
TYPE Opinion

PUBLISHED 31 May 2023

DOI 10.3389/fnmol.2023.1095455

OPEN ACCESS

EDITED BY

Ildikó Rácz,

University Hospital Bonn, Germany

REVIEWED BY

Ilenia Pampaloni,

South West London and St. George’s Mental

Health NHS Trust, United Kingdom

*CORRESPONDENCE

Ravi Philip Rajkumar

ravi.psych@gmail.com

RECEIVED 11 November 2022

ACCEPTED 15 May 2023

PUBLISHED 31 May 2023

CITATION

Rajkumar RP (2023) SAPAP3, SPRED2, and

obsessive-compulsive disorder: the search for

fundamental phenotypes.

Front. Mol. Neurosci. 16:1095455.

doi: 10.3389/fnmol.2023.1095455

COPYRIGHT

© 2023 Rajkumar. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

SAPAP3, SPRED2, and
obsessive-compulsive disorder:
the search for fundamental
phenotypes

Ravi Philip Rajkumar*

Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research

(JIPMER), Puducherry, India

KEYWORDS

obsessive-compulsive disorder, SAPAP3, SPRED2, animal models, endophenotypes,

sensory over-sensitivity, neurodevelopmental model

Introduction

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized

by recurrent unwanted thoughts (obsessions) and associated repetitive behaviors

(compulsions), affecting around 1.1–1.3% of the global population (Stein et al., 2016a;

Fawcett et al., 2020). Over the past two decades, researchers have identified several distinct

domains or dimensions of OCD symptomatology, with apparently distinctive neural

correlates and differential responses to specific treatments (Mataix-Cols et al., 1999,

2004, 2005; van den Heuvel et al., 2009; Kichuk et al., 2013; Williams et al., 2014). These

dimensions have also been identified at a “sub-syndromal” level in up to 13% of a large

sample of adults from six countries, and include Contamination/Cleaning, Harm/Checking,

Symmetry/Ordering, Hoarding, Sexual/Religious, Somatic and Moral obsessions and

compulsions (Fullana et al., 2010). These findings suggest that OCD is best understood not

as a unitary disorder, but as a group of related disorders.

Top-down and bottom-up models of OCD

Most contemporary models of OCD place a high degree of emphasis on the role of

higher-level processes, such as cognitive flexibility or the sense of responsibility, in the

genesis and maintenance of OCD symptoms. Such models can be considered as taking a

“top-down” perspective (Poletti et al., 2022a). However, OCD-like phenomena have been

documented in animals, such as dogs, cats and primates (Luescher et al., 1991; Overall and

Dunham, 2002; Lutz, 2014). OCD is also frequently encountered in children, where higher-

level cognitive processes are not yet fully developed (Geller, 2006). Such findings suggest a

need for a “bottom-up” perspective based on evolutionary and neurodevelopmental models.

Sigmund Freud was among the first to suggest a similarity between the rituals seen in

OCD and behaviors that maintain social stability in the face of conflicting human drives.

Though his model of OCD is no longer widely accepted, it does show some points of

correspondence with contemporary biochemical or cognitive models (Katz, 1991; Moritz

et al., 2011). More generally, it is now understood that many of the symptoms of OCD

may represent exaggerations or distortions of phylogenetically ancient adaptive behaviors or

defense mechanisms, whose purpose is to ensure individual or group wellbeing and safety

(Boyer and Lienard, 2006; Feygin et al., 2006; Stein et al., 2016b). Such an evolutionary

perspective regardingOCD entails a neurodevelopmental perspective, in which alterations in
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normal brain development could perturb basic, evolutionarily

conserved neural processing systems and predispose to the

development of OCD at specific stages of the life cycle in a “bottom-

up” manner (Leckman and Bloch, 2008; Poletti et al., 2022a).

Such mechanisms could potentially be identified in animals as well

as humans.

