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Neuropathic pain, which results from damage to the somatosensory nervous system, 
is a global clinical condition that affects many people. Neuropathic pain imposes 
significant economic and public health burdens and is often difficult to manage 
because the underlying mechanisms remain unclear. However, mounting evidence 
indicates a role for neurogenic inflammation and neuroinflammation in pain pattern 
development. There is increasing evidence that the activation of neurogenic 
inflammation and neuroinflammation in the nervous system contribute to neuropathic 
pain. Altered miRNA expression profiles might be  involved in the pathogenesis of 
both inflammatory and neuropathic pain by regulating neuroinflammation, nerve 
regeneration, and abnormal ion channel expression. However, the lack of knowledge 
about miRNA target genes prevents a full understanding of the biological functions of 
miRNAs. At the same time, an extensive study on exosomal miRNA, a newly discovered 
role, has advanced our understanding of the pathophysiology of neuropathic pain 
in recent years. This section provides a comprehensive overview of the current 
understanding of miRNA research and discusses the potential mechanisms of 
miRNAs in neuropathic pain.
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Introduction

Neuropathic pain (NP), which results from damage to the somatosensory nervous system, is a 
global clinical condition that affects many people worldwide (Scholz et al., 2019). Neuropathic pain 
is associated with significant economic and public health burdens and is often difficult to manage 
because the underlying mechanisms remain obscure. However, mounting evidence indicates a role 
for neurogenic inflammation and neuroinflammation in pain patterns development (Yi et al., 2021). 
There is increasing evidence that the activation of neurogenic inflammation and neuroinflammation 
both in the periphery and the central nervous system conduce to the maintenance of neuropathic 
pain (Walters, 2014; Huh et al., 2017). Our earlier research looked at whether chronic inflammation 
brought on by an inflammatory reaction in the neurological system brought on by nerve damage 
might be the source of chronic neuropathic pain (Li et al., 2013).

Recent evidence has suggested that the anti-inflammatory effects of microRNAs are essential for 
pathogenesis in various contexts, such as inflammation, tumours, respiratory and cardiovascular 
diseases (Bernardo et al., 2015; Rupaimoole and Slack, 2017; Li Y. et al., 2019; Hill and Tran, 2021). 
Unfortunately, the pathogenesis of neuropathic pain has not been fully elucidated. Using microarray 
techniques, recent studies have reported that miRNAs play pivotal roles in the evolution and progression 
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of neuropathic pain by regulating neuronal excitability and plasticity, 
neuronal ion channels, neuroinflammation, synaptic plasticity and other 
functions. These results indicate that altered miRNA expression profiles 
might be involved in the pathogenesis of neuropathic pain. However, the 
lack of knowledge about miRNA target genes prevents the achievement of 
a full understanding of the biological functions of miRNAs under these 
conditions. This review provides insight into miRNA expression profiling 
studies on neuropathic pain. We also highlight the molecular mechanisms 
of specific miRNAs that play critical functional roles in neuropathic pain 
pathogenesis and discuss their potential diagnostic, prognostic, and 
therapeutic utilization in neuropathic pain clinical management.

The structure and function of miRNAs

Gene structure

MicroRNAs are a varied family of 19–24 nucleotide short noncoding 
single-stranded RNAs that have fundamental biological activities in 
posttranscriptional gene silencing. The ribonuclease II enzymes, Drosha 
and Dicer sequentially cleave precursor RNA transcripts to generate 
miRNAs (Hutvágner et al., 2001; Gregory et al., 2004; Han et al., 2004). The 
miRNA-induced silencing complex (miRISC) is then formed by loading 
miRNAs onto the effector protein Argonaute (Ago) (Schwarz et al., 2003). 
By using translational repression and/or mRNA instability, miRISC 
silences mRNA targets by binding to them via sequence complementarity 
(Schwarz et al., 2003; Macfarlane and Murphy, 2010; Figure 1).

The function of miRNAs

MiRNAs, which regulate approximately one-third of human genes, 
are widely present in mammalian cells. More than 1800 miRNAs, which 
target 60% of human mRNAs, are found in the human genome (Olive 
et al., 2015). Numerous human disorders, including neuropathic pain, 
are linked to mutations in miRNA genes and miRNA pathway genes. 
Furthermore, the peripheral and central nervous systems, which contain 
pain-related components, are widely dispersed with microRNAs. 
Despite not being directly engaged in peptide synthesis, miRNAs are a 
type of noncoding RNAs that have a significant impact on miRNA 
stability and protein translation (Saliminejad et al., 2019).

By binding to the 3’UTR of target mRNAs, miRNAs control 
posttranscriptional gene expression by lowering the majority (84%) of 
protein products (Lutz et al., 2014). One miRNA can target more than 
one mRNA transcript, and multiple miRNAs can simultaneously act on 
one mRNA strand (Lutz et al., 2014; Li et al., 2015). There is a general 
consensus that miRNAs play pivotal roles in regulating important 
biological processes, including early development, cell proliferation, cell 
death and apoptosis, fat metabolism, cell differentiation, and disease 
progression (Lima et  al., 2011). Various disorders, including 
cardiovascular, cerebrovascular, and neurodegenerative diseases, may 
be impacted by changed miRNA expression profiles, according to the 
results of experimental models (Barwari et al., 2016; Wang et al., 2020).

Potential regulatory mechanisms of 
miRNAs in neuropathic pain

Several studies have reported broad abnormalities in miRNAs in 
animals following peripheral nerve injury. Several identified miRNAs 

are involved in neuroinflammation, nerve regeneration, and abnormal 
ion channel expression (Figure  2), suggesting that deregulation of 
miRNA expression may be included in the development of neuropathic 
pain and could be potentially useful diagnostic markers, improving the 
classification of neuropathic pain. The absence of information on 
miRNA target genes, however, limits a complete comprehension of the 
biological roles played by miRNAs. This section gives a thorough 
overview of what is currently known about miRNAs and explores how 
they can contribute to neuropathic pain (Table 1).

The regulation of neuroinflammation in 
neuropathic pain development

MiRNAs have been demonstrated to be  involved in almost all 
known biological processes and many pathophysiological conditions, 
including neuropathic pain. The activation of thermoreceptors and 
mechanoreceptors in sensory neurons, which takes place in chronic 
inflammatory pain conditions, leads to the pathophysiology of 
neuropathic pain, which includes polyneuropathies, fibromyalgia 
syndrome, complex regional pain syndrome (CRPS), and postherpetic 
neuralgia (PHN) (Sayed and Abdellatif, 2011). Numerous miRNAs are 
becoming more widely recognized as master switches in the 
pathophysiology condition and as regulators of various 
neuroinflammation and neuronal gene expression (Figure  2). 
Differential expression of various miRNAs has been directly reported in 
the dorsal root ganglion (DRG) after the induction of inflammatory and 
neuropathic pain (Fang et al., 2022). Therefore, it is necessary to discuss 
how miRNAs regulate the infiltration of immune cells and 
neuroinflammation after nerve injury.

