the outer 
nuclear layer (ONL) were counted along the full length of the retinal 
section. For each animal, cells were counted in technical duplicate, 
averaging the counts for each sample group. Significance between the 
DR control and each PD time point was assessed by one-way ANOVA 
with Tukey’s multiple comparison post-test.

2.4. IBA-1 Immunostaining

Immunohistochemical analysis of retinal cryosections was 
performed as described previously (Rutar et al., 2015). Immune cells 
were immunolabeled with primary mouse anti-rabbit IBA-1 (1:1000, 
Wako, Osaka, Japan) and secondary goat anti-rabbit Alexa 488 (1:500, 
Thermo Fisher Scientific, MA, United  States). Quantification of 
IBA-1+ cells was performed across the superior and inferior retina. The 
number of IBA-1+ cells in the outer retina was quantified as the total 
counts in the ONL and subretinal space. Significance between the DR 
control and each PD time point was analyzed by one-way ANOVA 
with Tukey’s multiple comparison post-test.

Nuclear layers were visualized by staining cryosections with 
bisbenzimide solution (1:10,000 of a 10 mg/ml stock; Calbiochem, 
United States). The ONL thickness was measured at increments of 
600 μm across the entire retina, including the optic nerve head.

2.5. Confocal imaging

Fluorescence was visualized and captured using a ZEISS LSM800 
with Airyscan Super-resolution confocal microscope (Carl Zeiss 
Microscopy, Germany). Images were obtained using uniform gain 
settings with excitation wavelengths of 488 nm (green; IBA-1 staining), 
561 nm (red; TUNEL staining) and 358 nm (bisbenzimide), and 
processed using ZEISS Zen (blue edition) software.

2.6. miRNA extraction and cDNA 
preparation

Extraction and purification of miRNAs was performed using the 
miRVana miRNA isolation kit (Thermo Fisher Scientific) following 
the manufacturer’s instructions. An Agilent 2,100 Bioanalyser with an 
Agilent small RNA kit (Agilent Technologies, United States) was used 
to test miRNA purity and concentration.

The OpenArray™ reverse transcription reaction and 
pre-amplification reaction was performed using the ‘Optimized 
protocol with low sample input’ (Thermo Fisher Scientific). Reverse 
transcription and pre-amplification reaction were cycled with a 
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standard PreAmp thermal cycling protocol with 16 cycles on a Veriti 
96-well thermal cycler (Applied Biosystems, CA, United States).

2.7. OpenArray™

The PreAmp product was diluted 1:20 in 0.1X Tris-EDTA buffer 
(pH 8.0). OpenArray™ 384-well loading plates were prepared 
according to the manufacturer’s instructions (Thermo Fisher 
Scientific). TaqMan™ OpenArray™ Rodent/Human MicroRNA 
panels were loaded using the OpenArray™ AccuFill™ loader system. 
Three samples were run on each Array, running four Arrays 
simultaneously. Post-run, quality control (QC) images were assessed 
for sample and plate inconsistencies and run quality. Arrays that did 
not pass QC were repeated.

2.8. miRNA OpenArray™ data processing

Both human and mouse miRNA OpenArray™ data were 
processed as follows: Ct data was filtered by first assigning an 
“undetermined” label to OpenArray™ wells that had amplification 
score < 1.24, Ct value >30 or were found outside the top/bottom 
10% quantile of each group. MiRNAs with “undetermined” 
expression in more than 20% of the samples were subsequently 
removed (Supplementary Figure S1A). From a total of 747 miRNA 
assayed on the mouse array cards and 715 assayed on the human 
cards, 199 and 248 were retained after filtering, respectively. 
Remaining Ct values were imported into the HTqPCR R (Dvinge 
and Bertone, 2009) packages and normalized using rank invariant 
miRNAs as reference genes (Mar et al., 2009) then transferred to the 
limma (Ritchie et  al., 2015) package for statistical modeling 
(Supplementary Figure S1B). Linear models were built using the 
lmFit function, then moderated t-statistics were computed using 
empirical Bayes moderation (eBayes function) and p-values and 
fold changes were extracted with top Table. The need for inclusion 
of covariates (experimental batch (array), age, sex) into linear 
regression models was assessed by (Klein et  al., 2007) visually 
examining the association of each covariate with sample clusters 
identified by principal component analysis 
(Supplementary Figure S1C; Heath Jeffery et al., 2021) by observing 
the effect each covariate has on the distribution of p-values 
(Supplementary Figure S1D). Both the mouse and human data sets 
required adjustments for experimental batch, and additional 
corrections for age were necessary for the latter 
(Supplementary Figure S1C). Chord diagrams were generated using 
the circlize R package (Gu et al., 2014) and all other plots were 
generated using ggplot2 in R unless otherwise indicated.

