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Parkinson’s disease (PD) is a chronic neurodegenerative disease associated with

the intracellular organelles. Leucine-rich repeat kinase 2 (LRRK2) is a large multi-

structural domain protein, and mutation in LRRK2 is associated with PD. LRRK2

regulates intracellular vesicle transport and function of organelles, including Golgi

and lysosome. LRRK2 phosphorylates a group of Rab GTPases, including Rab29,

Rab8, and Rab10. Rab29 acts in a common pathway with LRRK2. Rab29 has been

shown to recruit LRRK2 to the Golgi complex (GC) to stimulate LRRK2 activity

and alter the Golgi apparatus (GA). Interaction between LRRK2 and Vacuolar

protein sorting protein 52 (VPS52), a subunit of the Golgi-associated retrograde

protein (GARP) complex, mediates the function of intracellular soma trans-Golgi

network (TGN) transport. VPS52 also interacts with Rab29. Knockdown of VPS52

leads to the loss of LRRK2/Rab29 transported to the TGN. Rab29, LRRK2, and

VPS52 work together to regulate functions of the GA, which is associated with

PD. We highlight recent advances in the roles of LRRK2, Rabs, VPS52, and other

molecules, such as Cyclin-dependent kinase 5 (CDK5) and protein kinase C

(PKC) in the GA, and discuss their possible association with the pathological

mechanisms of PD.
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Introduction

Parkinson’s disease (PD) and the Golgi apparatus (GA)

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the
world. The incidence of PD is expected to rise in the future (Tolosa et al., 2021). PD is
characterized by motor and non-motor impairments associated with dopamine deficiency
and others. The pathogenesis of PD is complicated and still unknown. Environmental
and genetic factors cause mitochondrial dysfunction, protein aggregation, oxidative stress,
impairment of autophagy, and neuroinflammation in PD (Simon et al., 2020). The
mechanisms and the most promising strategies for developing effective therapies for PD are
needed (Erb and Moore, 2020).
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The basic structure of Golgi complex (GC) includes: inner
Golgi, cis-Golgi, and trans-Golgi network (TGN) (Nakano, 2022).
PD is related to apoptosis, DNA fragments and pro-apoptotic
molecules increased in the dense dopaminergic neuronal regions
of the substantia nigra (SN) of PD patients (Lev et al., 2003).
A common feature of neurodegenerative diseases, including PD,
is the fragmentation of GC (Gonatas et al., 2006; Fan et al.,
2008; Caracci et al., 2019; Martinez-Menarguez et al., 2019). Early
postmortem examinations of PD samples showed a high level
of fragmentation of GC in some dopaminergic neurons (Fujita
et al., 2006). Alpha-synuclein (α-syn) has been implicated in the
pathogenesis of PD, however, the exact mechanism is not known
(Du et al., 2020; Shahnawaz et al., 2020). The pathological hallmark
of PD is mainly the aggregation of intracellular α-syn (Wakabayashi
et al., 2007). The damage of the Golgi apparatus (GA) triggers the
aggregation of α-syn and results in the formation of inclusions
(Rendon et al., 2013). Aggregation of α-syn inhibits Golgi-related
transport and leads to the accumulation of toxic substances causing
oxidative stress and cell death (Lashuel and Hirling, 2006). Protein
processing and transport in the GA are involved in apoptosis,
in which the structure and function of the GA are disrupted
(van Dis et al., 2014). Thus, the GA is associated with PD. In
central nervous system (CNS) pathological conditions, the GC
fragmentation has been observed in the early stages of apoptosis,
therefore, the GC fragmentation is unlikely to be the result of
apoptotic cell death (Liazoghli et al., 2005; van Dis et al., 2014).
However, the exact mechanism and function of the GA on the
apoptotic process are not clear (Caracci et al., 2019). This review
focuses on these studies illustrated the relationship between GA and
PD.