From SAPAP3 to SPRED2: OCD and
neurodevelopment in rodents

In this connection, it is relevant to examine two particular

rodent models of obsessive-compulsive disorder which share

certain unexpected similarities. In 2009, it was observed that

mice in whom the SAPAP3 gene had been deleted exhibited

compulsive behaviors and increased anxiety reminiscent of OCD

(Welch et al., 2007). This gene codes for a protein that is

highly expressed in the corpus striatum and involved in post-

synaptic scaffolding, and its disruption was associated with

altered glutamatergic, gamma-amino butyric-acid (GABA)-ergic

and dopaminergic transmission in the orbitofrontal cortex, corpus

striatum and nucleus accumbens. These changes were associated

not just with OCD-like behavior, but with impairments in lower-

level (sensory processing) and higher-level (reversal learning, a

measure of cognitive flexibility) processes (Wan et al., 2011;

Manning et al., 2021; Yang et al., 2021). Observation of neonatal

mice deficient in SAPAP3 has identified increases in ultrasonic

vocalizations, a marker of altered communication and social

development (Tesdahl et al., 2017).

More recently, it has been observed that mice in whom

the SPRED2 gene was knocked out exhibit OCD-like behavior

and anxiety, both of which are highly similar to those observed

in SAPAP3-deficient mice (Ullrich et al., 2018). SPRED2 codes

for a protein that is a key regulator of the Ras/ERK-MAPK

pathway, an intracellular cascade that can be activated by brain-

derived neurotrophic factor (BDNF); it has been shown to

play a key role in neurogenesis and neural development, and

possibly in synaptic vesicle transport. In SPRED2-deficient mice,

alterations in neural transmission were observed in thalamo-

amygdala circuits. Subsequently, it was found that these mice, like

those in which SAPAP3 had been deleted, also showed altered

ultrasonic vocalizations. These changes were observed in both

young and older mice, and appeared to increase with age (Hepbasli

et al., 2021). That these changes reflect a developmental anomaly is

supported by evidence that SPRED2 is involved in central nervous

system development in mice (Tuduce et al., 2010).

A relevant question in this context is whether alterations in

either SPRED2 or SAPAP3 are associated with OCD in humans.

While no studies of SPRED2 in patients with OCD have been

published to date, a cautious affirmative answer can be offered in

the case of SAPAP3. A specific four-locus haplotype of SAPAP3 has

been associated with an earlier age of onset in OCD, again pointing

to a possible effect on neurodevelopment (Boardman et al., 2011);

an allelic variant in a specific single nucleotide polymorphism

(rs6662980) of SAPAP3 has been specifically associated with the

Contamination/Washing dimension of OCD, as well as with a

poor response to serotonin reuptake inhibitors (Naaz et al., 2020);

and two single-nucleotide polymorphisms in SAPAP3 have been

associated with symptom severity in early-onset OCD (Mas et al.,

2016). In addition, a genome-wide association study has found

that variations in SAPAP1 (also known as DLGAP1), coding for

a protein related to SAPAP3 which is also involved in synaptic

connectivity, were significantly associated with clinical OCD

(Stewart et al., 2013).

Copy number variants in SAPAP1 and the related gene

SAPAP2 (DLGAP2) have also been associated with childhood OCD

(Gazzellone et al., 2016). Mice in which SAPAP1 has been knocked

out exhibit impaired scaffolding at glutamatergic synapses and

altered social behavior (Coba et al., 2018). There is also evidence

that variations in the BDNF and NTRK2 genes, which are proximal

components of the same cellular cascade as SPRED2, may exert a

protective effect against OCD; these effects may be mediated by

beneficial effects on this particular signaling pathway (Alonso et al.,

2008).

Taken together, these findings suggest that genes involved

in neurodevelopment and synaptic connectivity, when disrupted,

induce not just OCD-like behavior but alterations in brain

development, sensory processing, cognitive functioning and social

behavior in animals. At least one of these genes is also

associated with certain facets of OCD in humans. There is

evidence from animal research that alterations in these genes are

associated with functional changes involving prefrontal, striatal

and limbic brain regions. The consistency of these findings across

rodents and humans suggests that at least some of the genetic

mechanisms underlying OCD could be evolutionarily conserved.