2.9. Network and pathway analysis

The targets of differentially accumulated miRNAs in the 5 day PD 
samples and the GA patient samples were determined using miRNet 
(Chang et al., 2020) v2.0 using miRTarBase v8.0 genes as targets. The 
target list was filtered for interactions validated by HITS/PAR-CLIP 
and/or reporter assays. The DAVID functional annotation tool (Huang 
et al., 2009; Sherman et al., 2022) was used to determine the functional 

annotation clustering using GOTERM_BP/CC/MF_DIRECT, 
Reactome and Wikipathways. A minimum miRNA/mRNA network 
was created using miRNet by using differentially expressed miRNAs 
as seed nodes then the only mRNAs added to the network are those 
that create links between miRNA seed nodes. This ensures that each 
mRNA added to the network is targeted by at least two miRNAs.

2.10. Statistical analysis

Where expression was compared between two groups, an 
unpaired Student’s t-test was performed and for group comparisons a 
one-way ANOVA with Tukey’s post hoc test was used to determine 
significance. ANOVA analysis was performed using GraphPad Prism 
V8 (GraphPad Software, La Jolla, CA, United  States). Statistical 
significance was determined by p < 0.05. Relationships between 
miRNA expression changes and histological measures were tested by 
Spearman’s correlation using the rcorr function of the Hmisc R 
package using a loess fit for non-linear correlations (Harrell and 
Harrell, 2019) and p < 0.01 was used as significance threshold. Results 
from correlation analyzes were graphed with corrplot (Wei 
et al., 2017).

3. Results

3.1. Circulating miRNA profiles are altered 
in response to photo-oxidative damage

Our previous work using the PD model has consistently shown 
changes in retinal miRNA expression in response to degeneration 
(Saxena et al., 2015; Chu-Tan et al., 2018; Fernando et al., 2020; Aggio-
Bruce et al., 2021; Chu-Tan et al., 2021). In this study we investigated 
if these changes could also be detected in serum, to investigate the 
utility of serum miRNAs as a diagnostic for retinal stress, particularly 
at early stages.

Serum samples were obtained from C57BL/6 J mice at day 0 (DR), 
1, 3 and 5 days PD (Figure 1A). A total of five and seven miRNAs were 
found to be  differentially abundant in serum from 1 day PD 
(Figure 1Bi; Supplementary Table S2A) and 3 days PD (Figure 1Bii; 
Supplementary Table S2B), respectively. This was markedly increased 
at 5 days PD with 61 miRNAs differentially abundant (Figure 1Biii; 
Supplementary Table S2C). Of these, 33 demonstrated a significant 
increase, with miR-342-3p showing the largest fold increase, while 28 
miRNAs exhibited a significant decrease, with miR-20a showing the 
largest fold change (p < 0.05). Further, miRNAs with changing 
abundance at 1 day did not overlap with those differentially abundant 
at 3 or 5 days PD (Figure 1C). However, five of the seven miRNAs 
differentially abundant at 3 days were also differentially abundant at 
5 days PD, comprising miR-214-3p, miR-574-3p, miR-434-3p, 
miR-26a-5p and miR-126a-3p.

Significantly differently abundant serum miRNAs at 5 days PD 
were submitted to miRNet (Chang et al., 2020) to identify interactions 
with validated target mRNAs. The target lists were then submitted to 
DAVID (Huang et  al., 2009; Sherman et  al., 2022) to identify 
associations with biological pathways. This revealed a strong 
association with immune response pathways, VEGF signaling as well 
as neuronal signaling terms (Figure 1D; Supplementary Table S3).
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This data clearly indicates that detectable changes in serum 
miRNA composition do occur in early stages of retinal damage and 
are associated with known important molecular pathways involved in 

AMD. Further, this data revealed that miRNA dysregulation is 
progressively exacerbated across the PD paradigm, suggesting an 
association with the underlying pathology.

