Check for updates

OPEN ACCESS

EDITED BY Margaret S. Saha, College of William & Mary, United States

REVIEWED BY

Camino Gestal, Spanish National Research Council (CSIC), Spain Masa-aki Yoshida, Shimane University, Jaoan

*CORRESPONDENCE Pamela Imperadore imperadore.p@gmail.com; pamela.imperadore@szn.it

[†]These authors have contributed equally to this work

SPECIALTY SECTION This article was submitted to Methods and Model Organisms, a section of the journal Frontiers in Molecular Neuroscience

RECEIVED 06 November 2022 ACCEPTED 20 February 2023 PUBLISHED 17 May 2023

CITATION

Imperadore P, Cagnin S, Allegretti V, Millino C, Raffini F, Fiorito G and Ponte G (2023) Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk *Octopus vulgaris. Front. Mol. Neurosci.* 16:1091305. doi: 10.3389/fnmol.2023.1091305

COPYRIGHT

© 2023 Imperadore, Cagnin, Allegretti, Millino, Raffini, Fiorito and Ponte. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Transcriptome-wide selection and validation of a solid set of reference genes for gene expression studies in the cephalopod mollusk Octopus vulgaris

Pamela Imperadore¹*[†], Stefano Cagnin^{2,3†}, Vittoria Allegretti¹, Caterina Millino², Francesca Raffini¹, Graziano Fiorito¹ and Giovanna Ponte¹

¹Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy, ²Department of Biology, University of Padova, Padova, Italy, ³CIR-Myo Myology Center, University of Padova, Padova, Italy

Octopus vulgaris is a cephalopod mollusk and an active marine predator that has been at the center of a number of studies focused on the understanding of neural and biological plasticity. Studies on the machinery involved in e.g., learning and memory, regeneration, and neuromodulation are required to shed light on the conserved and/or unique mechanisms that these animals have evolved. Analysis of gene expression is one of the most essential means to expand our understanding of biological machinery, and the selection of an appropriate set of reference genes is the prerequisite for the quantitative real-time polymerase chain reaction (gRT-PCR). Here we selected 77 candidate reference genes (RGs) from a pool of stable and relatively high-expressed transcripts identified from the fulllength transcriptome of O. vulgaris, and we evaluated their expression stabilities in different tissues through geNorm, NormFinder, Bestkeeper, Delta-CT method, and RefFinder. Although various algorithms provided different assemblages of the most stable reference genes for the different kinds of tissues tested here, a comprehensive ranking revealed RGs specific to the nervous system (Ov-RNF7 and Ov-RIOK2) and Ov-EIF2A and Ov-CUL1 across all considered tissues. Furthermore, we validated RGs by assessing the expression profiles of nine target genes (Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2, and Ov-Snx20) in different areas of the octopus nervous system (gastric ganglion, as control). Our study allowed us to identify the most extensive set of stable reference genes currently available for the nervous system and appendages of adult O. vulgaris.

KEYWORDS

Octopus vulgaris, reference genes, qRT-PCR, cephalopods, nervous system, molecular fingerprint

Introduction

Cephalopods and particularly the common octopus, *Octopus vulgaris*, are among the key invertebrate organisms recognized for their complex neural organization. The common octopus is an iconic species among cephalopods, at the center of a long tradition of research in diverse aspects of its biology and physiology (e.g., O'Brien et al., 2019).

The taxon belongs to Lophotrochozoa (i.e., a protostome animal), and thus it is very distant from vertebrates. Nevertheless, octopuses are known for possessing the largest nervous system among invertebrates in terms of the number of cells and body-to-brain size (Young, 1963; Packard and Albergoni, 1970; Giuditta et al., 1971; Packard, 1972), as well as their intricate neural network and manifold cellular complexity (Young, 1932; Shigeno and Ragsdale, 2015; Chung et al., 2022; Styfhals et al., 2022; Chung et al., 2023), with remarkable functional analogies to vertebrates (Shigeno et al., 2015, 2018). Octopus vulgaris has also served as an organism of study for the identification of the neural correlates of learning and memory and the search for a model of the brain (Young, 1964; Kandel, 1979; review in: Hochner et al., 2006; Borrelli and Fiorito, 2008; Marini et al., 2017). Nowadays, these mollusks continue to inspire the search for the biological and neural machinery underlying plasticity and cognition (Edelman and Seth, 2009; Albertin and Simakov, 2020; Ponte et al., 2022).

Over the last decade, a significant increase in the efforts of the scientific community has facilitated the release of a large set of genomic data (see Supplementary Info) for various cephalopod species, including the transcriptomes of *O. vulgaris* (Zhang et al., 2012; Petrosino, 2015; Petrosino et al., 2015; Liscovitch-Brauer et al., 2017; Petrosino et al., 2022; Prado-Álvarez et al., 2022; Styfhals et al., 2022) and reference genomes for more than 10 species (Supplementary Table 1). Although these resources still do not comprehensively represent the rich biological diversity of the approximately 800 living cephalopod species, their availability has greatly contributed to illuminating the biological and physiological complexity of these organisms and the 'innovations' they provided during their evolution (Albertin and Simakov, 2020; Albertin et al., 2022; Macchi et al., 2022; Schmidbaur et al., 2022).

