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Background: Schizophrenia (SC) is one of the most common mental illnesses. 
However, the underlying genes that cause it and its effective treatments are 
unknown. Programmed cell death (PCD) is associated with many immune 
diseases and plays an important role in schizophrenia, which may be a diagnostic 
indicator of the disease.

Methods: Two groups as training and validation groups were chosen for 
schizophrenia datasets from the Gene Expression Omnibus Database (GEO). 
Furthermore, the PCD-related genes of the 12 patterns were extracted from 
databases such as KEGG. Limma analysis was performed for differentially 
expressed genes (DEG) identification and functional enrichment analysis. Machine 
learning was employed to identify minimum absolute contractions and select 
operator (LASSO) regression to determine candidate immune-related center 
genes, construct protein–protein interaction networks (PPI), establish artificial 
neural networks (ANN), and validate with consensus clustering (CC) analysis, then 
Receiver operating characteristic curve (ROC curve) was drawn for diagnosis of 
schizophrenia. Immune cell infiltration was developed to investigate immune cell 
dysregulation in schizophrenia, and finally, related drugs with candidate genes 
were collected via the Network analyst online platform.

Results: In schizophrenia, 263 genes were crossed between DEG and PCD-related 
genes, and machine learning was used to select 42 candidate genes. Ten genes with 
the most significant differences were selected to establish a diagnostic prediction 
model by differential expression profiling. It was validated using artificial neural 
networks (ANN) and consensus clustering (CC), while ROC curves were plotted 
to assess diagnostic value. According to the findings, the predictive model had a 
high diagnostic value. Immune infiltration analysis revealed significant differences 
in Cytotoxic and NK cells in schizophrenia patients. Six candidate gene-related 
drugs were collected from the Network analyst online platform.

Conclusion: Our study systematically discovered 10 candidate hub genes (DPF2, 
ATG7, GSK3A, TFDP2, ACVR1, CX3CR1, AP4M1, DEPDC5, NR4A2, and IKBKB). A 
good diagnostic prediction model was obtained through comprehensive analysis 
in the training (AUC 0.91, CI 0.95–0.86) and validation group (AUC 0.94, CI 1.00–
0.85). Furthermore, drugs that may be useful in the treatment of schizophrenia 
have been obtained (Valproic Acid, Epigallocatechin gallate).

KEYWORDS

schizophrenia, machine learning, diagnostic modeling, drug prediction, programmed 
cell death, apoptosis, ferroptosis, autophagy

OPEN ACCESS

EDITED BY

Xiao Chang,  
Children’s Hospital of Philadelphia,  
United States

REVIEWED BY

Guohua Huang,  
Shaoyang University,  
China
Jing Yang,  
ShanghaiTech University,  
China
Amin Safa,  
Complutense University of Madrid,  
Spain

*CORRESPONDENCE

Jing Shen  
 165344440@qq.com

†These authors have contributed equally to this 
work and share first authorship

SPECIALTY SECTION

This article was submitted to  
Molecular Signalling and Pathways,  
a section of the journal  
Frontiers in Molecular Neuroscience

RECEIVED 14 December 2022
ACCEPTED 22 February 2023
PUBLISHED 13 March 2023

CITATION

Feng Y and Shen J (2023) Machine learning-
based predictive models and drug prediction 
for schizophrenia in multiple programmed cell 
death patterns.
Front. Mol. Neurosci. 16:1123708.
doi: 10.3389/fnmol.2023.1123708

COPYRIGHT

© 2023 Feng and Shen. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 13 March 2023
DOI 10.3389/fnmol.2023.1123708

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2023.1123708%EF%BB%BF&domain=pdf&date_stamp=2023-03-13
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1123708/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1123708/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1123708/full
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1123708/full
mailto:165344440@qq.com
https://doi.org/10.3389/fnmol.2023.1123708
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2023.1123708