FIGURE 1

Serum miRNA profiles are altered in response to photo-oxidative damage (PD). (A) Schematic showing the experimental workflow. Whole blood was 
collected from mice at 1, 3 and 5 days PD using dim-reared (DR) animals as control (i). Serum was separated and total RNA purified, enriching for small 
RNAs (ii). miRNA expression was analyzed using mouse OpenArrays (iii) and differential expression analysis performed between each PD group and the 
DR control (iv). n = 4–6 samples. (B) Volcano plots showing differentially expressed miRNAs. Five, seven and 61 miRNAs were significantly (p < 0.05) 
differentially expressed between DR and (i) 1 day PD, (ii) 3 days PD, and (iii) 5 days PD, respectively. See also Table S 2. (C) Chord diagram showing overlap 
of differentially expressed miRNAs across all time points. Five miRNAs (miR-126a-3p, miR-26a-5p, miR-434-3p, miR-574-3p and miR-214-3p) were 
differentially expressed at both 3 days and 5 days PD. (D) Pathway analysis of mRNAs targeted by miRNAs differentially expressed at 5 days PD. Targets 
were identified using miRNet and filtered for those validated by HITS/PAR-CLIP or reporter assays. Pathway analysis of validated targets was performed 
using DAVID and significantly enriched (p < 0.05) pathways are associated with interleukin, and VEGF and neuronal signaling (see also 
Supplementary Table S3).
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3.2. Circulating miRNA expression patterns 
correlates to histological changes in the 
retina

To understand whether the progressive serum miRNA changes 
are indeed indicative of the underlying retinal pathology, 
we investigated if changes in miRNA abundance could be correlated 
to specific histological measures, including thinning of the ONL 
(photoreceptor row count; Figure 2A), apoptosis (TUNEL+ cell count; 
Figures 2B–F) and recruitment of immune cells into the outer retina 
(IBA-1+ cell count; Figures 2G–K). The individual fold change per 
sample of all miRNAs was plotted against these histological measures 
and Spearman’s correlation analysis was performed to identify 
miRNAs with significant correlation (p < 0.05; Supplementary Table S4; 
Supplementary Figure S2). Due to the large number of significant 
findings, only correlations with p < 0.01 are shown here. Photoreceptor 
row counts were found to correlate to 22 miRNAs (Figure 2L), with 
IBA-1+ cell counts correlating to 25 miRNAs (Figure  2M) and 
TUNEL+ cell counts showing significant correlation to 30 miRNAs 
(Figure 2N), which included miRNAs with known roles in the retina 
(shown in individual plots) such as miR-182, miR-182 and miR-26a.

Taken together, we  show distinct correlations between serum 
miRNA changes and changes in retinal morphology, strongly 
suggesting that miRNAs are reflective of pathology. This highlights the 
need for further exploration into serum miRNA modulations in 
relation to the progression of retinal degeneration.

3.3. Circulating miRNAs are differentially 
accumulated in patients with reticular 
pseudodrusen and geographic atrophy

Serum samples were obtained from healthy individuals and 
patients diagnosed with reticular pseudodrusen (RPD) and geographic 
atrophy (GA) from the Lions Eye Institute (WA, Australia) and 
analyzed for relative miRNA levels (Figure  3A). We  identified a 
significant difference in the abundance of nine miRNAs between 
healthy controls and RPD patients, with four upregulated and five 
downregulated (Figure  3Bi; Supplementary Table S5A; p < 0.05). 
Comparatively, there were a total of 43 miRNAs that were significantly 
differentially abundant between healthy controls and GA patients 
(Figure 3Bii; Supplementary Table S5B). Of these, 20 miRNAs were 
downregulated and 23 were upregulated. Comparison between RPD 
and GA patients revealed differential abundance of 26 miRNAs, with 
11 downregulated and 15 upregulated in GA (Figure  3Biii; 
Supplementary Table S5C).

Several miRNAs were modulated in multiple groups (Figure 3C). 
Five miRNAs, miR-584-5p, miR-483-3p, miR-29b-3p, miR-17-5p and 
miR-155-5p, were modulated in both the healthy-GA and 
healthy-RPD comparisons, whereas 14 miRNAs were modulated in 
both the healthy-GA and RPD-GA comparisons. Interestingly, one 
miRNA, miR-21-5p, was found to be  modulated in all three 
comparisons, with a-0.63 and-1.41 fold change in RPD and GA, 
respectively (Figure 3C; Supplementary Table S5).

To determine the biological pathways these differentially abundant 
miRNAs might play a role in, we performed pathway analysis using 
DAVID. As the number of differentially regulated miRNAs in RPD 
patients was insufficient for pathway analysis, we focussed on those 

dysregulated in GA. Significantly modulated serum miRNAs were 
submitted to miRNet (Chang et al., 2020) to identify interactions with 
validated target mRNAs before pathway analysis was performed. 
Enriched processes involved in transcription and protein activity were 
common to mRNA targets of both upregulated and downregulated 
miRNAs (Figure 3D; Supplementary Table S6). Pathways involved in 
infection response, TGF/SMAD signaling, and adaptive immune 
response were associated with mRNA targets of downregulated 
miRNAs, while MAPK, VEGF, NTRK and apoptosis signaling were 
associated with mRNA targets of upregulated miRNAs. Taken 
together, these findings aligned to those observed in the PD 
mouse model.