Immune cell infiltration
It is well known that neuropathic pain is associated with immediate 

immune cell infiltration following peripheral nerve injury. Recent 
studies suggest that miRNAs secreted from immune and nonimmune 
cells exert a pivotal effect on immune regulation (Figure 2). miR-590-3p 
regulates the infiltration of immune cells into neural tissues in diabetic 
peripheral neuropathic pain (Wu et al., 2020). Similar to this, after spinal 
nerve ligation (SNL), there was a decrease in miR-214-3p in the spinal 
astrocytes of rats, which caused them to become overactive by 
upregulating CSF1 (Liu L. et al., 2020). Additionally, alterations in the 
microglial cells’ miRNA profiles imply that these cells have distinct 
functions depending on the tissue and/or the stage of the pathology.

Neuroinflammation
Early research shown that miRNAs can either activate or suppress 

the immune system, suggesting that they may play a part in the onset 
and progression of inflammatory and autoimmune illnesses, including 
neuropathic pain. During the early-to-late phases of the illnesses, there 
have also been reports of changes in the expression of certain miRNAs 
(Figure  2). By signalling through the IRAK/TRAF6, TLR4/NF-κB, 
TXNIP/NLRP3 inflammasome, MAP kinase, and TNF-α and TLR5 
signalling pathways, miRNAs mediate their effects in neuropathic pain 
(Gada et al., 2021).

One of the most crucial receptors for innate immunity, TLR 
stimulates the generation of pro-inflammatory cytokines, initiates the 
synthesis of inflammatory mediators that cause fever, pain, and other 
inflammation, and exerts some regulatory control over the inflammatory 
response (Tang et al., 2023). Tumour necrosis factor receptor-associated 
factor 6 (TRAF6), a critical mediator of TLR signalling, NF-κB 
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activation, and proinflammatory cytokine and interferon expression, 
was upregulated after exposure to TNF-α or IL-1β in cultured astrocytes 
from mice following SNL. The protein known as IL-1 receptor-
associated kinase (IRAK) is involved in the signaling of MyD88. The link 
between IRAK and TRAF6 encourages additional nuclear factor 
κ-activated B-cell light chain enhancer (NF-κB) and Janus kinase 
N-terminal region activation (JAK) (Zarezadeh Mehrabadi et al., 2022). 
By inhibiting IRAK1 and TRAF6 mRNA 3’UTR sections in TLR 
signaling pathways and lowering their protein production, targeting 
miRNA-146a-5p has a detrimental impact on NF-κB activation, the 
NLRP3 inflammasome signaling pathway, and NP levels (Wang et al., 
2018; Hou et al., 2021). miR-381 overexpression alleviated neuropathic 
pain behaviours in chronic constriction nerve injury (CCI) rats by 
inhibiting the expression of HMGB1. Moreover, this effect was reversed 
by miR-381 inhibitors (Xia et al., 2018; Zhan et al., 2018). Similarly, 
overexpression of miR-362-3p significantly suppressed the elevation of 
the levels of proinflammatory cytokines by regulating the expression 
level of BAMBI, which in turn hindered the neuroinflammatory process 
and NP in CCI mice (Zhang et al., 2022).

Members of the transforming growth factor β (TGF-β) family are 
secreted cytokines that control a range of biological processes, including 
as cell division, migration, survival, and differentiation (Nickel et al., 
2018). The TGF-family includes transforming growth factor α (TNF-α), 
which is closely related to NP. A member of the C-C chemokine family, 
C-C motif chemokine ligand 2 (CCL2) has a strong affinity for C-C 
chemokine receptor type 2 (CCR2). According to a recent study, 

overexpression of miR-183 inhibits the TGF-α/CCL2/CCR2 signalling 
axis, which in turn inhibits the expression of proinflammatory cytokines 
(IL-6, IL-1β, TNF-α), as well as pain-related markers (TRPV1, Nav1.3, 
Nav1.7, Nav1.8), in the DRG (Tao et al., 2021). Moreover, zinc finger 
E-box-binding homeobox 1 (ZEB1) is a transcription factor that is 
involved in various diseases by inhibiting ZEB1 expression. miR-28-5p, 
miR-128-3p, miR-136, miR-150, miR-200b and miR-429 can coordinate 
the progression of neuroinflammation and neuropathic pain by 
inhibiting ZEB1 expression (Bao et al., 2018; Yan et al., 2018a,b; Shen 
et al., 2019).

The G-protein-coupled receptor family, which includes the 
chemokine CXC receptor 4 (CXCR4), controls the development of glia 
cells and neurons in the central nervous system (Bianchi and Mezzapelle, 
2020). The involvement of CXCR4  in various nociceptive stimulus 
response mechanisms is becoming more and more clear. A 
multifunctional protein called thioredoxin-interacting protein (TXNIP) 
is necessary for numerous cellular functions including metabolic 
processes, growth, division, and cell death (Wondafrash et al., 2020). 
And inflammation is brought on by the intracellular complex known as 
the NOD-like receptor family pyrin domain-containing protein 3 
(NLRP3) inflammasome, which promotes the development and release 
of the pro-inflammatory cytokines interleukin-1 (IL-1) and IL-18 (He 
et  al., 2016). They all contribute significantly to the onset of 
inflammation. MiR-23a controls NP in spinal glial cells by specially 
targeting CXCR4 and the TXNIP/NLRP3 inflammasome axis. To reduce 
hyperalgesia, intrathecal injection of miR-23a mimicked spinal CXCR4 

FIGURE 1

The classical bioformation process of miRNA. miRNAs are typically transcribed as primary miRNAs (pri-miRNAs) by RNA polymerase II (Pol II). The 
microprocessor complex, composed of the RNase III enzyme Drosha and the double-stranded RNA (dsRNA)-binding protein (dsRBP) DiGeorge critical 
region 8 (DGCR8), cleaves the pri-miRNA and releases a precursor miRNA (pre-miRNA). The export receptor exportin 5 binds pre-miRNAs and aids their 
export into the cytoplasm. Then the RNase III endonuclease DICER cleaves the pre-miRNA to release double-stranded miRNA. This miRNA is cleaved by 
Argonaute (Ago) to form the miRNA-induced silencing complex (miRISC).
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downregulation by a lentivirus and blocked TXNIP or NLRP3 
overexpression (Pan et al., 2018).

When rats were used as a model for NP, the expression of miR-140 
and miR-144 was downregulated in the DRG. Furthermore, by targeting 
sphingosine-1-phosphate receptor 1 (S1PR1) and RASP21 protein 
activator 1(RASA1), respectively, intrathecal injection of miR-140 and 
miR-144 agomir resulted in decreased inflammatory factor secretion 
and ameliorated hyperalgesia (Zhang et  al., 2020; Li et  al., 2021). 
Additionally, miR-216a-5p reduced the neuropathic pain that rats 
experienced after CCI by targeting KDM3A and deactivating the Wnt/β-
catenin signalling pathway (Wang and Li, 2021). Signal transducer and 
activator of transcription 3 (STAT3)’ 3’UTR is the direct target of 
miR-93, which prevents the disease from developing in CCI rats (Yan 
et al., 2017).