Leucine-rich repeat kinase 2 (LRRK2) and
Rabs

Leucine-rich repeat kinase 2 (LRRK2) is a large, multi-domain
protein with kinase and GTPase domains (Nguyen and Moore,
2017). Mutations in the LRRK2 gene can present in patients
with autosomal dominant PD and be associated with developing
of sporadic PD (Tolosa et al., 2020). LRRK2 mutations account
for approximately 1% of patients with sporadic PD and 5% of
patients with familial PD, which suggests that LRRK2 is one of
the commonly mutated genes associated with PD (Simpson et al.,
2022).

The molecular mechanism of LRRK2 associated PD is unclear,
however, LRRK2 in different cell types or models regulates TGN
and lysosomal function, vesicle endocytosis and transport, and
autophagy (Erb and Moore, 2020). Perez-Carrion et al. (2022)
found that LRRK2 is related to the accumulation of α-syn. However,
Henderson et al. (2019) showed that there was no necessary
association between α-syn pathogenesis and LRRK2 in the PD
mouse model. Therefore, this question needs to be further studied
in the future. LRRK2 plays a crucial role in the GA. LRRK2 mutants
affect the GA integrity and vesicle trafficking (Stafa et al., 2012;
Beilina et al., 2014; Fujimoto et al., 2018; Purlyte et al., 2018).
It has been shown that the inactivation of LRRK2 leads to the
Golgi fragmentation and disrupts vesicle trafficking in human

kidney proximal tubular epithelial cells (Lanning et al., 2018), even
affects the entire endosomal system, including endocytosis and
autophagy (Piccoli and Volta, 2021). The GA is indispensable in
the endosomal system, and its dysfunction affects organelles such as
endosomal and lysosomal function, synaptic vesicle trafficking, and
ultimately alters neuronal function and synaptic plasticity (Piccoli
and Volta, 2021).

Rabs, a kind of small GTPases involved in intracellular vesicular
transport are important molecular switches for vesicular transport,
and play a regulatory role in membrane transport in eukaryotic cells
(Xu et al., 2021). The Rab binds with Rab effectors through binding
domain (RBD) and recruits effectors to subcellular compartments
to exert their effects. Effectors are used to regulate vesicle formation,
transport and fusion by using other domains (Waschbusch et al.,
2021; Zhang et al., 2022).

LRRK2 can directly phosphorylate Rabs (Steger et al., 2016).
LRRK2 overexpression phosphorylates 14 Rabs, but only 10
Rabs are endogenous LRRK2 substrates (Rab3A/B/C/D, Rab8A/B,
Rab10, Rab12, Rab35, and Rab43) (Ito et al., 2016; Steger et al.,
2017; Thirstrup et al., 2017; Pfeffer, 2022). Rab8, Rab10, and
Rab29 (also known as Rab7L1) interact with LRRK2. Rab8a,
Rab8b, and Rab10 act downstream of LRRK2, while Rab29 appears
to act upstream of LRRK2 (Eguchi et al., 2018; Liu et al.,
2018; Kuwahara and Iwatsubo, 2020; Figure 1). LRRK2 also
phosphorylates Rab29 (Fujimoto et al., 2018), and is inversely
activated by GTP-bound Rab29, which suggest that there is
reciprocal regulation between LRRK2 and Rabs (Liu et al., 2018).
Rab29 recruited mutant LRRK2 to TGN or TGN-derived vesicles
when these molecules were overexpressed (MacLeod et al., 2013;
Beilina et al., 2014). LRRK2 activation and localization are
regulated by Rab29 (Purlyte et al., 2018). Rab29 also recruits
LRRK2 to lysosomes under lysosomal stress (Eguchi et al., 2018).
LRRK2 phosphorylates and recruits Rab8 and Rab10 (Kuwahara
and Iwatsubo, 2020). Rab10 phosphorylation at threonine 73
(pRab10 Thr73) by LRRK2 is regulated by activity and cellular
localization of LRRK2 (Turski et al., 2022). Rab8 and Rab10
phosphorylated by LRRK2 accumulate around the centrosome
and result in insufficient centrosome cohesion (Lara Ordonez
et al., 2019). The pathogenic LRRK2 causes centrosome defects
is independent of Rab29 or Golgi integrity. In contrast, in
the presence of Rab29, centrosome changes affected by wild-
type LRRK2 depend on Golgi integrity (Madero-Perez et al.,
2018).