These datasets, however, are not sufficient for the understanding of the molecular machinery implicated in neural plasticity (*sensu*: Cavallaro et al., 2002; Martinez et al., 2007; Asok et al., 2019). In addition, the current knowledge of the gene expression changes occurring in these animals during learning, memory, and behavioral plasticity is still poor. Only a few available studies are focused on some candidate molecules that are potentially involved in given functions. Thus, to the best of our knowledge, an investigation of the differential gene expression occurring in the brain of any cephalopod is still lacking. Here we contribute with a first step to fulfil this gap.

The accurate analysis of gene expression relies on the quantitative real-time polymerase chain reaction (qRT-PCR), one of the most utilized tools for assessing gene levels in different samples in experimental or biological conditions (Bustin, 2002; Huggett et al., 2005; Nolan et al., 2006). The technique offers numerous advantages (Bustin, 2002; Bustin et al., 2005). Nevertheless, its reliability and accuracy are based on the choice of reference genes (RGs) required for normalizing the expression levels of a given target gene. An ideal RG should have a moderate and stable expression level in different tissues,

across biological phenomena, and under different experimental treatments (Huggett et al., 2005; Udvardi et al., 2008).

Most of the commonly used RGs for data normalization are the so-called housekeeping genes (e.g., elongation factor 1 α , α -tubulin and β -tubulin, β -actin, and ubiquitin). Although widely employed in several species, in some instances they might lack the required stability when tested in different organisms and/or experimental contexts. In some circumstances, they may not match the requirements of an ideal candidate RG (Rubie et al., 2005; Hong et al., 2008; Eisenberg and Levanon, 2013).

In cephalopods, previous studies identified several candidate RGs (Supplementary Table 2) in a number of tissues (mainly brain masses), but to the best of our knowledge, they never encompassed testing of the peripheral ganglia or arms.

Our approach to build a list of potential stable reference genes in octopus was based on: (i) increasing the number of tissues to consider and (ii) exploring the available transcriptomes for *O. vulgaris* (Zhang et al., 2012; Petrosino, 2015; Petrosino et al., 2015, 2022). We selected genes that appeared stable and uniform in different tissues through *in silico* characterization of transcriptomes. Finally, we explored relative gene expression through qRT-PCR experiments by using a subset of target genes of the known expression *in silico*, thus validating our data and the use of the selected RGs in the brain and other ganglia. This approach allowed us to identify the most extensive set of stable reference genes currently available for adult *O. vulgaris* in the central and peripheral nervous system and in complex structures such as arms.

Materials and methods

In silico selection of candidate reference genes

Potential RGs were identified through *in silico* analysis of the RNA-seq available for *O. vulgaris* (for details, including assembly methods, see: Petrosino, 2015; Petrosino et al., 2015, 2022). The data included whole transcriptomes from nine tissues: the lobes of the adult octopus' central nervous system (optic lobes, OL; supra-, SEM, and sub-oesophageal masses, SUB); the first anterior right arm (R1) with its distal extremity (Tip_R1), a proximal portion (ARM_R1), and muscle tissue (MUSC_R1; i.e., only muscle bundles, not the skin and arm nerve cord); the fourth posterior right arm (R4) with its proximal portion (ARM_R4); and two peripheral ganglia i.e. the left stellate and gastric ganglia (StG and GG, respectively; Figure 1).

As aforementioned, our rationale was to extend the biological diversity of the considered tissues. In addition, the anterior versus posterior arms were included on the basis of the scientific evidence of the potential variety of behavioral functions these may achieve (e.g., Mather, 1998; Huffard et al., 2005; Amodio et al., 2021).

Details on RNA isolation, quality and quantity assessment, and libraries construction are available in Petrosino (2015) and Petrosino et al. (2022) and not provided herein. Raw reads were analyzed by Trimmomatic (Bolger et al., 2014), which served for the filtering and trimming of low-quality bases. Normalization was performed, and the remaining reads were assembled in putative clustered transcripts to select unique sequences using Trinity (Grabherr et al., 2011). The raw reads were then mapped to the assembled transcriptome to measure

rectangles and lines identify tissues included both in RNA-seq analysis and RT-qPCR experiments: supracesophageal mass (SEM), subcesophageal mass (SUB) and left optic lobe (OL), gastric ganglion (GG), stellate ganglion (StG), R1 arm tip (Tip_R1), a piece of R1 and R4 arms (ARM_R1 and ARM_R4), and a piece of muscle from arm R1 (MUSC_R1). Green circles identify tissues only included in RT-qPCR experiments, i.e., a posterior portion of the left gill (GILL), a piece of muscles from the ventral side of the mantle without the skin (MANT), and R4 arm tip (Tip_R4).

the expression levels. Only annotated transcripts with a relative abundance greater than 1.5 counts per million (TPM) in all the biological replicates were considered. The annotation of these transcripts was finalized using the Annocript pipeline (Musacchia et al., 2015; Petrosino, 2015), thus counting 21,030 protein-coding sequences.