NF-κB is a key mediator in the inflammatory process. The M1 and 
M2 macrophages are activated by the activation of the NF-κB pathway, 
which causes them to release pro-inflammatory cytokines and speed 
up the inflammatory response process (Poladian et  al., 2023). 
Meanwhile, MAPK is a mitogen activated kinase that controls a number 
of physiological and pathological processes, including NP, by 
phosphorylating serine/threonine and tyrosine (Zhang et al., 2023). 
However, the balance of Th1-Th2 cells, the control of cytokine signaling 
negative feedback, and the reduction of Th2-induced inflammation are 
all regulated by a unique family of proteins known as cytokine signaling 
inhibitors (SOCS). Several inflammatory and anti-inflammatory 
cytokines stimulate SOCS1 and SOCS3, which then block cytokine 
function (Sobah et al., 2021). Many researchers noted that miR-155 or 
miR-221 inhibition alleviated neuropathic pain and neuroinflammation 

by enhancing suppressor of cytokine signalling 1 (SOCS1) expression 
via NF-κB and p38-MAPK inhibition (Tan et al., 2015; Xia et al., 2016; 
Liu Y. et al., 2021). Additionally, inhibition of miR-221 reduced pain 
and decreased the expression of inflammatory factors (PEG2, BK, IL-6, 
IL-1β, and TNF-α) by targeting SOCS3  in diabetic peripheral 
neuropathy (DPN) (Wu et al., 2021). Additionally, spinal cord miR-155 
expression was increased in oxaliplatin-induced peripheral neuropathic 
pain, and the intrathecal injection of a miR-155 inhibitor reduced 
hyperalgesia in rats, potentially through blocking oxidative stress-
TRPA1 pathways (Miao et  al., 2019). Complete Freund’s adjuvant 
(CFA)-induced mechanical allodynia and heat hyperalgesia were 
reduced by knocking down or blocking miRNA-22, but overexpressing 
miRNA-22 resulted in pain-like behaviours. In order to activate RNA 
polymerase II and elevate Mtf1 expression, the enhanced miRNA-22 
physically bonded to the Mtf1 promoter. Increased expression of 
p-ERK1/2, GFAP, and c-Fos in the dorsal horn is proof that the 
increased Mtf1 expression faciliated spinal central sensitization (Hao 
et al., 2022).

These results suggest that epigenetic interventions against miRNAs 
to alleviate neuroinflammation may potentially provide novel 
therapeutic avenues in treating peripheral nerve injury-induced 
nociceptive hypersensitivity and neuropathic pain.

Regulation of nerve regeneration

After peripheral nerve injury, the survival of neurons is an essential 
prerequisite for neural regeneration and functional recovery. According 

FIGURE 2

MiRNAs in neuropathic pain. The following routes are used by miRNAs to mediate neuropathic pain in animals with damaged nerves: (1) operating on 
immune cells to stimulate the production of inflammatory cytokines through IRAK/TRAF6, TLR4/NF-κB, TXNIP/NLRP3, TGF-α/CCL2 and other pathways to 
regulate neuroinflammation; (2) accelerating axon regeneration by increasing the synthesis of trophic factors such BDNF, NGF, TGF-1, EGFR, and NT-3; (3) 
mediating neuroelectrophysiological changes by activating ion channels like Nav1.3, Nav1.7, Nav1.8, Kv1.2, TREK-1, Cav1.2-LTC, and Cav3.2.
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TABLE 1 miRNAs and neuropathic pain.

Mechanisms miRNA Target Objectives Models Results References

Neuroinflammation

Infiltration of 

immune cells

miR-590-3p ↑ RAP1A ↓ C57BL/6 mice DPNP T cell infiltration was reduced, which in turn 

hinders DPNP progression.

Wu et al. (2020)

miR-214-3p ↑ CSF1 ↓ SD rats SNL Attenuated the neuroinflammation and pain 

behavior.

Liu L. et al. (2020)

miR-146a-5p ↑ IRAK1 / TRAF6 

↓

SD rats CCI Inhibited the development of CCI-induced 

neuropathic pain.

Wang et al. (2018)

Neuroinflammation miR-381 ↑ HMGB1 and 

CXCR4 ↓

SD rats CCI Inhibited neuropathic pain development. Zhan et al. (2018)

miR-362-3p ↑ BAMBI ↓ C57BL/6 mice CCI NP progression was suppressed. Zhang et al. (2022)

miR-183 ↑ TGF-α/CCL2/

CCR2 ↓

C57BL/6 mice OA Osteoarthrotic pain was ameliorated. Tao et al. (2021)

miR-28-5p ↑ ZEB1 ↓ SD rats CCI Reduced neuropathic pain. Bao et al. (2018)

miR-128-3p ↑ ZEB1 ↓ SD rats CCI Alleviated the progression of neuropathic 

pain

Zhang et al. (2020)

miR-136 ↑ ZEB1 ↓ SD rats CCI Inhibited neuropathic pain development. Shen et al. (2019)

miR-150 ↑ ZEB1 ↓ SD rats CCI Inhibited neuropathic pain in vivo. Yan et al. (2018a,b)

miR-200b/ ZEB1 ↓ SD rats CCI Reduced neuropathic pain development in 

vivo.

  Yan et al. (2018a,b)

miR-429 ↑

miR-23a ↑ CXCR4/

TXNIP/NLRP3 

↓

C57BL/6 mice pSNL Inhibited neuropathic pain development. Pan et al. (2018)

miR-140 ↑ S1PR1 ↓ SD rats CCI Suppressed CCI-stimulated neuropathic pain. Li et al. (2021)

miR-144 ↑ RASA1 ↓ C57BL/6 mice CCI Facilitated the inhibition of neuropathic pain 

development.

Zhang et al. (2020)

miR-216a-5p ↑ KDM3A ↓ SD rats CCI Alleviated neuropathic pain in rats. Wang and Li W. et al. 

(2021)

miR-93 ↑ STAT3 ↓ SD rats CCI Inhibited neuropathic pain development of 

CCI rats.

Yan et al. (2017)

miR-155 ↓ SOCS1 ↑ SD rats CCI Attenuated neuropathic pain. Tan et al. (2015)

miR-155 ↓ TRPA1 ↓ SD rats Chemotherapeutic 

Oxaliplatin

Supprressed the OXL-induced neuropathic 

pain.

Miao et al. (2019)

miR-221 ↓ SOCS1 ↑ SD rats CCI Alleviateed neuropathic pain and 

neuroinflammation.

Xia et al. (2016)

miR-221 ↓ SOCS3 ↑ SD rats DPN Reduced pain and decreased expression of 

inflammatory factors.

Wu et al. (2021)

miR-22 ↑ Mtf1 ↑ Kunming mice CFA Promoted the development and maintenance 

of inflammatory pain.

Hao et al. (2022)

Nerve regeneration miR-192-5p ↑ XIAP ↑ SD rats SNI Decreased the apoptosis of nerve cells, and 

promote the repair and regeneration of 

peripheral nerve injury.

Liu X. et al. (2020)

miR-210 ↑ EFNA3 ↓ CF-1 mice SNC Promoted sensory axon regeneration and 

inhibit apoptsosis.