The common mutations of LRRK2 related to PD are
G2019S, I2020T, and ROC-COR domains (R1441C/G/H, Y1699C)
(Rudenko and Cookson, 2014; Cookson, 2015). In vivo, several
familial PD mutations enhanced LRRK2 autophosphorylation
on Ser1292 including R1441G/C, N1437H, G2019S, and I2020T,
which suggest that Ser1292 autophosphorylation may be an
indicator of LRRK2 kinase activity (Sheng et al., 2012). Steger
et al. (2016) identified a subset of Rab GTPases as key
LRRK2 substrates in cells, such as Rab10 and Rab12. The
phosphorylation of a group of LRRK2 substrates are increased
by all pathogenic LRRK2 mutants in intact cells, but only the
G2019S mutant increases the phosphorylation in vitro (Blanca
Ramirez et al., 2017). 14-3-3 is involved in the regulation of PD
(Berg et al., 2003; Chen et al., 2003). LRRK2 mutations, such
as R1441C, R1441G, R1441H, Y1699C, and I2020T, inhibited
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phosphorylation of LRRK2’s two conserved residues (Ser910 and
Ser935) and disrupted the interaction between LRRK2 and 14-3-
3, finally resulted in the accumulation of LRRK2 (Nichols et al.,
2010).

Rab32, Rab38, and Rab29 have been shown to regulate the
subcellular localization of LRRK2 through direct interactions
(Waschbusch et al., 2014; Figure 1). Purlyte et al. (2018) showed
that Rab29 binds to the ankyrin domain of LRRK2, and conserved
residues in the domain enable Rab29 to mediate Golgi recruitment
and kinase activation. However, McGrath et al. (2021) found the
interaction between Rab29 and the ARM of LRRK2, one binding
site followed by ankyrin repeats. Further research is needed.
Rab32 interacts directly with sorting nexin 6 (SNX6), a subunit
of the retromer (Waschbusch et al., 2019; Figure 1). Rab32/38
sorting nexins and retromer regulate signaling pathways on LRRK2
activation (Waschbusch et al., 2019). Missense mutation in Rab32
is associated with PD (Waschbusch et al., 2014). The localization
of the mannose-6-phosphate receptor is regulated to the TGN
by Rab32 and SNX6/retromer which are associated with Golgi
trafficking (Waschbusch et al., 2019).

Golgi-associated retrograde protein
(GARP)

Vacuolar protein sorting protein 52 (VPS52) is a subunit of
Golgi-associated retrograde protein (GARP) complex (Beilina et al.,
2020). Beilina et al. (2020) found that the interaction between
LRRK2 and VPS52 facilitated the interaction of GARP complex
with Golgi SNAREs in TGN and promoted retrograde transport
of TGN (Figure 1). Thus, the retrograde transport and subsequent
transport pathway of TGN is regulated by the activity of LRRK2.
VPS52 interacts with Rab29, and its knockdown results in a loss
of LRRK2/Rab29 transport to the TGN. These results suggest that
VPS52 plays a role in regulating LRRK2 and Rab29 transport to the
TGN (Beilina et al., 2020).

Retromer

Vacuolar protein sorting protein 35 (VPS35) (PARK17) is
a molecule of retromer that selectively promotes endosomal-
Golgi retrieval of transmembrane proteins. The retromer primarily
selects and binds transmembrane protein cargo on the endosomal
membrane to facilitate endosome-to-TGN or endosome-to-plasma
membrane recycling. The autosomal dominant missense mutation
Asp620Asn (D620N) in VPS35 is the only mutation in VPS35
that causes the late onset of PD (Vilarino-Guell et al., 2011;
Zimprich et al., 2011; Williams et al., 2022). It has been shown
that D620N VPS35 mutation increases the phosphorylation of
LRRK2 (Mir et al., 2018). The interaction of the pathogenic G2019S
LRRK2 mutation and D620N VPS35 enhances LRRK2 activity in
SH-SY5Y cells (MacLeod et al., 2013). Wild-type LRRK2 activity
was significantly reduced after CRISPR/CAS9 knockout of VPS35,
whereas knockdown of VPS35 inhibits the kinase activity of LRRK2
(Mir et al., 2018). These studies suggest that VPS35 is upstream of
LRRK2.