The fundamental phenotype involved in this process may represent

lower-order deficits arising from alterations in neural development,

which could influence higher-order cognitive processes in a

“bottom-up” manner (Benzina et al., 2021; Poletti et al., 2022a,b).

These findings are also consistent with research suggesting that

deficits in lower-order sensory and affective processing may

underline the cognitive and behavioral changes seen in patients

with OCD (Cavedini et al., 2012; Martoni et al., 2015).

Neurodevelopment and OCD in
humans

The argument presented above would gain support if it were

possible to demonstrate neurodevelopmental antecedents of OCD

in humans. In this case, too, the available evidence suggests that

at least some types of OCD have developmental antecedents. The

evidence for these developmental alterations has been summarized

in recent reviews (Poletti et al., 2022a) and includes altered cortical

and white matter development in early-onset OCD (Li et al., 2021;

Park et al., 2022), functional alterations in cortico-striato-thalamic

circuits in childhood OCD (Huyser et al., 2009; Liu et al., 2016), a

higher frequency of neurological soft signs in OCD patients with

poor insight or comorbid tics (Karadag et al., 2011; Ekinci and

Ekinci, 2020), subtle alterations in facial morphology in early-onset

OCD (Wang et al., 2021), and associations between OCD and

events that could alter brain development either pre- or perinatally

(Vasconcelos et al., 2007) or in early childhood (Barzilay et al., 2019;

Wislocki et al., 2022).

Specific phenotypes have also been linked to these

developmental alterations. For example, patients with OCD
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show evidence of impaired olfaction, which is a marker of

brain dysfunction of developmental origin (Crow et al., 2020).

However, the most frequently replicated phenotype of possible

developmental origin in OCD involves alterations in sensory

processing, most specifically sensory over-sensitivity. This

phenomenon, which is characterized by increased sensitivity

and reactivity to sensory stimuli in various modalities, has been

documented both in children and adolescents (Houghton et al.,

2020) and adults (Dar et al., 2012; Isaacs et al., 2022) with OCD.

Sensory over-sensitivity has also been associated with childhood

ritualistic behavior (Dar et al., 2012). While early childhood rituals

are common and are usually “outgrown” in later childhood and

adolescence, they may persist and evolve into OCD in some cases;

in these cases, they may represent a developmental precursor

of the full syndrome of OCD (Leckman and Bloch, 2008; Evans

et al., 2011). Like clinical OCD, these childhood forerunners are

associated with alterations in functional connectivity between

limbic, sensorimotor, striatal and thalamic brain regions (Sunol

et al., 2021). These changes have been linked to alterations in genes

linked to glutamatergic neurotransmission (Sunol et al., 2022),

which is one of the key pathways disrupted in SAPAP3 or SPRED2

knock-out mice.

Genetics, neurodevelopment and
endophenotypes in OCD

An endophenotype is a heritable trait that can be measured in

an objective manner, and which is present in individuals with a

given psychiatric disorder, as well as their unaffected first-degree

relatives, at rates significantly higher than in healthy controls

or in the general population (Gottesman and Gould, 2003). It

represents an “intermediate phenotype” that is genetically linked

to the disorder in question and more amenable to study using

biological methods. A number of candidate endophenotypes have

been proposed for OCD (Vaghi, 2021). These include alterations

in specific domains of cognition (Zartaloudi et al., 2019; Bora,

2020), structural abnormalities in specific brain regions such as the

insula (Besiroglu et al., 2022), and altered patterns of functional

activity within and between specific neural circuits involved in

sensorimotor function, cognition and resting-state activity (Peng

et al., 2021). Among these, cognitive endophenotypes have been

the most frequently documented (Vaghi, 2021) and have been

observed even in pediatric OCD (Abramovitch et al., 2021). Recent

evidence suggests that the polygenic risk score, a measure of

genetic vulnerability toward OCD, is significantly correlated with

alterations in brain activity during the performance of cognitive

tasks not just in patients with OCD and their unaffected relatives,

but in healthy controls (Heinzel et al., 2021). This result suggests the

possibility of a “continuum” of genetic vulnerability to OCD that

could cause subtle deficits in higher-order cognitive functions, most

probably through alterations in brain development and functional

connectivity. Such a continuum has also been demonstrated in a

genome-wide analysis of pediatric obsessive-compulsive disorder

and traits (Burton et al., 2021). In the latter study, suggestive

associations were identified for the genes GRID2 and PTPRD,

which may be functionally linked to SAPAP3 (Pauls et al., 2014).