Feng and Shen 10.3389/fnmol.2023.1123708

Frontiers in Molecular Neuroscience 02 frontiersin.org

1. Introduction

Schizophrenia is a chronic psychological disorder identified by 
hallucinations, delusions, and confusion, as well as motivational and 
cognitive dysfunction (Kahn et al., 2015). Schizophrenic patients face a 
fatality risk about two to three times greater than the standardized rate 
of mortality, and this difference increases every year (McGrath et al., 
2008). Suicide was considered one of the major death causes in patients 
with schizophrenia over the past five-years World Health Organization 
study of psychiatric patients (White et al., 2009), and attempted suicide 
rates in patients with schizophrenia were 10–20 times higher (Balhara 
and Verma, 2012). A large number of studies have demonstrated that 
environmental factors play an influential role in the pathogenesis of 
schizophrenia. The findings of these studies suggest that the disorder 
may be caused by multiple factors, including intrauterine infections, 
micronutrient deficiencies, and fetal hypoxia. As a result, these factors 
can interact in complex ways with the macro-structural environment, 
including psychological, social, cultural, and economic contexts, in 
order to increase the risk of schizophrenia (Brown, 2011).

Accidental cell death (ACD) and programmed cell death (PCD) are 
the two divisions of cell death. PCD is characterized by distinct 
morphological features and competency-dependent biochemical 
mechanisms and is considered an important component of a variety of 
processes (Elmore, 2007). Twelve types have now been identified in 
studies of PCD, including Apoptosis, Pyroptosis, Ferroptosis, Autophagy, 
Necroptosis, and Cuproptosis Parthanatos Entotic cell death, Netotic cell 
death, Lysosome-dependent cell death, Alkaliptosis and Oxiptosis (Zou 
et al., 2022). The introduction to Gasdermin family (Yu et al., 2021) and 
the connection of innate immunity and disease with pyroptosis have 
increased the scope of its research. The accumulation of reactive lipid-
based oxygen species resulting in a regulatory form of cell death through 
an iron-dependent process was termed as the iron death in 2012 
(Hirschhorn and Stockwell, 2019). Similarly, the accumulation of Cu in 
mitochondria causing the aggregation of lipidated TCA cycle enzymes 
via direct Cu binding led to copper death which is the most recent form 
of cell death (Cobine and Brady, 2022).

PCD causes abnormal neuronal numbers and pathological 
neurodevelopment not only in typical neurodegenerative diseases 
such as Alzheimer’s disease but also in many neurodevelopmental 
disorders such as schizophrenia and autism (Margolis et al., 1994). 
However, there have been few detailed functional studies on PCD in 
schizophrenia, therefore this research dealt with the development of a 
predictive model with good diagnostic efficacy using PCD-related 
genes, as well as hypotheses about the possibility of other 
pharmacological treatments.

2. Materials and methods

2.1. Materials

The schizophrenia datasets utilized as training and test group were 
the GSE92538 and the GSE21935, respectively, which were retrieved 
from the GEO database1 (Barrett et al., 2012). Genes linked to PCD 

1 https://www.ncbi.nlm.nih.gov/geo/

were collected from the GSEA gene set, KEGG, and relevant literature 
to finally obtain 1,257 related genes, which were collated according to 
different types (Appendix Table 1), and the specific flow was illustrated 
(Figure 1).

2.2. Screening for differentially expressed 
genes

Limma (linear models for microarray data) (Sokhansanj et al., 
2004) is a generalized linear model-based method for screening 
differential expression. The genes with differential expression between 
the comparison and control groups were obtained by employing the 
package Limma of the R software v3.40.6 for differential analysis. In 
this study, |log2 fold change (FC)| > 1 and p < 0.05 were selected as 
criteria for identifying differentially expressed genes (DGE) by Limma 
package, and heat maps and volcano maps of DEG in schizophrenia 
were visualized by sangerBox, respectively (Shen et al., 2022).