3.4. Modulation of miRNAs across patients 
correlates to retinal volume

As we were able to correlate changes in serum miRNA abundance 
to retinal morphology in the PD model, we asked whether serum 
miRNA changes are also indicative of patient retinal pathology. 
Representative fundus and optical coherence tomography (OCT) 
images demonstrated distinct retinal pathology between patients with 
drusen, RPD and atrophy/thinning of the outer retina (Figures 4A–D; 
Supplementary Table S7). The volume of the outer nuclear layer 
(ONL), at circle diameters; 1, 2.22, 3.45 mm centered around the 
macula, was measured using the Heidelberg spectralis software and 
correlated to miRNA expression (Supplementary Figure S3). The 
abundance changes of two miRNAs, miR-331-3p and miR-182-5p, 
were found to negatively correlate to the 1 mm diameter volume of the 
ONL (Figure 4E). The changes in abundance of 11 miRNAs correlated 
to the total volume of the ONL measured (3.45 mm diameter), three 
of which demonstrated a positive correlation (Figure 4F). This data 
demonstrates the potential for this type of analysis to be utilized as a 
strategy for predicting complex disease outcomes from serum miRNA 
abundance. However, future investigation using a larger sample size 
is required.

3.5. Modulated serum miRNAs show 
similarities between 5 days PD and patients 
diagnosed with geographic atrophy

Although human and mouse gene expression profiles are distinct, 
our data clearly indicates similarities; not unexpected as the PD model 
recapitulates key aspects of AMD. Therefore, we asked whether using 
miRNAs that are dysregulated in both PD and human patients could 
be  used to define a miRNA AMD disease signature. Firstly, 
we compared all miRNAs present in both datasets and identified 105 
orthologous miRNAs (Figure 5A). Next, we plotted the differential 
abundance of all 105 human and mouse miRNAs, which revealed 
commonly modulated miRNAs (eight) in the 5-day PD and GA 
samples (Figure  5B). One miRNA, miR-574-3p, was significantly 
upregulated and seven miRNAs were significantly downregulated in 
both samples (Figures  5C,D). Minimum network analysis using 
miRNet revealed interactions with genes involved in transcription, 
inflammation and apoptosis (Figure 5E; Supplementary Table S6), 
strongly suggesting that these miRNAs are indicative of 
retinal pathology.
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FIGURE 2

Expression changes of circulating miRNAs correlate to pathological changes in the retina. miRNA expression changes (fold change) at each PD time 
point were compared to photoreceptor row counts (PR rows), TUNEL+ cell counts and IBA+ cell counts using Spearman’s correlation (p < 0.01; see 
Supplementary Table S4). (A–K) Immunohistochemical analysis of retinal cryosections. (A–F) Apoptotic photoreceptor cells were stained using TUNEL 
and sections were counterstained with bisbenzimide [representative images (C–F)]. There was a decrease in the number of PR rows at the site of 
damage (500 μm from the optic nerve head) across the PD paradigm, which was significant at 3 days and 5 days PD (A). Photoreceptor cell death 
increased at 1 day PD and was significantly increased at 3 days PD, before decreasing at 5 days PD (B). (G–K) Inflammation (infiltrating microglia/
macrophages) was analyzed by immunostaining cryosections using an anti-IBA-1 antibody and counting IBA-1+ cells in the ONL [Representative 
images of the site of damage (H–K)]. A significant increase was identified at 1 day, 3 days and 5 days PD (G). Scale bar = 500 μm. INL = inner nuclear layer, 
ONL = outer nuclear layer. Error bars indicate SEM. Statistical significance was determined by one-way ANOVA (n = 12–16 per group, p < 0.05). (L) The 
expression changes of 22 miRNAs were significantly correlated to PR row counts. (M) The expression changes of 30 miRNAs were significantly 
correlated to TUNEL+ cell counts. (N) 25 miRNAs were significantly correlated to IBA-1+ cell count. The relationship between miRNA fold changes and 
PR, IBA, TUNEL was summarized using a loess fit. The fit clearly show that most relationships are non-linear therefore we used Spearman’s rank-based 
statistic to examine the significance of the correlation. Shaded area shows the 95% confidence interval.
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FIGURE 3