In order to identify the candidate RGs, we selected sequences based on their coefficient of variation (CV) of the relative abundance (TPM) of each transcript, i.e., the ratio of the standard deviation to the group mean of each transcript identified for four groups of tissues, as follows: (i) all the available tissues from adult individuals of *O. vulgaris* (**Adult**); (ii) the brain masses (**Brain**: SEM, SUB, and OL); (iii) The nervous tissues (**Nervous**: including tissues already listed in **Brain** group, plus StG and GG); (iv) tissues belonging to the arm (**Arm**: Tip_R1, ARM_R1, ARM R4, and MUSCLE_R1).

Genes were considered stable when their transcript's CV was lower than 15%. For the **Adult** group, a cut-off of 20% CV was used to account for the higher tissue variability. Some genes were included in more than one group according to their CV values (Table 1 and Supplementary Figure 1).

Eight RGs from previous studies on cephalopods (Sirakov et al., 2009; García-Fernández et al., 2016; Baldascino et al., 2017; Imperadore, 2017; Xu and Zheng, 2018; Whang et al., 2020; see also Table 1 and Supplementary Table 2) were also included for subsequent validation analyses.

Sample collection and processing for RT-qPCR

To test the selected candidate RGs, tissues were harvested from five adult specimens of *O. vulgaris* (Supplementary Table 3) that did not show any signs of lesions, aberrant formations, or regenerating parts. From each octopus, 12 tissues were collected: SEM; SUB; OL; GG; StG; a portion of muscle from the ventral side of the mantle (MANT); arm tips from the anterior (Tip_R1) and posterior arms (Tip_R4); ARM_R1 and ARM_R4; MUSC_R1; and the left gill (GILL), considered here as a reference tissue for an internal organ differing from the muscles and nervous structures (Figure 1). The tissues were processed for RNA extraction; RNA integrity was tested using Agilent Bioanalyzer 2100 (see Supplementary Figure 2) and cDNA synthesis; cDNA samples were stored at -20° C until use (see Supplementary Info for specimens handling, sample harvesting, tissue processing, and RNA and cDNA processing and synthesis).

Primer design and amplification efficiency analysis for qRT-PCR

Primer3 Plus software (Untergasser et al., 2012) was used to design specific primers (Supplementary Table 4) to amplify the

TABLE 1 Genes identified in whole transcriptomes and validated in RT-qPCR experiments.