Hu et al. (2016)

miR-135s ↑ KLF4 ↓ C57BL/6 mice ONI Facilitated RGC axon regeneration after optic 

nerve injury in adult mice.

van Battum et al. 

(2018)

miR-125b ↑ JAK/STAT ↓ mice SCI Promoted the repair and regeneration 

following spinal cord injury.

Dai et al. (2018)

miR-155 ↓ SPRR1A ↑ C57BL/6 mice SCI Enhanced neuron survival and axon growth. Gaudet et al. (2016)

(Continued)
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TABLE 1 (Continued)

Mechanisms miRNA Target Objectives Models Results References

miR-19a ↑ PTEN ↑ SD rats and 

C57BL/6 mice

ONC Promoted axon regeneration after optic nerve 

crush in adult mice.

Mak et al. (2020)

miR-21 ↑ PTEN ↓ SD rats SNI Promoted neurite growth. Kar et al. (2021)

miR-21 ↑ TGFβI/TIMP3/

EPHA4 ↓

SD rats Nerve injury Promoted SC proliferation and axon 

regeneration.

Ning et al. (2020)

miR-21 ↑ EGFR ↑ SD rats ONC Enhanced the axon regeneration after ONC. Li et al. (2018)

miR-199a-3p ↑ mTOR ↓ SD rats SNI Attenuated neurite growth. Kar et al. (2021)

miR-26a ↑ GSK3β/Smad1 

↓

CF-1 mice SNC Supported mammalian axon regeneration in 

vivo.

Jiang et al. (2015)

miR-455-5p ↓ GSK3β/Tau ↑ Rats SNI Promoted axonal growth and regeneration. Su et al. (2020)

miR let-7 ↑ Ntn1 ↓ SD rats SNI Reduced axon outgrowth.  Wang et al. (2019)

miR-9 ↑ Dcc ↓

miR-9 ↑ FoxP1 ↓ CF-1 mice SNC Inhibited axon regeneration in vitro and in 

vivo.

Jiang et al. (2017)

miR-138 ↓ SIRT1 ↑ CF-1 mice SNC Promoted mammalian axon regeneration. Liu et al. (2013)

Neuronal ion channels

Voltage-gated 

sodium channel

miR-7a ↑ β2 subunit ↓ SD rats SNL and CCI Suppressed neuropathic pain. Sakai et al. (2013)

miR-96 ↑ Nav1.3 ↓ SD rats CCI Alleviated neuropathic pain. Chen et al. (2014)

miR-384-5p ↑ SCN3A ↓ SD rats CCI Significantly repressed mechanical allodynia 

and heat hyperalgesia in CCI rats.

Ye et al. (2020)

miR-182 ↑ Nav1.7 ↓ SD rats SNI Alleviated SNI-induced neuropathic pain. Cai et al. (2018)

miR-30b ↑ Nav1.3 ↓ SD rats SNL Suppressed neuropathic pain. Su et al. (2017)

miR-30b-5p ↑ Nav1.6 ↓ SD rats Chemotherapeutic 

Oxaliplatin

Attenuated pain. Li L. et al. (2019)

miR-30b ↑ Nav1.7 ↓ SD rats SNI Alleviated neuropathic pain. Shao et al. (2016)

miR-183 ↑ Nav1.3/Nav1.7/

Nav1.8 ↓

C57BL/6 mice DMM Inhibited the expression of pain-related 

factors and ameliorated OA pain.

Tao et al. (2021)

Voltage-gated 

potassium channels

miR-17-92 ↓ multiple 

voltage-gated 

potassium 

channels ↑

SD rats SNL Alleviated mechanical allodynia induced by 

nerve injury.

Sakai et al. (2013)

miR-137 ↓ Kv1.2 ↑ SD rats CCI Alleviated mechanical allodynia and thermal 

hyperalgesia.

Zhang et al. (2021)

miR-183-5P ↑ TREK-1 ↓ SD rats CCI Efficiently ameliorated neuropathic pain. Shi et al. (2018)

Voltage-gated 

calcium channels

miR-219 ↑ CaMKIIγ ↓ Kunming mice CFA and CCI Prevented and reversed neuropathic pain and 

spinal neuronal sensitization induced by CFA.

Pan et al. (2014)

miR-124a ↑ MeCP2 ↓ C57BL/6 mice Formalin Decreased inflammatory nociception. Kynast et al. (2013)

miR-103 ↑ Cav1.2-LTC ↓ Wistar rats SNL Successfully relieve pain. Favereaux et al. (2011)

miR-32-5p ↑ Cav3.2 ↓ SD rats CCI Reversed mechanical allodynia. Qi et al. (2022)

miR-183 ↑ α2δ-1 and 

α2δ-2

C57BL/6 mice SNI Prevented elevation of basal mechanical 

sensitivity in nociceptors

Peng et al. (2017)

RAP1A, Ras-related protein 1A; DPNP, diabetic peripheral neuropathic pain; CSF1, Colony-stimulating factor 1; SD, Sprague–Dawley; SNL, sciatic nerve injury; IRAK, IL-1R-associated kinase; 
TRAF6, Tumor necrosis factor receptor-associated factor 6; CCI, chronic constriction nerve injury; HMGB1, high mobility group box 1; CXCR4, Chemokine CXC receptor 4; BAMBI, bone 
morphogenetic protein and activin membrane-bound inhibitor; TGF-α, Tumor necrosis factor α; CCL2, CC chemokine ligand 2; CCR2, CC chemokine receptor type-2; ZEB1, Zinc finger E-box-
binding homeobox 1; TXNIP, Thioredoxin interacting protein; NLRP3, NOD-like receptor protein 3; S1PR1, Sphingosine-1-phosphate receptor 1; RASA1,RAS P21 protein activator 1; KDM3A, 
lysine-specific demethylase 3A; STAT, signal transducer and activator of transcription; SOCS, Suppressor of cytokine signaling; TRPA1, transient receptor potential cation channel subfamily A 
member 1; Mtf1, Mitochondrial Transcription Factor 1; OXL, Oxaliplatin; DPN, diabetic peripheral neuropathy; CFA, Complete Freund’s adjuvant; OA, osteoarthritic; XIAP, X-linked inhibitor of 
apoptosis protein; SNI, sciatic nerve injury; EFNA3, ephrin-A3; SNC, sciatic nerve crush; KLF4, kruppel-like factor 4; ONI, optic nerve injury; RGC, retinal ganglion cell; JAK, Janus kinase gene; 
STAT, signal transducer and activator of transcription; SCI, spinal cord injury; SPRR1A, small proline-rich repeat protein 1A; PTEN, phosphatase and tensin homolog; ONC, Optic nerve crush; 
TGFβI, transforming growth factor-beta-induced protein; TIMP3, tissue inhibitor of metalloproteinases 3; EPHA4, erythropoietin-producing human hepatocellular receptor A4; EGFR, epidermal 
growth factor receptor; mTOR, mechanistic target of rapamycin; GSK3β, glycogen synthase kinase 3β; Ntn1, netrin-1; Dcc, deleted in colorectal cancer; FoxP1, forkhead box protein P1; SIRT1, 
Sirtuin 1; Nav, voltage-gated sodium channels; DMM, destabilization of the medial meniscus; Kv, voltage-gated potassium channels; TREK-1, TWIK-related K channel 1; MeCP2, Methyl-CpG 
binding protein 2; Cav1.2-LTC, Cav1.2-comprising L-type calcium channel; CaMKII, calmodulin (CaM)-activated kinase II.
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to earlier research, prolonged pain causes spinal cord and peripheral 
nerve cell body damage or possibly cell death (Cohen et al., 2021).