Circulating serum miRNA are differently expressed in patients with RPD and GA when compared to healthy controls. (A) Schematic showing the 
experimental workflow. Blood samples were obtained from patients with no retinal pathology (healthy), reticular pseudodrusen (RPD), or atrophic AMD 
(GA) (i). Serum was separated and RNA purified enriching for small RNAs (ii). miRNA expression was analyzed using human OpenArrays (iii) and 
differential expression analysis performed between healthy and disease groups (iv) (n = 5–10 samples). (B) Volcano plots showing differentially regulated 
miRNAs. Nine and 43 miRNAs were significantly (p < 0.05) modulated in RPD and GA patients compared to healthy controls. Additionally, 26 miRNAs 
showed significant modulation between RPD and GA groups. See also Table S5. (C) Chord diagram showing overlap of modulated miRNAs across all 
groups. A single miRNA, miR-21-5p, was significantly regulated between all three groups. Five miRNAs were differentially regulated in both GA and RPD 
groups compared to controls, and 14 miRNAs were significantly regulated in GA patients compared to both healthy and RPD groups. (D) Pathway 
analysis of mRNAs targeted by miRNAs significantly modulated in GA patients were identified using miRNet and filtered for those validated by HITS/
PAR-CLIP or reporter assays. Pathway analysis of validated targets was performed using DAVID and significantly enriched (p < 0.05) pathways are 
associated with transcription, protein activity and PI3K/AKT signaling. MAPK and apoptosis signaling was uniquely associated with mRNA targets of 
upregulated miRNAs, whereas infection and adaptive immune response were uniquely associated with mRNA targets of downregulated miRNAs. See 
also Supplementary Table S6.
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FIGURE 4

Modulation of miRNAs across patients corelates to retinal volume. (A–D) Representative near-infrared (left column) and optical coherence tomography 
(right column) fundus images across the macular region of a healthy control (A) and patients with reticular pseudodrusen (B), geographic atrophy 
secondary to AMD (C), and large confluent drusen with early RPE depigmentation and hypertransmission defect (D). (E,F) Modulations in miRNA 
abundance across all patient samples were correlated (Spearman’s correlation, p < 0.05) against the volume of the central retina within 1 mm and 
3.45 mm diameter circles centered on the macula (see also Supplementary Table S7). (E) Two miRNAs, miR-331-3p and miR-182-5p, showed positive 
correlation to the 1 mm volume of patient retinas. (F) Eleven miRNAs correlated to the 3.45 mm volume with scatter plots shown for the top four most 
correlated miRNAs. A positive correlation was observed for miR-30e-5p, miR-132-3p and miR-214-3p and a negative correlation for miR-27a-3p. The 
solid line indicates perfect correlation with the shaded area indicating variance.
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4. Discussion

Due to the central role of miRNAs in the regulation of biological 
processes, especially inflammation and disease progression (He and 
Hannon, 2004), circulating miRNA have been identified as an 
attractive, non-invasive prognostic tool for multiple neurological 
disorders (Li et al., 2007; Chen et al., 2008; Mitchell et al., 2008; Jung 
et al., 2010; McDonald et al., 2011; Weiland et al., 2012), including 

AMD (Grasso et al., 2014). However, candidate miRNA diagnostic 
markers of AMD have primarily been established based on late stages 
of disease, with little investigations into early-stage disease markers 
(Ertekin et al., 2014; Grassmann et al., 2014; Szemraj et al., 2015; 
Ménard et al., 2016; Berber et al., 2017; Ren et al., 2017; Romano et al., 
2017; Szemraj et al., 2017; ElShelmani et al., 2020). Further, to our 
knowledge, existing studies have not gone beyond simple differential 
expression profiling to narrow the target panel. This study advances 

FIGURE 5

Modulated serum miRNAs show similarities between 5 days PD and human GA patients. (A) Venn diagram showing the overlap of miRNAs detected in 
mouse and human samples. (B) miRNA expression changes (ddCt) at 1, 3 and 5 days PD were plotted against miRNA expression changes (ddCt) of RPD 
and GA patients. (C) Eight miRNAs were significantly (p < 0.05) differentially regulated in both 5 days PD and GA samples, with miR-574-3p upregulated 
and miR-27a-3p, miR-26a-5p, miR-26b-5p, miR-19a-3p, mi-19b-3p let-7d-5p and let-7i-5p downregulated in both groups. (D) Box plots showing the 
expression changes of each miRNA differentially regulated in both groups. (E) Minimum miRNA/mRNA network analysis of the eight common 
differentially regulated miRNAs using miRNet. The plot shows the predicted interactions of each miRNA (square) with several key genes (circles) 
involved in transcription (CCNT2, SMAD4), inflammation (AK4, AHR) and apoptosis (PMAIP1, MEF2D).
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AMD biomarker research in multiple ways: (1) utilizing a pre-clinical 
animal model that recapitulates aspects of AMD as well as human 
patient samples, (2) identification of modulated miRNAs that 
correlated with retinal pathology, and (3) overlapping pre-clinical and 
clinical data to refine a preliminary miRNA panel with 
higher stringency.