Transcript ID	Group	Gene name	Description	Accession number	CV%
c35016_g13_i1	Nervous system	Ov-Gsk3b	Glycogen synthase kinase-3 beta	MW800694	3.89
c34071_g2_i1	Nervous system	Ov-mts	Serine/threonine protein phosphatase PP2A	MW800693	4.27
c30725_g11_i1	Nervous System	Ov-timm	Mitochondrial import inner membrane translocase subunit Tim22	MW800652	4.40
c36083_g5_i1	Nervous System	Ov-SUCLG2	SuccinateCoA ligase [GDP-forming] subunit beta, mitochondrial	MW800659	4.52
c33604_g6_i1	Nervous System	Ov-CHCHD7	Coiled-coil-helix-coiled-coil-helix domain-containing protein 7	MW800655	4.63
c32222_g5_i1	Nervous system	Ov-UBE2F	NEDD8-conjugating enzyme UBE2F	MW800681	5.16
c34932_g8_i1	Nervous system	Ov-MTX1	Metaxin-1	MW800712	5.19
c31554_g1_i3	Nervous System	Ov-gk5	Putative glycerol kinase 5	MW800648	5.74
c35771_g14_i2	Nervous system	Ov-Gnaq	Guanine nucleotide-binding protein G(q) subunit alpha	MW800695	5.92
c35786_g9_i1	Nervous System	Ov-Naa15	N-alpha-acetyltransferase 15 NatA auxiliary subunit	MW800658	6.35
c30400_g11_i1	Nervous System	Ov-wdr44	WD repeat-containing protein 44	MW800651	6.97
c17784_g1_i1	Nervous System	Ov-Klhdc	Kelch domain-containing protein 4	MW800649	6.98
c35707_g2_i1	Nervous System	Ov-PRMT5	Protein arginine N-methyltransferase 5	MW800660	7.15
c32096_g14_i2	Nervous System	Ov-Canx	Calnexin	MW800654	7.33
c35499_g5_i1	Nervous System	Ov-ube2c	Ubiquitin-conjugating enzyme E2 C	MW800657	7.79
c33913_g6_i1	Nervous System	Ov-PTPN12	Tyrosine-protein phosphatase non-receptor type 12	MW800656	9.22
c31227_g1_i2	Nervous System	Ov-tollip	Toll-interacting protein	MW800653	9.24
c31322_g1_i1	Nervous System	Ov-prrc1	Protein PRRC1-A	MW800647	9.63
c28856_g1_i2	Nervous System	Ov-CUL1	Cullin-1	MW800650	9.91
c32222_g5_i1	ADULT	Ov-UBE2F	NEDD8-conjugating enzyme UBE2F	MW800681	8.81
c35707_g2_i1	ADULT	Ov-PRMT5	Protein arginine N-methyltransferase 5	MW800660	10.25
c25466_g1_i1	ADULT	Ov-Ltv1	Protein LTV1 homolog	MW800662	11.27
c35311_g1_i1	ADULT	Ov-CPIJ005834	Elongation factor G mitochondrial	MW800676	12.23
c35010_g2_i4	ADULT	Ov-EIF2A	Eukaryotic translation initiation factor 2A	MW800674	12.66
c29044_g1_i1	ADULT	Ov-rpf1	Ribosome production factor 1	MW800663	12.73
c31610_g1_i1	ADULT	Ov-slc25a40	Solute carrier family 25 member 40	MW800667	12.79
c33222_g7_i1	ADULT	Ov-RIOK2	Serine/threonine protein kinase RIO2	MW800670	12.85
c32170_g13_i2	ADULT	Ov-Dap3	28S ribosomal protein S29, mitochondrial	MW800668	12.87
c34313_g4_i1	ADULT	Ov-Ppm1b	Protein phosphatase 1B	MW800677	14.23
c34059_g14_i1	ADULT	Ov-ATPAF2	ATP synthase mitochondrial F1 complex assembly factor 2	MW800671	14.36
c30066_g9_i1	ADULT	Ov-NOB1	RNA-binding protein NOB1	MW800666	14.38
c32751_g1_i1	ADULT	Ov-flr	Actin-interacting protein 1	MW800669	15.29
c34776_g5_i1	ADULT	Ov-usp10	Ubiquitin carboxyl-terminal hydrolase 10	MW800673	15.39
c35032_g7_i2	ADULT	Ov-Dnaja3	DnaJ homolog subfamily A member 3, mitochondrial	MW800675	15.61
c34087_g16_i1	ADULT	Ov-CSDE1	Cold shock domain-containing protein E1	MW800672	15.63
c29524_g1_i1	ADULT	Ov-EIF3M	Eukaryotic translation initiation factor 3 subunit M	MW800665	15.71
c36175_g1_i1	ADULT	Ov-BTBD17	BTB/POZ domain-containing protein 17	MW800661	15.76
c29430_g1_i1	ADULT	Ov-CG9286	Protein BCCIP homolog	MW800664	16.21
c34939_g11_i1	ARM	Ov-ESR16	Ecdysteroid-regulated 16 kDa protein	MW800722	3.38
c35194_g4_i2	ARM	Ov-C2CD2	C2 domain containing protein 2 ×2	MW800723	3.69
c32350_g3_i1	ARM	Ov-nAChRalpha1	Acetylcholine receptor subunit alpha-like 1	MW800709	3.71

(Continued)

TABLE 1 (Continued)