2.3. Gene function enrichment analysis

The genes linked with schizophrenia and PCD were determined 
in order to analyze gene function enrichment by utilizing the Venn 
diagram to cross-screen the DEG and PCD-related genes of 
schizophrenia that had been determined by the above treatment. In 
order to perform gene, set functional analysis the KEGG rest API2 was 
utilized and the gene annotation of the most recent KEGG pathway 
was retrieved. The R software package org.Hs.eg.db v3.1.0 was utilized 
for the genes’ GO annotations (Carlson, 2022) which were utilized for 
background mapping and cluster-profiler R software package v3.14.3 
(Yu et al., 2012) was employed to perform enrichment analysis for 
obtaining the results of the gene set enrichment. Based on gene 
expression profiles and phenotypic groupings, the lowest gene range 
was 5 and the highest was set at 5000, with a p value of <0.05 and FDR 
of <0.1 considered statistically significant.

2.4. Machine learning screening for 
schizophrenia and PCD-related candidate 
genes

Machine learning algorithms were adopted to further filter 
candidate genes for SC diagnosis. LASSO is a regression method for 
selecting a variable to improve the predictive accuracy and is also a 
regression technique for variable selection and regularization to 
improve the predictive accuracy and comprehensibility of a statistical 
model (Yang et al., 2018). LASSO-COX regression was analyzed by 
integrating the data of survival time, survival status, and gene 
expression data utilizing the Glmnet R package (Zhang et al., 2019) 
analysis. Moreover, 10-fold cross-validation was executed to establish 
the best model. Differential expression profiling was used to examine 
candidate genes, and 10 genes with the most significant differences 
were chosen to build a diagnostic model.

2 https://www.kegg.jp/kegg/rest/keggapi.html
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2.5. Construction of protein–protein 
interaction networks (PPI)

The PPI was constructed utilizing a convenient GeneMANIA3 
website which is utilized to generate gene function hypotheses, gene 
lists analysis, and determination of gene priorities for performing 
functional analysis (Franz et al., 2018).

2.6. Diagnostic model validation

ROC analysis using pROC (Robin et al., 2011) in the R package 
was performed to obtain AUC. SangerBox was used for visualizing the 
final AUC results which were obtained by employing the CI function 
of pROC to assess the confidence intervals and AUC values. The 
signature genes were observed for expression in the training 
(GSE92538) and test groups (GSE21935). Furthermore, a neuralnet 
(Beck, 2018) in the R software was utilized to construct an artificial 
neural network for the characteristic genes acquired by the methods 
mentioned above to build a diagnostic model of high precision. 
Additionally, the “ConsensusClusterPlus” package (Wilkerson and 
Hayes, 2010), which made use of agglomerative km clustering with 

3 http://genemania.org

1-Pearson correlation distances and repeated sampling of 80% of the 
data 10times, was employed to observe the prediction effect using 
empirical cumulative distribution function plots.

2.7. Immuno-infiltration analysis

A method based upon the gene set signature, the ImmuCellAI,−
was utilized for the precise estimation of the abundance of 24 types of 
immune cells which included 18 subsets of T-cells, from data on gene 
expression (Miao et  al., 2020). Immuno-infiltration analysis was 
performed via the online website ImmuCellAI4 and correlation was 
calculated using the spearman coefficient (Pripp, 2018). The 
comparison regarding the proportion of diverse types of immune cells 
between SC and control groups was visualized via the box plot.

2.8. Drug prediction

Gene-drug interaction networks were created using the Network 
analyst5 (Zhou et al., 2019).

4 http://bioinfo.life.hust.edu.cn/ImmuCellAI/#!/

5 https://www.networkanalyst.ca/

FIGURE 1

Flow chart.
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3. Results

3.1. Screening of differentially expressed 
genes in schizophrenia

Using the Limma method, a schizophrenia dataset (GSE92538) 
was identified as enlisting about 2,684 DEG, of which 1,299 were 
up-regulated and 1,382 down-regulated (Figures 2A,B). Two hundred 
sixty-three candidate genes associated with schizophrenia and PCD 
were cross-screened via a Venn diagram (Figure 2C).