As of now, there is no direct evidence linking this putative genetic

continuum to abnormalities of sensory processing. However, a

recent study of over 1,400 adolescents and adults, examining the

entire spectrum of obsessive-compulsive phenomena, reported that

sensory over-responsiveness was associated with this spectrum in

a transdiagnostic manner (Moreno-Amador et al., 2023). Though

requiring replication, this result suggests that the possibility

of a genetically influenced neurodevelopmental vulnerability to

symptoms across the OC spectrum may be linked to sensory

over-sensitivity. This implies that the latter may be a useful

endophenotype for OCD.

Integrating bottom-up and top-down
approaches in the study of clinical
OCD

A tentative integration of the findings described above

is presented in Figure 1, with the left-hand side of the figure

indicating “normal” development and the right-hand side

indicating the processes implicated in the pathogenesis of OCD.

In this model, genetic factors (particularly those involved in

neural development and synaptic scaffolding) interact with pre,

peri- and post-natal exposures to cause structural and functional

alterations in brain circuits involved in “lower-level” processes that

are operational from early childhood, such as sensory processing

and early social behavior (de Oliveira et al., 2021; Schiele et al.,

2022). The available evidence suggests that neurotransmitters

such as glutamate (Karthik et al., 2020; Auerbach et al., 2021)

and oxytocin (Crucianelli et al., 2019; Bey et al., 2022) may be

particularly involved in these processes as well as in OCD.

During the course of cognitive development in early life,

alterations in these processes affects “higher-order” cognitive

processes such as flexibility and decision-making capacities

(Abramovitch et al., 2021). In children with no or minimal

alterations to these circuits and processes, the result is transient

childhood rituals and the subsequent development of appropriate

rule- or ritual-based social and risk-avoidance behavior in later

life. In those with more marked alterations in these processes,

a transition to clinical OCD occurs (Poletti et al., 2022b). This

may be more likely to happen at “critical” stages of the life

cycle, or at any other period characterized by increased stress

and a higher cognitive, affective or sensory load (Sousa-Lima

et al., 2019; Imthon et al., 2020; Raposo-Lima and Morgado,

2020). Such periods include the transition from early to later

childhood (Geller et al., 2001), the transition from adolescence

to adulthood (Horwath and Weissman, 2000; Solmi et al., 2022),

and pregnancy or childbirth in women (Starcevic et al., 2020).

In other cases, infections or immune-inflammatory alterations

may act as triggering factors (Gerentes et al., 2019). Finally, in

those with intermediate alterations and/or lower levels of stress,

subsyndromal OCD symptoms may occur and persist for a variable

period (Fullana et al., 2009; Ramakrishnan et al., 2022).

Conclusions

The model outlined above represents a tentative yet

coherent approach to understanding the mechanisms
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FIGURE 1

The relationship between genes involved in brain development and synaptic connectivity, “lower-” and “higher-order” information processing, and

the development of obsessive-compulsive symptoms.

through which evolutionarily conserved cellular and

neurobiological processes could contribute to the development

of OCD in humans. Much remains to be learned about

the specific association of each process with OCD,

their relationship to the different dimensions of OCD,

and the opportunities they offer for early intervention,

improved treatment, and the identification of specific

endophenotypes such as sensory over-sensitivity (Fontenelle

et al., 2022). While many of the conclusions presented

here require verification, they could potentially deepen our

understanding of OCD and its evolutionary and developmental

roots.
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