Transcript ID	Group	Gene name	Description	Accession number	CV%
c29941_g6_i1	ARM	Ov-14-3-3zeta	14–3-3 protein zeta	MW800678	4.27
c36050_g13_i1	ARM	Ov-Sdhd	Succinate dehydrogenase ubiquinone cytochrome b	MW800689	5.11
			small subunit, mitochondrial		
c34295_g8_i1	ARM	Ov-Vbp1	Prefoldin subunit 3	MW800685	5.33
c34563_g2_i1	ARM	Ov-PCK1	Phosphoenolpyruvate carboxykinase cytosolic GTP	MW800686	5.51
c35194_g4_i1	ARM	Ov-C2CD2	C2 domain containing protein 2 ×1	MW800687	5.53
c35789_g7_i1	ARM	Ov-MRM2	rRNA methyltransferase 2, mitochondrial	MW800688	6.77
c32876_g12_i1	ARM	Ov-RNF7	RING-box protein 2	MW800710	6.90
c30691_g3_i1	ARM	Ov-RSU1	Ras suppressor protein 1	MW800679	7.13
c31105_g4_i1	ARM	Ov-BTBD2	BTB/POZ domain-containing protein 2	MW800680	7.22
c26803_g1_i1	ARM	Ov-RAD23B	UV excision repair protein RAD23 homolog B	MW800690	7.25
c28934_g1_i1	ARM	Ov-UGP2	UTPglucose-1-phosphate uridylyltransferase	MW800692	7.39
c28702_g2_i1	ARM	Ov-Abhd18	Protein ABHD18	MW800691	8.08
c33117_g3_i1	ARM	Ov-Rnd3	Rho-related GTP-binding protein RhoE	MW800683	8.09
c32876_g7_i5	ARM	Ov-KCMF1	E3 ubiquitin-protein ligase KCMF1	MW800682	9.26
c33305_g9_i1	ARM	Ov-Abi2	Abl interactor 2	MW800684	10.22
c32222_g5_i1	ARM	Ov-UBE2F	NEDD8-conjugating enzyme UBE2F	MW800681	11.77
c34071_g2_i1	BRAIN	Ov-mts	Serine/threonine protein phosphatase PP2A	MW800693	0.43
c28771_g3_i1	BRAIN	Ov-AP5Z1	AP-5 complex subunit zeta-1	MW800696	0.99
c34716_g8_i1	BRAIN	Ov-USP15	Ubiquitin carboxyl-terminal hydrolase 15	MW800700	1.29
c35771_g14_i2	BRAIN	Ov-Gnaq	Guanine nucleotide-binding protein G(q) subunit alpha	MW800695	1.60
c35361_g5_i1	BRAIN	Ov-Fam160a2	FTS and hook-interacting protein-like	MW800703	1.93
c34932_g8_i1	BRAIN	Ov-MTX1	Metaxin-1	MW800712	2.14
c34844_g11_i1	BRAIN	Ov-WBP2	WW domain-binding protein 2	MW800701	2.39
c30165_g11_i1	BRAIN	Ov-wls	Protein wntless	MW800721	3.05
c31295_g14_i1	BRAIN	Ov-AP1M1	AP-1 complex subunit mu-1	MW800711	3.05
c35016_g13_i1	BRAIN	Ov-Gsk3b	Glycogen synthase kinase-3 beta	MW800694	3.19
c35896_g5_i1	BRAIN	Ov-Snx25	Sorting nexin-25	MW800705	3.36
c35327_g8_i2	BRAIN	Ov-FBXO38	F-box only protein 38	MW800708	3.53
c35373_g3_i2	BRAIN	Ov-Snx20	Sorting nexin-20	MW800704	3.65
c30947_g6_i1	BRAIN	Ov-syvn1	E3 ubiquitin-protein ligase synoviolin	MW800698	3.85
c32955_g4_i1	BRAIN	Ov-Homer2	Homer protein homolog 2	MW800699	4.14
c35037_g6_i2	BRAIN	Ov-PIP4K2B	Phosphatidylinositol 5-phosphate 4-kinase type-2 beta	MW800702	4.94
c34087_g16_i1	BRAIN	Ov-CSDE1	Cold shock domain-containing protein E1	MW800672	5.09
c36137_g10_i4	BRAIN	Ov-AGL	Glycogen debranching enzyme	MW800706	5.44
c29565_g1_i1	BRAIN	Ov-CERK	Ceramide kinase	MW800697	5.52
c34695_g13_i5	BRAIN	Ov-CNBP	Cellular nucleic acid-binding protein	MW800707	5.96
from previously publis	hed studies	I	·		
c26807_g1_i1	Previously published	Ov-eef1a	Elongation factor 1-alpha (Xu and Zheng, 2018)	MW800714	16.81
c2281_g1_i1	Previously published	Ov-Rpl6	60S ribosomal protein L6 (Xu and Zheng, 2018)	MW800718	24.75
c5816_g1_i1	Previously published	Ov-Rps27a	Ubiquitin-40S ribosomal protein S27a (Sirakov et al., 2009)	MW800713	30.40
c29373_g3_i1	Previously published	Ov-RPS18	40S ribosomal protein S18 (Imperadore, 2017)	MW800720	33.43

(Continued)

TABLE 1 (Continued)

Transcript ID	Group	Gene name	Description	Accession number	CV%
c12855_g1_i1	Previously published	Ov-TUBG1	Tubulin gamma-1 chain (Xu and Zheng, 2018)	MW800715	36.73
c34110_g1_i1	Previously published	Ov-MRPS5	28S ribosomal protein S5, mitochondrial (Xu and Zheng, 2018)	MW800716	38.56
c30772_g3_i11	Previously published	Ov-RpL23	60S ribosomal protein L23 (Imperadore, 2017)	MW800719	42.20
c36025_g3_i2	Previously published	Ov-Tuba1a	Tubulin alpha-1A chain (Sirakov et al., 2009)	MW800717	80.40

List and details of the candidate reference genes for *Octopus vulgaris* identified and validated in this study (see the main text for details). Highlighted transcripts are those that have been identified as stable in different tissue groups. CV, Coefficient of Variation.

candidate genes. The following parameters were utilized: optimal melting temperature at 60°C, amplicon size 100–200 bp, and primer size between 18 and 27 bp (optimum set at 20 bp). Template RNA sequences were retrieved from previously mentioned RNA-seq studies. To obtain the most efficient primer couples, hairpin, homodimer, and heterodimer structures were evaluated for each primer couple using the Multiple Primer Analyzer¹ (modified after Breslauer et al., 1986). In addition, 12 primer couples from eight genes were selected from the literature and slightly modified, when needed, to match with *O. vulgaris* sequences, or they were designed *ex novo* based on published ones (Supplementary Table 4).

RT-qPCR was performed on four-fold cDNA dilutions (from 10 ng/µL to 0.15625 ng/µL; see Supplementary Info) to calculate the primers' efficiency, using the formula $E = \left[\left(10^{-1} / m \right) - 1 \right] \times 100$ where m is the slope of the linear interpolation of dots representing Ct in the function of \log_{10} [cDNA concentration].

To estimate the gene expression in each tissue, the primers were tested for RT-qPCR on individual samples in technical triplicates by using $2 \mu l$ cDNA [1.25 ng/ μl] (see Supplementary Info for details).