Golgi outposts (GOPs)

The transport role of GA is related to common neuronal defects
in neurological diseases, such as altered synaptic morphology,
dendritic arborization and neuronal migration (Caracci et al.,
2019). Among neurons the Golgi outposts (GOPs) are the
important components of the dendritic secretory pathway, which
contain shafts, branch points, and terminal branches (Pierce et al.,
2001; Horton and Ehlers, 2003; Horton et al., 2005). Most GOPs
are maintained in a stationary state, but some GOPs move toward
the dendritic end (anterograde) or cell body (retrograde) (Lin et al.,
2015). GOPs play a crucial role in synaptic connection (Caracci
et al., 2019; Figure 1). LRRK2 is located at the dendritic site,
regulates the dynamics of GOPs and even inhibits the movement
of GOPs. Thus, LRRK2 plays an important role in regulating
the localization of GOPs in neurons (Caracci et al., 2019). Lin
et al. (2015) found that in Drosophila melanogaster, loss of
function for dLRRK (Drosophila LRRK2) enhances cis-transport
of GOPs, while overexpression of dLRRK inhibits cis-transport
of Golgi. LRRK2 mutant G2019S promotes retrograde transport
and increases the number and size of fixed GOPs located in Golgi
vesicle branching sites in dendrites (Horton et al., 2005). This study
shows that human LRRK2, similar to dLRRK which is crucial for
GOPs regulation and contributes to PD development (Lin et al.,
2015).

Cyclin-dependent kinase 5 (CDK5)

Cyclin-dependent kinase 5 (CDK5) is a member of the cyclin-
dependent kinase family and plays a key regulatory role in the cell
cycle (Beaudette et al., 1993; Shah and Rossie, 2018). Dendritic
length and synapses are influenced by CDK5 in dorsal striatal (DS)
neurons (Zhou et al., 2022).

Cyclin-dependent kinase 5 is associated with
neurodegenerative diseases, including PD (Cruz et al., 2003;
Qu et al., 2007). Circuit impairment in the basal ganglia system
results in PD, in which dopamine signaling in the striatum is
negatively regulated by CDK5 (Shu et al., 2016). The LRRK2
R1628P mutation increases the binding affinity of LRRK2 to CDK5
and turns the adjacent amino acid residue serine S1627 of LRRK2
into a new phosphorylation site and activated by CDK5 (Shu et al.,
2016).

Golgi fragments appear early in neurodegenerative diseases,
however, the mechanism leading to fragmentation remains unclear
(Gonatas et al., 2006; Nakagomi et al., 2008). The GA is affected by
cell division cycle protein 2 (CDC2) kinase during mitosis. A study
confirmed that inhibiting CDK5 using a persistent TAT-CDK5
inhibitory peptide (TAT-CIP) hindered Golgi division, suggesting
that CDK5 plays a key role in Golgi division (Sun et al., 2008).

Rab8 regulates the transport of extracellular vesicles from the
TGN to the peripheral membrane in the secretory pathway
(Stenmark, 2009; Figure 1). G-protein-coupled receptor-
activation-based (GRAB) is a guanine nucleotide exchange
factor for Rab8 and a novel regulator of axonal growth. GRAB
promotes the axonal membrane transport by mediating the
interaction between Rab11 and Rab8 in neurons (Furusawa et al.,
2017). GRAB is a substrate for the membrane-bound kinase CDK5.
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FIGURE 1

Leucine-rich repeat kinase 2 (LRRK2) acts as a hub to bind to molecules such as Rab family proteins, Vacuolar protein sorting protein (VPS), Golgi
outposts (GOPs), Cyclin-dependent kinase 5 (CDK5), protein kinase C (PKC), synapse-associated protein 97 (SAP97), etc., affecting trans-Golgi
network (TGN) membrane transport or Golgi morphology and ultimately inducing pathological features associated with Parkinson’s disease (PD).
There are also molecules in the Golgi apparatus (GA), such as Golgin-160, Golgi matrix protein 130 (GM130), syntaxin 5, and others involved in
related transport.