Here we demonstrate that circulating miRNAs are modulated in 
response to photo-oxidative damage-induced photoreceptor 
degeneration and immune cell migration, even at early-stages. 
Furthermore, via pathway analysis, we  showed that potential 
diagnostic miRNA targets demonstrate an association with neuronal 
processes and inflammation. Additionally, we  show that the 
modulation of some miRNAs correlated to distinct changes in retinal 
morphology. We  then corroborated these findings using human 
serum from patients with a diagnosis of RPD or GA. Finally, 
we identified candidate miRNAs that showed similar modulations 
between human and rodent samples at late stages. Taken together, this 
work identified circulating miRNA changes that closely reflect 
pathogenic processes in the retina, making them ideal candidate 
biomarkers for early-stage AMD diagnostics.

4.1. Circulating miRNAs are linked to 
photoreceptor degeneration

The clinical potential of diagnostic biomarkers relies not only on 
the ability to accurately detect the presence of pathological features, 
but, more importantly, the identification of disease onset prior to the 
development of pathologies (drusen deposits and pigmentary 
changes) through traditionally imaging techniques (fundus imaging) 
(Klein et al., 1992, 2007; Fine et al., 2000; van Lookeren et al., 2014). 
The regulation of miRNAs in late-stage AMD has been widely 
reported (Ertekin et al., 2014; Grassmann et al., 2014; Szemraj et al., 
2015; Ménard et al., 2016; Berber et al., 2017; Ren et al., 2017; Romano 
et al., 2017; Szemraj et al., 2017; ElShelmani et al., 2020) however, with 
minimal overlap between studies, likely due to compounding factors 
such as co-morbidities, sample collection, and method of analysis.

Given the limitations of early diagnostic capabilities, we utilized a 
well-established rodent PD model that recapitulates important facets 
of AMD (Natoli et  al., 2016) to identify differentially modulated 
miRNA at all stages of disease progression. We showed here that, 
although early stages of photo-oxidative damage (1-day) do not show 
substantial histological changes, there are already detectable miRNA 
changes in the circulation. These miRNAs included miR-128a-3p, 
miR-200b-3p, miR-410-3p and miR-218-5p, which have shown to 
be involved in inflammation and oxidative stress processes and to play 
a role in neurodegenerative disorders including AMD (Wang et al., 
2019; Wu et al., 2020; Xiong et al., 2021; Yang et al., 2021; ElShelmani 
et al., 2021a; Acuña et al., 2022). This suggests that their presence in 
circulation reflects early changes in retinal homeostasis and 
we  hypothesize that these miRNAs have the potential to be  early 
indicators of disease onset. Importantly, we show that modulation of 
these four miRNAs was unique to 1 day PD, demonstrating their 
utility as a signature for early degeneration.

Of further interest was miR-126a-3p, which increased in serum at 
3 days and 5 days PD in correlation to changes in photoreceptor rows 
and IBA-1+ cell counts. MiR-126a-3p has been shown to protect 
against oxidative stress in the brain (Tan et al., 2021), be associated 

with protection of photoreceptors in retinitis pigmentosa (Wang and 
Smith, 2019), and to decrease in the choroid in response to 
neovascularisation (Desjarlais et al., 2019).

We show that in response to the whole PD time-course, molecular 
pathways linked to modulated circulating miRNAs are associated with 
Interleukin signaling, cell migration and TGF/SMAD signaling. This 
is unsurprising, as PD-induced miRNA modulations in the retina are 
primarily associated with the inflammatory response and related 
pathways (Saxena et al., 2015). Further, signaling between the retina 
and circulation under ongoing stress is essential to mediate the 
infiltration of monocytes into the retina during degeneration (Perez 
and Caspi, 2015; Zhou et al., 2017). Of note, in this study we found 
that a number of modulated miRNAs correlated to IBA-1+ cell counts, 
such as miR-148a-3p and miR-152-3p, which have been shown to play 
a role in the inflammatory response in both the retina/choroid 
(Tsunekawa et  al., 2017; Desjarlais et  al., 2019) and circulating 
peripheral blood mononuclear cells (Wang et al., 2020; Zhang J et al., 
2020; Tao et al., 2021). Additionally, miR-148a-3p has been shown to 
promote the classical M1 activation of macrophages, thereby 
increasing pro-inflammatory properties of the cell (Huang et al., 2017; 
Zhang P et al., 2020). Conversely, miRNAs miR-103, miR-181a and 
miR-24, which are also correlated to IBA-1+ cell counts, have been 
shown to regulate pro-inflammatory factors expressed by microglia 
(Bian et  al., 2020). This regulation has been shown to occur via 
communication by extracellular vesicles (EVs) from neural progenitor 
cells to microglia. Further, it has been suggested that EVs released 
from photoreceptors during early stages of retinal degeneration 
communicate a stress response within the retina (Wooff et al., 2020). 
Therefore, it is possible that these EVs enter the blood stream from the 
retina contributing to the modulations in miRNA abundance 
identified. Further, several studies have shown that EV-based miRNA 
biomarker development could result in a more specific and stringent 
panel for disease detection (Cheng et al., 2014; Barile and Vassalli, 
2017), highlighting the need of future work to investigate the 
modulations of serum EV-derived miRNAs in AMD.