Expression stability

The 12 tissues included in this study are highly diverse in structure, function, and gene expression profile. Thus, to account for this variability (with highest variability showed by the arm tips), we considered three groups for the expression stability analyses: **Nervous** (SEM, SUB, OL, GG, and StG); all tissues excluding the arm tips (**Allex:** Nervous, plus GILL, MANT, ARM_R1, ARM_R4, and MUSC_R1); and **Adult** (all the tissues including the arm tips; see also above and Figure 1).

The expression stability of each candidate gene across all samples within each tissue group was investigated using the mean Ct values and four different algorithms: *geNorm* (Vandesompele et al., 2002), *NormFinder* (Mestdagh et al., 2009), *BestKeeper*

(Pfaffl et al., 2004), and the Delta-CT method $(2^{-\Delta\Delta CT})$ (Livak and Schmittgen, 2001). *geNorm* estimates the average pairwise variation in a specific gene with all the other potential reference genes. *NormFinder* computes the stability value for each gene according to their minimum variance. Both the *geNorm* and *NormFinder* values are lower for more stable genes (Amable et al., 2013). *BestKeeper* relies on the concept that the more stable the gene expression, the lower the Ct variation if the cDNA quantity is constant (Amable et al., 2013). Finally, the Delta Ct algorithm (Livak and Schmittgen, 2001) takes into account the expression of each gene in all samples and its standard deviation (SD); the gene with the lowest SD is considered the most appropriate reference gene (Silver et al., 2006).

The results from these approaches were integrated in *RefFinder* (Xie et al., 2012) to obtain an overall rank of expression stability for each of the three tissue groups. The method ranks each gene in each group and calculates the geometric mean of ranks for each gene. More stable genes show smaller geometric means, as they are ranked higher by all the methods.

Validation of reference genes

To validate the reliability of the data normalization, the combination of the two most stable candidate RGs, and of the most stable and unstable reference genes for the **Nervous** group were used to analyze the expression levels of the target genes. When two RGs were utilized for normalization, we relied on their geometric mean. The relative quantification of nine target genes was calculated for the **Nervous** group following Pfaffl's (2001) method, which takes into account the primer efficiencies of both targets and RGs.

Data analysis

Following Zar (1999), statistical significance was assessed after an ANOVA test, followed by Bonferroni multiple comparison tests. For all analyses, we used SPSS (rel. 18.0, SPSS Inc. - Chicago, 2009), with the exceptions mentioned above. All tests were two-tailed, and the alpha was set at 0.05.

¹ https://www.thermofisher.com/it/en/home/brands/thermo-scientific/ molecular-biology/molecular-biology-learning-center/molecular-biologyresource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html

Results

In silico identification of candidate reference genes

Candidate RGs were identified from the transcriptome of *O. vulgaris* (Petrosino, 2015; Petrosino et al., 2022). Genes with a relatively stable expression *in silico* in four tissue groups (Adult, Brain, Nervous, and Arm) were selected according to the relative abundance of each transcript (TPM counts) and their coefficient of variation (CV). Using a CV cut-off of 20%, 32 transcripts (out a total of 64,477 unique transcripts) were selected for Adult. The CV cut-off was decreased to 15% to identify the most stable transcripts in the Brain (1,540 transcripts), Nervous system (357), and Arm (125). A total of 2,145 transcripts was identified. Because the annotation results were not further curated in the original studies (Musacchia et al., 2015; Petrosino, 2015; Petrosino et al., 2015, 2022), we excluded non-annotated transcripts, thus identifying 88 potential RGs for the four tissue groups (Table 1). Seven of them resulted shared among more than one group (highlighted in Table 1).

We observed the highest variability in CVs among samples belonging to the Adult group (19 genes; mean CV = 13.6%; CV range: 8.8-16.2%; Table 1). In this set, 12 genes showed CV values lower than 15% (i.e., Ov-UBE2F, Ov-PRMT5, Ov-LTV1, Ov-CPIJ005834, Ov-EIF2A, Ov-rpf1, Ov-slc25a40, Ov-RIOK2, Ov-Dap3, Ov-Ppm1b, Ov-ATPAF2, and Ov-NOB1; Table 1). Lower CV values were observed when the Brain group was considered (20 genes; mean CV = 3.28%; CV range: 0.4-6.0%; Table 1), with seven genes exhibiting CV values below 3% (i.e., Ov-mts, Ov-AP5Z1, Ov-USP15, Ov-Gnaq, Ov-Fam160a2, Ov-MTX1, and Ov-WBP2; Table 1). Nineteen candidate RGs were identified for the Nervous group (mean CV = 6.5%; CV range: 3.9–9.9%; Table 1), with average CVs higher than those observed for the Brain group. In this case, 12 genes had CV values lower than 7% (i.e., Ov-Gsk3b, Ov-mts, Ov-timm, Ov-SUCLG2, Ov-CHCHD7, Ov-UBE2F, Ov-MTX1, Ov-gk5, Ov-Gnaq, Ov-Naa15, Ov-wdr44, and Ov-Klhdc). For the Arm group (19 genes; mean CV=6.7%; CV range: 3.4-11.8%), we observed similar CVs to the Nervous group, with 9 genes (10 transcripts) having CVs lower than 7% (i.e., Ov-ESR16, Ov-C2CD2, Ov-nAChRalpha1, Ov-14-3-3zeta, Ov-Sdhd, Ov-Vbp1, Ov-PCK1, Ov-MRM2, and Ov-RNF7; Table 1).