Recent studies have identified that injured peripheral neurons can 
activate the secretion of intrinsic neurotrophic factors that promote 
neuronal survival and axon regeneration, such as nerve growth factor 
(NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 
(NT-3) (Keefe et al., 2017). In this regard, miRNAs can also play a role 
in nerve regeneration (Figure 2). Coincidentally, it was discovered that 
the DRG has aberrant expression of a number of miRNAs that target 
genes involved in nerve regeneration (Bai et al., 2007). Moreover, it was 
suggested that, by increasing the expression of the X-linked inhibitor of 
apoptosis protein (XIAP), downregulation of miR-192-5p can decrease 
the apoptosis of nerve cells and aid in the regeneration process following 
sciatic nerve injury (SNI) (Liu X. et  al., 2020). Additionally, the 
overexpression of miR-210 contributed to neuronal survival by 
preventing apoptosis through targeting ephrin-A3 (EFNA3), thereby 
promoting the regeneration of axons (Hu et al., 2016). Kruppel-like 
factor 4 (KLF4), a really well intrinsic inhibitor of axonal outgrowth and 
regeneration, can be efficiently silenced by miR-135a and miR-135b to 
stimulate axonal outgrowth and cortical neuron migration (van Battum 
et al., 2018).

In spinal cord injury (SCI) rats, direct 3D fiber hydrogel scaffold 
implantation combined with continuous supply of a cocktail of axon 
miRNAs (miR-132, miR-222, and miR-431) dramatically improved axon 
regeneration (Zhang et  al., 2021). In earlier research, miR-125b 
overexpression supported axon regeneration after spinal cord injury 
through controlling the JAK/STAT pathway. Furthermore, through 
lowering neuronal apoptosis and the inflammatory reaction, miR-125b 
demonstrated a neuronal protective effect (Dai et al., 2018). In vivo, 
miR-155 deletion enhanced injury-induced expression of SPRR1A, a 
regeneration-related gene, in neurons and reduced inflammatory 
signalling in macrophages, thereby enhancing axon regeneration 
(Gaudet et al., 2016). Mice with an optic nerve compression greatly 
increased their ability to regenerate their axons in vivo by enhancing the 
levels of miR-19a in their retinal ganglion cells (Mak et  al., 2020). 
Additionally, injury-induced changes in the expression of miR-21 and 
miR-199a-3p changed the ability of axons to develop by altering both 
systemic and intra-axonal protein synthesis through control of the 
PTEN/mTOR pathway (Kar et al., 2021). The PTEN/mTOR pathway is 
a major factor in determining axonal regeneration. The tumor 
suppressor phosphatase and tensin homologue (PTEN) is a PIP3 
phosphatase, and an inhibitor of mTOR signaling. The serine/threonine 
protein kinase known as the mechanistic target of rapamycin (mTOR), 
whose activation improved protein synthesis and mRNA translation 
(Tang, 2018). They synergistically regulate axon growth. MiRNA-21 
controls the expression of TGF-I, TIMP3, and EPHA4 target genes, 
which is crucial for increasing Schwann cell (SC) proliferation and axon 
regeneration during the healing of damaged peripheral nerves (Ning 
et  al., 2020). Moreover, endogenous miR-26a in sensory neurons 
enhanced the regeneration of sensory axons after spinal cord injury 
(SNI) by promoting the induced activation of Smad1 and inhibiting the 
expression of glycogen synthase kinase 3β (GSK3β) (Jiang et al., 2015).

In contrast, many miRNAs can also negatively regulate neuronal 
regeneration, thereby supporting neuropathic progression. By 
controlling the epidermal growth factor receptor (EGFR) pathway, 
miR-21, for instance, promotes the hyperactivation of astrocytes and the 
development of glial scar tissue, preventing the regeneration of axons (Li 
et al., 2018). Additionally, miR-455-5p inhibition suppressed axonal 
growth and regeneration and downregulated activation of the GSK3β/
Tau protein pathway in murine sensory neurons (Su et al., 2020). miR 

let-7 and miR-9 hindered axonal regeneration through inhibition of the 
protein levels of Ntn1 and Dcc (Wang et al., 2019), respectively. Likewise, 
researchers found that axon regeneration is also driven by miR-9 
through regulation of FoxP1 triggered by injury. However, sensory 
neurons with high endogenous miR-9 levels were unable to regenerate 
their axons (Jiang et al., 2017). Additionally, a novel mechanism for 
regulating the capacity for intrinsic axon regeneration is provided by the 
mutual negative response regulatory loop formed by miR-138 and 
SIRT1 (Liu et al., 2013).

These findings present a novel idea for the future study of axon 
regeneration in neuropathic pain. There are still many obstacles to 
be  overcome in order to create therapies that achieve complete 
regeneration and functional recovery of neurons, even though 
substantial advances have been made in comprehending the 
fundamental mechanisms of peripheral nerve regeneration and how 
these pathways can be effectively utilized to promote regeneration after 
peripheral nerve injury (PNI).

Regulation of neuronal ion channels

After the nerve fiber is injured, the structure and function of ion 
channels in the nerve endings and DRG of the spinal cord may change, 
leading to the ectopic discharge of neurons, and neuropathic pain (Jiang 
et al., 2022). Thus, ion channels play a key role in neuronal excitability 
and may be  targets of miRNAs under pain conditions (Figure  2). 
Notably, voltage-gated channels involved in the pain pathway have 
become the main targets of neuropathic pain treatment interventions.

Voltage-gated sodium channels
Voltage-gated sodium channel Nav1.3, an isoform that is sensitive 

to tetrodotoxin and is encoded by SCN3A, can produce sodium ion 
currents with quick repriming dynamics. These currents can promote 
repetitive firing patterns and ectopic discharge in damaged neurons, 
which can enhance neuronal hyperexcitability and are strongly linked 
to neuropathic pain (Lindia et al., 2005). Similar sodium-ion channels 
also have Nav1.6, encoded by SCN8A, and Nav 1.7, encoded by SCN9A 
(Bennett et al., 2019).

MiR-96 administered intrathecally inhibited the expression of 
Nav1.3 brought on by CCI. Further investigation indicated that miR-96 
decreased the in vitro expression of Nav1.3 mRNA in embryonic DRG 
neurons (Chen et al., 2014). By controlling SCN3A, miR-384-5p inhibits 
the emergence of neuropathic pain (Ye et  al., 2020). By controlling 
Nav1.7 in rats, miR-182 reduced the neuropathic pain brought on by 
SNI (Cai et al., 2018). Surprisingly, overexpression of miR-30b lowered 
the expression of Nav1.3, Nav1.6, and Nav1.7 both in DRG neurons and 
the spinal cord, which greatly reduced neuropathic pain brought on by 
SNL or oxaliplatin (Shao et al., 2016; Su et al., 2017; Li L. et al., 2019). 
Consistently, miR-183 overexpression attenuated osteoarthritic pain by 
inhibiting the production of Nav1.3, Nav1.7, and Nav1.8 (Tao 
et al., 2021).

miR-7a overexpression in primary sensory neurons of injured DRGs 
suppressed the increase in the β2 subunit of the voltage-gated sodium 
channel and normalized the long-lasting hyperexcitability of nociceptive 
neurons (Sakai et al., 2013).