Taken together, these findings support the notion that these 
circulating miRNA are associated with retina-specific degeneration, 
leading to the identification of prospective diagnostic miRNAs.

4.2. Clinical serum miRNA profiles 
demonstrate consistencies with mouse 
data and current literature

Existing clinical studies into miRNAs as biomarkers for AMD, 
both atrophic and neovascular AMD, have identified miR-27a, 
miR-34, miR-106b, miR-126, miR-146a, miR-155, miR-361, 
miR-424-5p, miR-93-3p, and miR-21-5p among many others (Ertekin 
et al., 2014; Grassmann et al., 2014; Szemraj et al., 2015; Ménard et al., 
2016; Ren et al., 2017; Romano et al., 2017). Our investigation of 
clinical samples revealed miR-93-3p to increase in atrophic AMD 
patient samples. This increase potentially aligns to current findings by 
ElShelmani et al. (2020), that identified an increase in miR-93 in the 
serum of neovascular AMD patients (ElShelmani et  al., 2020), 
however, did not define which arm of miR-93 (−3p or-5p), a drawback 
common to existing AMD biomarker literature. As each miRNA 
exhibits unique biological functions, identifying the precise sequence 
is essential for future functional studies.
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To further validate our findings, we correlated the human serum 
miRNA modulations to a histological measure, ONL volume. 
We  found correlations between the abundance of three miRNA, 
miR-19a, miR-27a and miR-132-3p, showing a trend direction that 
aligns to previous findings in AMD patients (Ren et al., 2017; Romano 
et al., 2017; Elbay et al., 2019; ElShelmani et al., 2020, 2021b). To 
further refine our panel to be  highly stringent, we  identified 
differentially regulated miRNAs common to the PD model and AMD 
patient samples, which revealed that let-7i-5p, let-7d-5p, miR-19a-3p, 
miR-19b-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, and mir-574-3p 
are similarly modulated. Some of these miRNAs have been identified 
previously in association with AMD, with miR-26a-5p and 
miR-27a-3p showing directional changes consistent with the literature 
(Grassmann et  al., 2014; Szemraj et  al., 2015) and let-7d-5p and 
miR-574-3p showing a directional change opposite to that reported in 
the literature (Ertekin et  al., 2014; ElShelmani et  al., 2020). 
Additionally, miR-27a-3p is a mediator of the inflammatory response 
(Zhang et  al., 2018), and its overexpression was associated with 
increased oxidative stress and retinal damage (Ren et al., 2021), and 
increasing in aging mouse retinas (Hermenean et  al., 2021). 
Interestingly, here we  show that modulation in miR-26a-5p and 
miR-27a-3p correlated with histological features, specifically TUNEL+ 
cell count and retinal volume, respectively.

Importantly, we  further identified several modulated serum 
miRNAs that are known to be highly abundant in the human retina, 
including miR-96, miR-26a/b and miR-143-3p interestingly, these 
miRNAs have not been previously reported to be  differentially 
regulated in circulation in response to AMD. Of note was miR-96, a 
member of the miR-182/96/183 miRNA cluster, which is highly 
expressed in mature photoreceptors and the inner nuclear layer of the 
retina (Pawlick et al., 2021). Similarly, the mouse serum data revealed 
a change in miR-181a, which is highly expressed in the retina, 
particularly photoreceptors (Pawlick et al., 2021). Consistent with 
these functions, the mouse data demonstrated a correlation of 
miR-181a, miR-182 and miR-183 to photoreceptor row counts. To our 
knowledge this cluster has not previously been identified in serum in 
association with AMD.