A total of 69 candidate RGs were selected for biological validation. In addition, we considered eight RGs used in previous studies (Sirakov et al., 2009; Imperadore, 2017; Xu and Zheng, 2018), raising the final number of genes to be tested through qRT-PCR experiments to 77 (Table 1).

Candidate reference genes and their expression profiles

Eighty-one primer couples for the selected putative RGs were designed and tested for specificity and efficiency through standard PCR and qRT-PCR reactions (Supplementary Info), using the total mRNA extracted from 12 tissues (Figure 1) belonging to five *O. vulgaris* specimens. Three primer couples (i.e., *Ov-wls, Ov-ESR16*, and *Ov-C2CD2* isoform X2) exhibited no or multiple amplification products when tested for standard PCR and were excluded from

subsequent analyses. All other primer couples resulted in a single amplification product at the expected amplicon size (Supplementary Figure 3) and were therefore tested for RT-qPCR. The primer sequences, amplicon size, product Tm, and amplification efficiencies are shown in Supplementary Table 4.

A total of 59 primer pairs showed amplification efficiencies between 98 and 102%, while 19 did not fall within this range and were excluded from further analyses (Supplementary Table 4).

The expression levels of the final list of candidate RGs (n = 59) were estimated in each tissue sample (technical triplicates) through qRT-PCR. The reference genes displayed a wide range of transcription levels, with average Ct values ranging from 18.17 to 37.27 (Supplementary Table 5). *Ov-Tuba1a* showed the lowest mean Ct (21.63), i.e., the highest abundance in tissues. High expression levels were also noted for *Ov-Rpl6*, *Ov-tollip*, and *Ov-RPS18* (mean Ct = 24.15, 24.40, and 24.79, respectively). In an opposite trend, *Ov-NOB1* and *Ov-TUBG1-FR* presented a relatively low expression level (mean Ct = 31.31 in both cases; Supplementary Table 5).

Analysis of expression stability of the candidate reference genes

For the expression stability analyses, three tissue groups of increasing biological variability were considered (Nervous, ALLex, and Adult).

Our results suggested that the most suitable reference genes differed among the approaches used for the identification of RGs (see Methods), as well as among the groups considered, likely owing to their substantial tissue diversity (Table 2).

geNorm analysis. Ov-CHCHD7 and *Ov-RNF7* were identified as the two most correlated genes and therefore scored as the most stable RGs for the **Nervous** tissues (Table 2), followed by *Ov-RIOK2*, *Ov-UBE2F*, *Ov-slc25a40*, *Ov-BTBD17*, *Ov-Naa15*, *Ov-Ppm1b*, *Ov-CUL1*, *Ov-Snx25*, and *Ov-Dnaja3* (Table 2). Interestingly, the genes *Ov-RpL23*, *Ov-Rpl6*, *Ov-TuBg1-F1R1*, and *Ov-Rps27a-FR*, recently utilized as RGs in RT-qPCR experiments in cephalopods (Supplementary Table 2), were demonstrated to be among the most unstable genes (Table 2).

When additional tissues were considered (Allex), Ov-CUL1 and Ov-Naa15 were identified as the two most correlated genes, followed by Ov-RIOK2, Ov-slc25a40, Ov-usp10, Ov-KCMF1, Ov-Ppm1b, Ov-EIF2A, Ov-EIF3M, Ov-CHCHD7, and Ov-syvn1. The least stable genes included Ov-Rpl6, Ov-Rps27a-FR, Ov-TUBG1-F1R1, and Ov-TUBG1-FR (Table 2). In the analysis of all the tissues (Adult), Ov-Vbp1, Ov-EIF2A, Ov-RAD23B, Ov-syvn1, Ov-CUL1, Ov-Ppm1b, Ov-CHCHD7, Ov-RIOK2, Ov-UBE2F, and Ov-RNF7 emerged as the most stable genes. Similarly to Nervous and Allex, Ov-TUBG1-F1R1, Ov-TUBG1-FR, Ov-RpL23, Ov-Rpl6, Ov-Rps27a-FR, and Ov-Tuba1a were the least stable genes. Among the 10 most stable genes, only Ov-Ppm1b, Ov-CHCHD7, and Ov-CUL1 were shared by the three groups, while Ov-RIOK2, Ov-slc25a40, Ov-Naa15, Ov-RNF7, Ov-UBE2F, and Ov-EIF2A were shared between two groups (Table 2).