3.2. Functional enrichment analysis of 
candidate genes associated with PCD in 
schizophrenia

The functional enrichment analysis of candidate genes was 
performed, and KEGG analysis displayed that “lysosome,” 
“Autophagy” and “Necroptosis” pathways depicted predominant 
enrichment of candidate genes (Figure  3A). In terms of cellular 
components (CC), GO analysis revealed that the major allocation of 
candidate genes was in “vacuole,” “cytoplasmic vesicle,” and 
“intracellular vesicle” (Figure 3B). Major biological processes (BP) of 
candidate genes include the “apoptotic signaling pathway” and 
“apoptotic process” (Figure 3C). Molecular function (MF) revealed 
that candidate genes functioned predominantly in “enzyme binding” 
and “protein kinase binding” (Figure 3D).

3.3. Screening of candidate genes 
associated with PCD and construction of 
PPI network in schizophrenia utilizing 
machine learning

Candidate genes were screened by the LASSO regression method. 
Forty-two potential candidate genes were identified from the results 
(Figures 4A,B). The expression profile analysis of 42 candidate genes 
was organized to identify the 10most differentially expressed genes 
for further investigation (DPF2, ATG7, GSK3A, TFDP2, ACVR1, 
CX3CR1, AP4M1, DEPDC5, NR4A2, IKBKB) (Figure  4C; 
Appendix Table 2), which included six Apoptosis, one Ferroptosis, 
three Autophagy, one Entotic cell death, one Lysosome-dependent 
cell death, and one Alkaliptosis. The PPI network was established by 
these 10 candidate genes, in which Co-expression accounted for 
61.7% and Physical Interactions accounted for 31.77%. These genes 
are mainly involved in mitochondrion disassembly, AP-type 
membrane coat adaptor complex, cellular response to starvation, 
organelle disassembly and cellular response to external stimulus 
(Figure 4D).

3.4. Validation of diagnostic model

The diagnostic value of these two candidate genes was 
validated using ROC curves when all candidates were combined 
(AUC 0.91, CI 0.95–0.86; Figure 5A). The diagnostic model was 

A

C

B

FIGURE 2

(A) The volcano plot shows all DEGs of schizophrenia, of which red and green triangles refer to significant DEGs; (B) Based on the SC dataset, the 
heatmap displays the top 50 DEGs that have been upregulated or downregulated. Rows represent intersections of genes, while columns represent SC 
cases or controls. The blue and red colors represent genes whose expression has been upregulated or downregulated; (C) Cross-screening of 
schizophrenia DEG and PCD-related genes yielded relevant candidate genes.
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placed in the validation group (GSE21935) for validation, and the 
results showed that it had a very good diagnostic significance 
(AUC 0.94, CI 1.00–0.85; Figure  5B). Neural networks were 
constructed by employing candidate genes, and the findings 
showed that schizophrenia samples could be visibly distinguished 
from controls by these 10 genes, with an accuracy of 87.931% in 
the training (Figures  5C,D) and 100% in the validation group 
(Figures  5E,F). The consensus clustering (CC) analysis of 10 
PCD-related gene models was carried out, and differences 
between different groups were most pronounced when K = 2, 
indicating that schizophrenia samples could be well distinguished 
from control samples (Figures 5G,H).

3.5. Immune cell infiltration analysis

By functional enrichment analysis we observed that PCD genes 
could regulate SC pathogenesis and were mainly enriched in 
immune regulation. These genes could be used as a potential SC 
diagnostic biomarker by ROC evaluation. In order to better 
understand how SC is regulated by the immune system, an analysis 
of immune cell infiltration was performed. The proportion of 24 
immune cells in schizophrenia and control samples of the training 
group (GSE92538) was estimated via the ImmuCellAI algorithm 
(Figures 6A,B). In boxplots, immune cell infiltration was compared 
between schizophrenia and control samples (Figures 6C,D), and 
there were significant differences in Cytotoxic and NK cells among 
schizophrenia patients (p < 0.05), low levels of NK cells are found in 
SC patients.