Thus, CDK5 can regulate neuronal function through regulating
GRAB and membrane transport (Furusawa et al., 2017).

Protein kinase C (PKC)

Golgi-associated protein kinase C (PKC) is composed of
calcium- and phospholipid-dependent Ser/Thr protein kinases
that mediate central cell signaling pathways and cause several
neurological disorders such as PD (Rosse et al., 2010; Ohashi et al.,
2017). The GA function is regulated by PKC and oxidative stress
(Lenkavska et al., 2020). Oxidative stress has been suggested to play
a key role in PD (Wei et al., 2018).

There are nine PKC genes in mammals, which are subdivided
into three subfamilies: conventional PKC α, β, and γ, neo-PKC
δ, ε, θ, η, and atypical PKC ε and ι (Steinberg, 2008). The
Parkinsonian phenotype and disruption to dopamine signaling in
the basal ganglia are found in AS/AGU (Albino Swiss/Anatomy
Glasgow University) rats (Khojah et al., 2016). Knockout of
PKC γ in animals, exhibits PD symptoms, such as loss of
nigrostriatal dopaminergic neurons and movement disorder

(Shirafuji et al., 2018). Golgi-associated PKC ε is linked and reached
to the GA through the interaction with Golgi phosphatidylinositol
4-phosphate (PI4P) and diacylglycerol, and subsequently results in
phagocytosis. When PKC ε is blocked from Golgi attachment, the
level of PKC ε on the phagosome is reduced, then phagocytosis is
reduced (D’Amico and Lennartz, 2018).

Zach et al. (2010) showed that LRRK2 interacted with PKC
ε in mouse brain to alter neuronal structure and neuronal
function through regulating oxidative stress. Sequence analysis
identified several PKC phosphorylation sites contained in the
LRRK2 protein, such as K/RXXS∗/T∗ (Pearson and Kemp, 1991).
LRRK2 is phosphorylated by recombinant PKC ε, however, PKC ε

is not phosphorylated by LRRK2 (Figure 1). Thus, phosphorylated
LRRK2 upon interaction between LRRK2 and PKC ε results in PD
related pathological features through affecting the GA function.

Synapse-associated protein 97 (SAP97)

Synapse-associated protein 97 (SAP97), a member of the
membrane-associated guanylate kinase family, is a component of
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the stimulatory synaptic scaffold including postsynaptic density
protein 95 (PSD95), PSD93, and SAP102 (Sans et al., 2001;
Saraceno et al., 2014). It has been reported that the changes
in SAP97 occurring in the human hippocampus and striatum
are closely associated with PD (Di Maio et al., 2022). Studies
of the postmortem hippocampus of patients with early PD by
immunohistochemistry revealed a significant increase in SAP97
expression (Fourie et al., 2014). SAP97 expression was altered
in the striatum of animal models of PD (Nash et al., 2005).
In hippocampal pyramidal neurons GluR1, one of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, is
located in the endoplasmic reticulum-cis-Golgi (ER-CG) (Sans
et al., 2001). Phosphorylation of GluR1 reflects the activity of
AMPA receptor, which has been shown to be associated with
adverse reactions to dopaminergic treatment of PD (Ba et al., 2006).
SAP97 interacts with the c-terminal PDZ domain of GluR1 to
regulate its transport from the Golgi to the plasma membrane
(Leonard et al., 1998). SAP97 is the only protein known to interact
with the GluR1 PDZ-binding domain, and directly regulates the
transport export from the ER (Sans et al., 2001; Waites et al., 2009).
Saraceno et al. (2014) found that SAP97 transports A Disintegrin
and Metalloproteinase 10 (ADAM10) from the dendritic GOPs
to the synaptic membrane where ADAM10 and SAP97 formed
a complex. SAP97 binds to PKC and affects PKC dependent
cell migration (Saraceno et al., 2014). It has been shown that
PKC activation positively regulates the interaction of ADAM10
with SAP97, and induces and facilitates ADAM10 transport from
the ER to the postsynaptic membrane (Marcello et al., 2010).
The phosphorylation of ADAM10 by PKC does not affect the
ADAM10/SAP97 complex, only phosphorylation of SAP97 by PKC
affects the formation of the complex (Figure 1). Phosphorylation
of SAP97 T629 regulates the translocation of ADAM10 from
the GOPs to the postsynaptic compartment, conversely, PKC
dephosphorylation results in the accumulation of ADAM10 in the
GOPs and synaptic reduction. When ADAM10 and SAP97 are
uncoupled, ADAM10 triggered by PKC is not translocated from the
Golgi precursor to the PSD and has not the effect on the sorting of
proteins through the ER-somatic Golgi pathway (Saraceno et al.,
2014).