Voltage-gated potassium channels
Voltage-gated potassium channels play a crucial role in controlling 

the excitability of neurons by altering the production of action potentials, 
the pace at which neurons fire, or the release of neurotransmitters (Kim 
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and Nimigean, 2016). miR-17-92, a miRNA cluster that includes six 
different members, downregulated the expression of potassium channels 
and reduced outward potassium currents, especially type A currents, 
resulting in the generation of mechanical allodynia (Sakai et al., 2017). 
Additionally, blocking miR-137 reduced mechanical allodynia and 
thermal hyperalgesia, recovered aberrant Kv currents and the 
overactivity of DRG neurons, and restored the expression of the 
potassium channel Kv1.2 (Zhang et al., 2021). Additionally, miR-183-5p 
contributed to the control of CCI-induced NP by suppressing TREK-1 
expression (a Kv channel) (Shi et al., 2018).

Calcium channels
In addition to voltage-gated sodium channels and potassium 

channels, calcium channels also play an indispensable role in the process 
of pain sensitization after nerve injury due to their involvement in 
neurotransmitter release and the regulation of neuronal excitability and 
intracellular changes, including gene induction (Rahman and 
Dickenson, 2013). MiR-219 and miR-124a, which negatively influenced 
the expression of spinal CaMKIIγand the proinflammatory marker 
MeCP2, were dramatically downregulated in murine spinal neurons 
following the development of inflammatory pain by either CFA or 
formalin injection (Kynast et al., 2013; Pan et al., 2014). Additionally, 
miR-103 expression was shown to be downregulated in spinal neurons 
of SNL rats, which appeared to simultaneously control the translational 
levels of the three components that make up the Cav1.2-comprising 
L-type calcium channel (Cav1.2-LTC), a calcium ion channel associated 
with pain sensitization (Favereaux et al., 2011). Additionally, by targeting 
Cav3.2 channels, histone methylation-mediated miR-32-5p decreased 
expression in trigeminal ganglion (TG) neurons controls trigeminal NP 
(Qi et  al., 2022). By controlling the auxiliary voltage-gated calcium 
channel subunits α2δ-1 and α2δ-2, the miR-183 cluster in mice regulated 
more than 80% of NP-regulated genes and attributed to scaling basal 
mechanical sensitivity and mechanical allodynia (Peng et al., 2017).

These findings suggest that miRNA-mediated channel dysfunction 
is a significant contributor to the pathogenesis of nerve injury-induced 
NP, highlight the significance of abnormal afferent input in the 
persistence of neuropathic pain and the promise of targeted 
chemogenetic silencing as a potential neuropathic pain therapy.

Role of exosomal miRNAs in neuropathic 
pain

Exosomes (Exos), a class of nanosized EVs with sizes from 40 to 
200 nm, are released from all cell types and participate in paracrine 
interactions between various cells, including neurons, glial cells, 
mesenchymal stem cells, endothelial cells, and leukocytes (Mathivanan 
et  al., 2010). As another type of secreted factor, these biological 
nanocarriers, which are rich in a variety of genetic materials, including 
miRNAs, long noncoding RNA, proteins, and lipids, can be  easily 
distributed in biofluids and modulate biochemical responses and cell 
viability during physiological and pathological conditions in 
neurodegenerative or inflammatory diseases (Cata et al., 2022). Blood, 
saliva, breast milk, urine, and other bodily fluids all contain significant 
amounts of exosomal miRNAs (Zhang et al., 2015; Ding et al., 2019).

Pain is frequently caused by inflammation. A variety of cytokines, 
chemokines, and additional elements contribute to the emergence of 
acute inflammatory pain. Chronic inflammation can start the processes 
that lead to cerebral and peripheral sensitization (Jiang et al., 2020). 

Exosomal miRNAs can be transported to different sites after autocrine 
production, acting on macrophages, microglia, neurons or other tissue 
cells, and regulate the process of neuropathic pain by participating in the 
secretion of inflammatory factors, and oxidative stress, and regulating 
neural remodelling or nerve regeneration (Figure 3). Exosomes have the 
ability to regulate the release from cells of nociceptive mediators, which 
are involved in neuroinflammation and are recognized to sensitize 
sensory terminals (Groot and Lee, 2020). For instance, immunological 
cells such as T lymphocytes and antigen-presenting dendritic cells 
(DCs) can release and absorb exosomal miRNAs, indicating that 
exosomal transfer of miRNAs may constitute a novel method of 
intercellular communication (Torralba et al., 2018). As a result, it is 
believed that exosomal miRNA transmission is significant for a number 
of systems and processes, such as the immune reaction and neuron–glia 
communication (Kalani et al., 2014).

Interestingly, these exosomal miRNAs can have both 
proinflammatory and anti-inflammatory effects. As mentioned above, 
some exosomal miRNAs can release cytokines or other proinflammatory 
mediators that directly act on target organs (Zhang et al., 2014; Console 
et al., 2019). For example, exosomes from chondrocytes, neutrophils, 
and synovial fibroblasts encouraged macrophages to produce IL-1 and 
metalloproteinases. Furthermore, the regulation of the synthesis of these 
inflammatory chemicals has been linked to the transfer of miR-206 and 
miR-449a-5p in the cargo of exosomes (Liu et al., 2018; Ni et al., 2019). 
MiR-449a-5p in particular mediates ATG4B inhibition, which in turn 
controls macrophage autophagy, encourages inflammosome activation, 
and exacerbates the inflammatory response.

Evidence suggests that miR-21 was increased in serum exosomes 
from neuropathic mice. Further research revealed that miR-21-5p-
containing macrophage-derived exosomes promoted pyroptosis via 
A20, encouraging a proinflammatory phenotype and exacerbating 
podocyte damage in diabetic nephropathy mice (Ding et al., 2021). 
Notably, the DRG’s hyperalgesia and macrophage recruitment were 
reduced by either intrathecal miR-21-5p antagomir addition or miR-21 
conditional deletion in sensory neurons. A20 is an inhibitor of the 
NF-κB signaling pathway. Similar research showed that after nerve 
damage, DRG sensory neurons released EVs that were miR-23a-
enriched and were then ingested by macrophages to improve M1 
polarization in vitro. Additionally, by blocking A20 to promote NF-κB 
signaling, an EV-miR-23a antagomir delivered intrathecally reduced M1 
macrophages and improved neuropathic hyperalgesia (Zhang 
et al., 2021).