3.6. Drug prediction

Six of the most relevant agents (Aflatoxin B1, Valproic Acid, 
Arsenic, Benzo(a)pyrene, epigallocatechin gallate, Nickel) were 
selected using the Network analyst online platform to construct a 
gene-drug interaction network based on DrugBank (Wishart et al., 
2018) and Comparative Toxicogenomics Database (Davis et al., 2022; 
Figure 7).

4. Discussion

Increasing research suggests a close link between schizophrenia 
and cell death (Glantz et al., 2006; Yang and Xu, 2020), and the initial 
thorough examination of 12 different PCD modes in schizophrenia 
was achieved in this research. It was shown from the results that 
schizophrenia is most closely linked to Apoptosis, Ferroptosis, 
Autophagy, Entotic cell death, cell death associated with lysosomes, 
and Alkaliptosis (Jarskog, 2006; Sragovich et al., 2017; Feng et al., 
2022). We evaluated the diagnostic value of PCD in SC patients by 
integrating bioinformatics analysis and machine learning methods. 
One of the most noteworthy discoveries is the identification of 10 
pivotal candidate genes (DPF2, ATG7, GSK3A, TFDP2, ACVR1, 
CX3CR1, AP4M1, DEPDC5, NR4A2, and IKBKB).

ATG7 is a Protein Coding gene associated with Ferroptosis, 
Autophagy, and Entotic Cell Death. Spinocerebellar Ataxia, Autosomal 
Recessive 31, Fatty Liver Disease andNon-alcoholic 1 are the diseases 
caused by ATG7and this gene’s related pathways include Autophagy 

A B

C D

FIGURE 3

(A) An analysis of KEGG pathways at the intersection of genes. Genes enriched in different pathways are represented by different colors; (B) GO 
analysis of cell components of candidate genes (CC); (C) GO analysis of the biological process of candidate genes (BP); (D) GO analysis of the 
molecular function of candidate genes (MF).
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and antigen processing and presentation mediated by MHC Class 
I (Stelzer et al., 2016). Although the relationship between ATG7 and 
schizophrenia has yet to be studied, Genecards shows that this gene is 
significantly associated with neuronal abnormalities and mental 
illness, i.e., Neurodegeneration Caused by Brain Iron Accumulation, 
Huntington’s Disease, and Other Conditions.

GSK3A (Glycogen Synthase Kinase 3 Alpha) is a gene responsible 
for protein coding. Pancreatic cancer and hepatocellular carcinoma 
are two diseases linked to GSK3A. GSK3A is reported to be 80% lower 
in lymphocytes of patients with schizophrenia and is a regulatory 
enzyme of some neuronal proteins associated with schizophrenia 
abnormalities (Nadri et al., 2003). This discovery was confirmed by 
Stephen et al., who proposed GSK3A as a schizophrenia biomarker in 
blood identification (Glatt et al., 2005).

ACVR1 (Activin A Receptor Type 1) is a gene that codes for 
protein. Fibrodysplasia Ossificans Progressiva and Epicanthus are 
two diseases linked to ACVR1. This gene has been proved in genome-
wide association research of schizophrenia by Lee et al. (2013) to 
be involved in rs1146031 to ACVR1 to mesoderm formation and 
activin binding potential pathways (p < 0.001, FDR = 0.032, 0.034). 
Class A comprising rhodopsin-like receptors includes CX3CR1 
which is a Gi protein-coupled receptor (GPCR) with seven 
transmembrane domains (Imai et al., 1997). CX3CR1 (40 kDa) is 
made up of 355 amino acid residues that form an extracellular 

N-terminus, alternately arranged α-helical domains (TM1-TM7), 
intracellular (IL1-IL3) and extracellular (EL1-EL3) loops, and an 
intracellular C-terminus (Raucci et al., 2014). CX3CR1 levels were 
found downregulated in schizophrenia and may be associated with a 
depression-anxiety phenotype (Bergon et  al., 2015; Chamera 
et al., 2021).