Golgin-160

Golgin A3, also known as Golgin-160, is involved in the
transport of vesicles within the Golgi (Fritzler et al., 1993; Figure 1).
In a yeast model experiment, overexpression of α-syn affected
vesicular transport and resulted in transport inhibition, while
Golgin-160 restored normal vesicular transport and decreased α-
syn toxicity (Outeiro and Lindquist, 2003; Cooper et al., 2006).
These studies suggest that Golgin-160 plays a role in PD through
regulating transport pathway affected by α-syn.

Golgi matrix protein 130 (GM130)

Golgi matrix protein 130 (GM130) located on the cis surface
of the GA is the first identified matrix protein to tightly

bind to the Golgi membrane to regulate the structure of the
GA and plays an important role in maintaining the binding
function of the GA (Marra et al., 2007). GM130 plays an
important role in the development of the nervous system,
however, it has not been studied well (Huang et al., 2021).
GM130 C-end is combined with Golgi reassembly stacking
protein 65 (GRASP65) and regulates GRASP65 position and
stability (Puthenveedu et al., 2006; Figure 1). GM130 N-terminal
binds to P115 and Giantin located on the vesicle membrane to
form a complex consisting of GRASP65. GM130 and Giantin
are involved in vesicle transport, such as transport of ER-
budded Coat Protein complex II (COPII) vesicles to TGN
(Alvarez et al., 1999; Marra et al., 2007; Sinka et al., 2008;
Baba et al., 2018; Figure 1). GM130 inhibition leads to the
accumulation of vesicle membranes and blocks the ER-Golgi
transport pathway (Alvarez et al., 2001). It has been claimed that
α-syn accumulates and binds abnormally to GM130 disrupting
ER-Golgi transport. Rab1a, a mediator of vesicular transport,
restores Golgi structure, improves hydrolase activity and reduces
pathological α-syn expression in neurons (Mazzulli et al.,
2016).

Syntaxin 5

Syntaxin 5, a component of the soluble N-ethylmaleimide-
sensitive factor attachment protein receptors (SNAREs) complex,
is associated with ER-Golgi and intra-Golgi transport, maintains
Golgi morphology and transport pathway. Syntaxin 5 interacts
directly with the A53T mutant of α-syn (Thayanidhi et al.,
2010). Binding of α-syn and SNARE forms a complex and
mediates membrane fusion and synaptic vesicle release (Huang
et al., 2019). Overexpression of Rab1 improves the endoplasmic
reticulum to Golgi transport pathway that is inhibited by the
toxic effect of α-syn (Cooper et al., 2006; Figure 1). α-syn
also interacts directly with proteins involved in the maintenance
of the Golgi interaction, such as SNARE (Thayanidhi et al.,
2010). Therefore, Rab1 and SNARE are linked to the Golgi
breakdown seen in PD and crucial for treating PD (Tomas et al.,
2021).

Conclusion

LRRK2 is a hub that binds to Rab family proteins, VPS,
GOP, CDK5, PKC, SAP97, and other molecules that affect
TGN membrane transport or Golgi structure. The GA damage
triggers aggregation of α-syn that inhibits Golgi-associated
transport and leads to the accumulation of toxic substances
that cause oxidative stress and cell death. Autopsy in PD
samples showed a high level of GC fragmentation, which
suggests there is a close association between the GA and
PD. LRRK2 also binds to related molecules in organelles
such as mitochondria, endoplasmic reticulum, and lysosomes.
There is an inseparable relationship between the GA and
these organelles.
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