Conversely, other exosomal miRNAs exert anti-inflammatory and 
analgesic effects in chronic pain models via the transfer of therapeutic 
factors to injured neurons in the central nervous system (CNS) and 
peripheral nervous system (PNS) (Ren J. et al., 2019). The promotion of 
inflammation is thought to be  the leading cause of pain. Exosomal 
miRNAs can also suppress the production of proinflammatory cytokines 
such as IL-1β, IL-6, TNF-α, and PGE2 in injured areas and stimulate the 
release of IL-10, leading to antinociceptive effects (Cata et al., 2022). 
These miRNAs have the ability to modify nociception, and intrathecal 
administration of miR-124, miR-103, miR-23b, miR-25, and miR-544, 
for example, reduced inflammatory and neuropathic pain by modifying 
intracellular neuronal, astrocytic, and microglial activities (Favereaux 
et al., 2011; Willemen et al., 2012; Wang et al., 2018; Zhao et al., 2019; Li 
et al., 2020). MiR-124 inhibits GRK2 expression, thereby regulating the 
M1/M2 phenotypic balance of the spinal cord.

Similar to the effect of some neurotrophic factors, including GDNF, 
IGF-1, BDNF, NGF, and FGF-1, exosomal miRNAs can enhance axonal 
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growth and neuronal viability and intensify therapeutic effects (Lv et al., 
2021). To the best of our knowledge, the targeted and modular EV 
loading (TAMEL) method has not been implemented in experimental 
pain studies. Despite the fact that many studies have tried to provide 
new and more effective mechanistic insights into the function of 
exosomal miRNAs in NP, the cellular and molecular functions of 
exosomal miRNAs and their downstream targets remain to 
be elucidated.

Emerging role of exosomal miRNAs in 
neuropathic pain management

Standard analgesics, such as acetaminophen, nonsteroidal anti-
inflammatory drugs, local anesthetics, and, to a lesser extent, opioids, 
may be  helpful in controlling acute pain. Unfortunately, due to 
ineffectiveness or undesirable side effects, there are few clinically useful 
analgesics for the treatment of neuropathic pain (Amaechi et al., 2021). 
Therefore, present research investigations should give top priority to the 
identification and development of mechanism-based therapies for the 
amelioration of neuropathic pain.

Exosomes have the capacity to control NP and can be secreted by a 
variety of cell types, including stem cells, according to laboratory 
research (Ren J. et al., 2019). Further evidence suggests that stem cell-
derived exosomes can largely mimic the functional effects of parental 
stem cells and have been identified as key players in the stem cell repair 
of damaged tissues (Keshtkar et al., 2018). Stem cell-derived exosomes 
can not only play a role in nerve repair but also avoid the risk of 
immunosuppression, genetic modification and malignant 
transformation caused by stem cell transplantation due to their 
paracrine effect, providing a new therapeutic strategy and research 
target for neuropathic pain (Liu W. Z. et al., 2021). It is believed that 
stem cell-derived exosomes can transfer neurotrophic factors, such as 
GDNF, IGF-1, BDNF, NGF, and FGF-1, to injured neurons. Additionally, 

intrathecal infusion of mesenchymal stem cell exosomes reduces 
neuropathic pain in spinal cord injured rats by causing microglia to 
become polarized from M1 to M2 and preventing the release of 
inflammatory cytokines such TNF-α, IL-1, IL-6, and NF-κB (Harrell 
et al., 2019; Arabpour et al., 2021; Liu W. Z. et al., 2021). Among them, 
the regulatory effect of the miR-216a-5p/TLR4 axis on microglial 
polarization has been demonstrated (Liu W. et al., 2020).

Mesenchymal stem cells (MSCs) are one of the most promising 
stem cell types for the treatment of various ischaemic diseases and 
tissue damage due to their multidirectional differentiation potential 
and extensive immune regulatory functions (Uccelli et al., 2008). A 
recent laboratory study indicated that MSCs can migrate to the 
injured nerve tissue and stimulate the regeneration of injured neurons 
(Norte-Muñoz et al., 2021). MSC-derived exosomes regulate neurite 
growth by controlling the number and total length of neurites through 
the transfer of miR-133b to nerve cells (Xin et al., 2012, 2013; Ren 
Z. W. et al., 2019). Exosomes enriched in miR-17-92 clusters may 
increase neuroplasticity and functional recovery by targeting PTEN 
to activate the PI3K/Akt/mTOR/GSK-3β signalling pathway (Xin 
et  al., 2017). Similarly, SC-derived small exosomes containing 
miR-21-5p negatively regulate PTEN to improve sensory neuron 
growth and survival (Cong et  al., 2021). In order to increase the 
capacity for neurite outgrowth in vitro and nerve regeneration in vivo, 
SCs-extracellular vehicles (EVs) transported miR-23b-3p from 
mechanically activated SCs to neurons and decreased neuronal 
neuropilin 1(Nrp1) expression (Xia et  al., 2020). Umbilical cord 
mesenchymal stem cell-derived exosomes boost axon regrowth and 
spinal cord functional improvement via miR-199a-3p/145-5p 
targeting of Cblb/Cbl-mediated NGF/TrkA signaling in rats (Wang 
et al., 2021). Following spinal cord damage, exosomes released from 
neural stem cells exposed to IGF-1 decreased apoptosis and promoted 
nerve regeneration, at least in part through a miR-219a-2-3p/YY1 
mechanism (Ma et  al., 2019). Similarly, miR-181c-5p negatively 
regulates Bcl-2-interacting cell death mediators (BIM), which can 

FIGURE 3

Roles of exosomal miRNAs in neuropathic pain. Exosomal miRNAs can be transported to different sites after autocrine production, acting on macrophages, 
microglia, neurons or other tissue cells, and regulate the process of neuropathic pain by participating in the secretion of inflammatory factors, and oxidative 
stress, and regulating neural remodelling or nerve regeneration.
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effectively inhibit neuronal apoptosis and regulate the cell vitality of 
cortical neurons to promote axon regeneration (Zhang et al., 2019; 
Figure 4).

A recent study suggested that miR-29-enriched exosomes 
originate from stem cells and alleviate proinflammatory responses in 
an osteoarthritis in a rat model (Le et al., 2016). Similarly, miR-199-3p 
overexpression attenuated TRX-induced PHN by targeting MECP2 in 
mice (Wang et  al., 2022). ExomiR-181c-5p was incorporated by 
microglial cells and prevented inflammatory substances from being 
released. In addition, intrathecal exomiR-181c-5p treatment reduced 
neuroinflammatory symptoms and neuropathic pain in CCI rats 
(Zhang et al., 2022). In order to reduce neuroinflammation, human 
umbilical cord MSC-derived exosomes upregulated the expression of 
proteins associated with autophagy (LC3-II and beclin1) and blocked 
the activation of NLRP3 inflammasomes through miR-146a-5p/
TRAF6 in the spinal cord dorsal horn (Hua et al., 2022). Furthermore, 
cyclooxygenase-2 (PTGS2) was downregulated in rat synovial 
fibroblasts after xenogenic injection of human MSC exosomes 
enriched with miR-26a-5p to lessen pathogenic alterations (Jin 
et al., 2020).