According to our KEGG analysis, candidate genes are primarily 
enriched in the NF-κB signaling pathway, which plays a critical role 
in the pathophysiology of schizophrenia. According to the study, 
PACER levels were significantly lower in schizophrenia patients than 
in healthy subjects. It has been demonstrated that CTCF induces the 
expression of this lncRNA. Therefore, the inhibitory NF-B complex 
is blocked by PACER, thereby increasing the expression of COX-2 
(Krawczyk and Emerson, 2014). The pairwise correlations between 
the lncRNAs and genes revealed significant correlations between each 
pair, which further confirms their involvement in a specific signaling 
pathway, namely the NF-B pathway. A robust correlation was 
observed between NKILA/ADINR and NKILA / HNF1A-AS1, 
suggesting that these genes have a close functional connection (Safa 
et al., 2020).

The six most relevant drugs (Aflatoxin B1, Valproic Acid, 
Arsenic, Benzo(a)pyrene, epigallocatechin gallate and Nickel) were 
selected through the gene-drug interaction network. Valproic Acid 
(VPA), a branched short-chain fatty acid extracted from naturally 

A

B

C

D

FIGURE 4

(A,B) Candidate gene screening via LASSO regression; (C) Differential expression profiling of candidate genes; (D) PPI network construction of 
candidate genes.
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occurring valeric acid, is a commonly used drug for bipolar disorder 
(McIntyre et al., 2020). VPA exerts its pharmacodynamic effects in 
a variety of ways: it acts on γ amino butyric acid (GABA) levels in 

the brain, blocks voltage-gated ion channels, and also acts as an 
HDAC inhibitor (Ghodke-Puranik et  al., 2013). Tatiana et  al. 
discovered that VPA prevented overactivity as well as latency 

A B

C E

D F

G

H

FIGURE 5

(A) Training group ROC curve; (B) Test group ROC curve; (C,D) Validation of the artificial neural network of the training group; (E,F) validation of the 
artificial neural network of the validation group; (G,H) CC analysis of the related gene model.

A
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C

D

FIGURE 6

(A) Relative percentage of 24 immune cells per sample; (B) Correlation between 24 immune cells; (C,D) Differences in immune infiltration between 
schizophrenia samples and control samples.
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inhibition and prepulse defects in Disc1-L100P mice, and that glia 
numbers were also increased in the subventricular zone in these 
mice, which VPA normalized (Lipina et al., 2012). Epigallocatechin 
gallate is an extract from green tea. Green tea, a centuries-old 
beverage, consists of antioxidant polyphenols, majorly 
epigallocatechin-3-gallate (EGCG), which inhibits nitric oxide 
synthase (NOS) and the production of cytokines (Ahmed et al., 
2002; Singal et al., 2006). It also improves learning and memory in 
old rats and has antidepressant and anti-anxiety properties (Vignes 
et al., 2006; Kaur et al., 2008; Sattayasai et al., 2008). An eight-week, 
randomized, double-blind study on the effects of EGCG on 
schizophrenia and bipolar disorder discovered that EGCG could 
achieve some treatment effect on negative symptoms compared to 
placebo, but did not induce any notable effect on positive symptoms 
or inflammatory markers (Loftis et al., 2013), indicating that more 
research is needed on the efficacy of EGCG on positive symptoms 
of schizophrenia.

Limitations of this study: Although the diagnostic prediction 
model performed well in this study it was not further validated in 
combination with experiments; it could not be analyzed along with 
clinical information due to insufficient corresponding clinical 
correlation studies.

5. Conclusion

Our study systematically discovered 10 candidate hub genes 
(DPF2, ATG7, GSK3A, TFDP2, ACVR1, CX3CR1, AP4M1, DEPDC5, 
NR4A2, and IKBKB). A good diagnostic prediction model was 
established through comprehensive analysis in both the training 
(AUC 0.91, CI 0.95–0.86) and validation group (AUC 0.94, CI 1.00–
0.85). Drugs that may be useful in the treatment of schizophrenia were 
also obtained (Valproic Acid, Epigallocatechin gallate).
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