Taken together, these findings support our hypothesis that 
changes in retinal homeostasis can be identified in the circulation, as 
these miRNAs are likely to originate from the retina. However, in the 
current study, we  identified a number of miRNAs that showed 
modulations that were different from previous reports. For instance, 
here miR-21-5p was shown to decrease in both RPD and atrophic 
AMD patients, whereas miR-21-5p was previously identified to 
increase in patients with neovascular AMD (Szemraj et al., 2015). 
Similar to Ren et al. (2017), we identified significant modulations of 
miR-29b in RPD and GA serum samples, and of miR-27a-3p in GA 
alone. However, in opposition to Ren et  al. (2017), we  observed 
downregulation of both in our data. Moreover, our study showed 
inconsistency with multiple studies that have reported miR-223, 
miR-146, and/or miR-155 to be  promising biomarkers for retinal 
degeneration (Ertekin et al., 2014; Szemraj et al., 2015; Romano et al., 
2017; ElShelmani et al., 2020). There are several pre-analytical and 
post-analytical factors that could influence these discrepancies 
(McDonald et  al., 2011). Firstly, our small sample size, sample 
collection, processing, and quality control could influence the miRNA 
profile (Blondal et al., 2013; Keller et al., 2017; Lee et al., 2017). The 
findings reported by Ren et  al. (2017) and Ertekin et  al. (2014) 

analyzed whole blood and plasma, respectively, whereas we profiled 
serum fractions to avoid miRNA contributions from cellular 
components. Further, we used an OpenArray™ approach, which only 
targets a subset of known miRNAs and is an amplification-based 
technique. As such, the normalization strategies are considered to 
have a significant outcome on results (Faraldi et  al., 2019). Here 
we used a set of normalization controls based on global normalization, 
one of the most commonly used and recommended normalization 
tools (Mestdagh et  al., 2009). We  further used highly stringent 
thresholds for our amplification data to minimize the chance of a type 
I error. Additionally, we analyzed the contribution of covariates such 
as sex and age to miRNA expression and corrected our analysis 
accordingly, which is rarely reported in the existing literature. Other 
known AMD risk factors such as diet and smoking and genetic 
predisposition should be taken into account in future studies. Further, 
variability due to normalization can be avoided by measuring absolute 
abundance using sequencing techniques, which would also allow 
unbiased detection of all miRNAs present. Additionally, sequencing 
approaches would enable transcriptome-wide analyzes, which could 
include other small RNA species as well as non-coding RNAs and 
mRNAs, facilitating the development of a more specific 
diagnostic panel.

Overall, while we have utilized a number of strategies to identify 
and validate miRNA targets, there remains a clear need for further 
optimization and expansion of this body of work to a larger cohort.

4.3. Translation to a clinical setting through 
targeted analysis strategies mediated by 
biosensors

While the development of an accurate predictive panel for AMD 
pathogenesis is still in its infancy, there remains an unmet need for the 
development of tools that can allow effective, specific and timely 
detection of miRNAs in a clinical setting. The successful 
implementation of a biomarker panel to support clinical diagnosis 
relies on fast and robust detection of molecules of interest. Using 
sequencing-based methods are costly and require skilled personnel, 
an impediment to translation into clinical use. Target-specific methods 
such as electrochemical detection through biosensors present ideal 
strategies for translation into the clinic. Biosensors do not require 
special training and can be miniaturized, ideal for point-of-care or at 
home utilization. Thus, biosensors are excellent choices as companion 
diagnostics for rapid diagnosis as well as ongoing day-to-day 
monitoring of therapeutic intervention success. A wide variety of 
studies have manufactured electrochemical biosensors for miRNA 
detection (Gillespie et al., 2018), but their direct application in serum 
samples remains challenging, highlighting the need for 
further research.

4.4. Conclusion

The manifestation and progression of atrophic AMD in its early 
stages is relatively asymptomatic, and once vision loss ensues there 
is no effective treatment available. Therefore, early, minimally 
invasive detection is essential for the development of novel 
interventions. However, the nature of late clinical diagnosis and the 
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presence of co-morbidities creates a challenge in identifying early 
markers of disease. By utilizing the rodent photo-oxidative damage 
model we  were able to identify miRNA, such as let-7i/g-5p, 
miR-26a-5p, miR-19a-3p and miR-574-3p, in circulation indicative 
of early stages of neuronal cell death and subsequent retinal 
inflammation. We were further able to show similar abundance 
changes of these miRNAs in human AMD samples, highlighting 
their potential as indicators of late-stage AMD. Finally, 
quantification of the key miRNAs presented here in a larger human 
patient cohort will provide essential validation in the progression 
of this panel to a clinical setting. This analysis demonstrates a 
unique methodological approach to elucidate a miRNA diagnostic 
signature of both early and late AMD.
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