MSC-derived exosomes can exert analgesic effects in chronic 
pain models via the transfer of certain miRNAs in the CNS and PNS 
(Hmadcha et  al., 2020). Exosomal miRNAs can be  important 
biomarkers, and compared with free-floating miRNAs, they have the 
following advantages: (Scholz et al., 2019) exosomes contain a range 
of miRNAs, making them reliable carriers for the study of miRNAs; 
(Yi et  al., 2021) the bilayer membrane shape of exosomes can 

improve miRNA stability, susceptibility to miRNA amplification, and 
the likelihood of unfavorable outcomes; and (Huh et  al., 2017) 
exosomes can cross the blood–brain or blood-spinal cord barriers 
(Ding et al., 2019). Despite the potential advantages of MSC-derived 
exosomes, the low therapeutic effect due to poor survival of 
transplanted cells in damaged tissues is still the largest obstacle in 
stem cell therapy.

These data suggest that stem cell-derived exosomal miRNAs can 
manage pain by reducing proinflammatory cytokines and promoting 
neuronal regeneration and differentiation, which presents a novel 
therapeutic strategy for the treatment of nerve injury.

Perspectives on this review

In conclusion, neuropathic pain poses a substantial threat to 
patients’ lives, health, and quality of life, and the absence of safe and 
effective treatment options continues to be a significant therapeutic 
challenge. In recent years, the in-depth study of miRNA in the 
development of neuropathic pain has provided great opportunities 
for its clinical transformation, especially its outstanding contribution 
in neuroinflammation, nerve regeneration and other aspects has 
brought another bright prospect for the clinical treatment of 
neuropathic pain. Even though it has been demonstrated that miRNA 
is a viable candidate for NP therapy, obstacles such its bioactivity, 
stability, safety, and tissue specificity still need to be overcome. On the 
journey to the target, miRNA’s transmembrane efficiency and 

FIGURE 4

Relationship between exosomal miRNAs and axon regeneration. As one of the important cargos of exosomes, miRNAs are involved in mediating the 
process of axon regeneration. Exosomes produced by various stem cells enter neurons or glial cells through paracrine routes, where multiple miRNAs are 
released. Upregulation of exo-miR-219a-2-3p inhibits YY1 expression, thereby suppressing the NF-κB-p65 pathway and exerting neuroprotective effects. 
miR-199a-3p/145-5p suppresses Cblb and Cbl expression and causes upregulation of p-Erk and p-Akt, subsequently promoting neurite outgrowth. The 
miR-17-92 cluster and miR-21-5p carrying exosomes downregulate PTEN levels and subsequently activate the PI3K/Akt/mTOR signalling pathway, thereby 
increasing neuronal dendritic plasticity. MiR-181c-5p negatively regulates BIM mRNA, inhibits BIM expression level, reduces neuronal apoptosis, and 
promotes axon regeneration. Targeted inhibition of Nrf1 mRNA levels by miR-23b-39 subsequently promotes axonal regeneration.
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enzymatic reaction are additional factors that must be  taken into 
account. The study of delivery molecules, including exosomes, 
liposomes, viral vectors, as well as miRNA mimics and inhibitors, is 
therefore currently given significant emphasis. Last but not least, 
patient safety has to be the top priority in clinical application, making 
it difficult for us to effectively assess the immunological response that 
exogenous miRNA treatment may trigger. Further preclinical research 
and clinical trials are crucial measures to support clinical 
transformation because current research is still confined to cell and 
animal investigations. With further research on the mechanism of 
action of miRNAs and the use of the latest miRNA gene chips and 
other high-throughput technologies, miRNAs may become a new 
biological marker for disease diagnosis and will provide new targets 
and methods for the pathogenesis and intervention strategies of 
neuropathic pain in the future.
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Glossary

miRISC miRNA-induced silencing complex

DRG Dorsal root ganglion

SNL Spinal nerve ligation model

CSF1 Colony-stimulating factor 1

IRAK IL-1R-associated kinase

TRAF6 Tumour necrosis factor receptor-associated factor 6

TLR Toll-like receptors

NF-κB Nuclear factor κB

TXIP Thioredoxin-interacting protein

NLRP3 NOD-like receptor protein 3

TNF-α Tumour necrosis factor α

IL-1β Interleukin-1β

3’UTR 3′ untranslated region

CCI Chronic constriction nerve injury

HMGB1 High mobility group box 1

BAMBI Bone morphogenetic protein and activin membrane-bound inhibitor

NP Neuropathic pain

TRPV1 Transient receptor potential (TRP) vanilloid 1

TGF-α Transforming growth factor-α

CCL2 CC chemokine ligand 2

CCR2 CC chemokine receptor type-2

ZEB1 Zinc finger E-box-binding homeobox 1

CXCR4 Chemokine CXC receptor 4

TXNIP Thioredoxin interacting protein

S1PR1 Sphingosine-1-phosphate receptor 1

RASA1 RAS P21 protein activator 1

KDM3A Lysine-specific demethylase 3A

STAT3 Activator of transcription 3

SOCS1 Suppressor of cytokine signalling 1

MAPK Mitogen-activated protein kinase

p38 p38 mitogen-active protein kinase

PEG2 Prostaglandin E2

SOCS3 Suppressor of cytokine signalling 3

DPN Diabetic peripheral neuropathy

CFA Complete Freund’s adjuvant

Mtf1 Mitochondrial Transcription Factor 1

p-ERK1/2 Phosphorylation of ERK1/2

GFAP Glial fibrillary acidic protein

NGF Nerve growth factor

BDNF Brain-derived neurotrophic factor

NT-3 Neurotrophin-3

FGF Fibroblast growth factor

XIAP X-linked inhibitor of apoptosis protein

EFNA3 Ephrin-A3

KLF4 Kruppel-like factor 4

SCI Spinal cord injury
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JAK Janus kinase gene

STAT Signal transducer and activator of transcription

SPRR1A Small proline-rich repeat protein 1A

PTEN Phosphatase and tensin homologue

mTOR Mechanistic target of rapamycin

SC Schwann cells

GFβI Transforming growth factor-beta-induced protein

TIMP3 Tissue inhibitor of metalloproteinases 3

EPHA4 Erythropoietin-producing human hepatocellular receptor A4

GSK3β Glycogen synthase kinase 3β

EGFR Epidermal growth factor receptor

Ntn1 Netrin-1

Dcc Deleted in colorectal cancer

FoxP1 Forkhead box protein P1

SIRT1 Sirtuin 1

Nav Voltage-gated sodium channels

SNL Spinal nerve ligation model

Kv Voltage-gated potassium

TREK-1 TWIK-related K channel 1

MeCP2 Methyl-CpG binding protein 2

Cav1.2-LTC Cav1.2-comprising L-type calcium channel

CaMKII Calmodulin (CaM)-activated kinase II

TG Trigeminal ganglion

EVs Extracellular vesicles

DCs Dendritic cells

CNS Central nervous system

PNS Peripheral nervous system

MS Mechanical stimulation

Nrp Neuropilin

PHN Postherpetic neuralgia

TRX Thioredoxin

MECP2 Methyl-CpG-binding protein 2

IGF-1 Insulin-like growth factor I

MSCs Mesenchymal stem cells

PTGS2 Prostaglandin-endoperoxide synthase 2.
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