NormFinder analysis. We identified *Ov-RIOK2*, *Ov-slc25a40*, *Ov-RNF7*, *Ov-CHCHD7*, *Ov-Ppm1b*, *Ov-syvn1*, *Ov-UBE2F*, *Ov-Naa15*, *Ov-BTBD17*, and *Ov-Abi2* as the most stable genes (Nervous, Table 2). For the Allex and Adult groups, some of the top

genes in **Nervous** ranked at lower values (e.g., *Ov-RIOK2* and *Ov-slc25a40*), while others were considered more stable (e.g., *Ov-EIF2A* and *Ov-CUL1*; Table 2). *Ov-Naa15*, *Ov-EIF2A*, *Ov-CUL1*, and *Ov-UBE2F* were identified as stable reference genes in both groups, while *Ov-RIOK2*, *Ov-slc25a40*, *Ov-Ppm1b*, and *Ov-syvn1* were shared in all the considered tissue groups (Table 2).

BestKeeper analysis. Ov-Abi2, Ov-Ltv1, and Ov-gk5 were shown to be the most stable genes, which were shared between two groups, while Ov-RPS18, Ov-RpL23, Ov-EIF3M, and Ov-BTBD17 were shared between the three groups (see Table 2). Ov-RPS18 and Ov-RpL23 were identified as suitable reference genes by this algorithm.

Delta Ct method. Ov-RIOK2, Ov-RNF7, Ov-slc25a40, Ov-CHCHD7, Ov-UBE2F, Ov-Ppm1b, Ov-Naa15, Ov-BTBD17, Ov-syvn1, and Ov-EIF2A emerged as the most stable genes for the Nervous tissues (Table 2). However, several other genes showed a comparable standard deviation (Table 2). Ov-Naa15, Ov-EIF2A, Ov-Ppm1b, Ov-CUL1, Ov-RIOK2, Ov-KCMF1, Ov-usp10, Ov-EIF3M, Ov-syvn1, and Ov-Vbp1 were selected as references for the Allex group. When all tissues were considered (Adult), Ov-EIF2A, Ov-CUL1, Ov-Ppm1b, Ov-Vbp1, Ov-syvn1, Ov-slc25a40, Ov-UBE2F, Ov-RAD23B, Ov-Rnd3, and Ov-RIOK2 were identified as the most stable reference genes. Ov-slc25a40, Ov-Naa15, Ov-Vbp1, Ov-CUL1, and Ov-UBE2F were shared between two groups, while Ov-Ppm1b, Ov-syvn1, Ov-RIOK,2 and Ov-EIF2A were shared between the three groups (Table 2).

Comprehensive ranking of the reference genes

By comparing the 10 most stable genes identified by the four approaches in the same tissue group (Nervous), Ov-RIOK2, Ov-UBE2F, Ov-slc25a40, Ov-Naa15, and Ov-Ppm1b were identified as common in at least three algorithms, while Ov-CHCHD7, Ov-RNF7, and Ov-BTBD17 resulted from all the four methods (Table 2). When arms but not tips were included as tissues (Allex group), Ov-CUL1, Ov-Naa15, Ov-RIOK2, Ov-usp10, Ov-KCMF1, Ov-EIF2A, and Ov-Ppm1b (Table 2) emerged as the best reference genes using the three approaches, while Ov-EIF3M was shared among the four methods (Table 2). The analysis performed considering the Adult tissues led to the identification of Ov-RAD23B, Ov-EIF2A, Ov-Vbp1, Ov-syvn1, Ov-CUL1, Ov-Ppm1b, and Ov-UBE2F as reference genes by the three approaches, but none of them were shared in all the considered methods.

The results from the four approaches were integrated using *RefFinder* (Xie et al., 2012). Overall, the top 10 most stable genes in the **Nervous** tissues were *Ov-RNF7*, *Ov-RIOK2*, *Ov-CHCHD7*, *Ov-slc25a40*, *Ov-UBE2F*, *Ov-BTBD17*, *Ov-Abi2*, *Ov-Ppm1b*, *Ov-syvn1*, and *Ov-Naa15* (Table 2). For **Allex**, the most stable genes were *Ov-Naa15*, *Ov-CUL1*, *Ov-EIF2A*, *Ov-RIOK2*, *Ov-slc25a40*, *Ov-Ppm1b*, *Ov-CUL1*, *Ov-EIF2A*, *Ov-RIOK2*, *Ov-slc25a40*, *Ov-Ppm1b*, *Ov-KCMF1*, *Ov-usp10*, *Ov-EIF3M*, and *Ov-Ltv1* (Table 2). When all tissues were considered (**Adults**), *Ov-EIF2A*, *Ov-CUL1*, *Ov-RAD23B*, *Ov-Vbp1*, *Ov-syvn1*, *Ov-Ppm1b*, *Ov-UBE2F*, *Ov-slc25a40*, *Ov-Ltv1*, and *Ov-Rnd3* were identified as reference genes, with *Ov-EIF2A* proving to be the best reference gene (see the geometric mean of the rank, Table 2). We also plotted the raw Ct for the best RGs identified (Supplementary Figure 4). The most stable genes shared by the combination of tissues were *Ov-Naa15* and

Ov-RIOK2 (Nervous and Allex); *Ov-CUL1*, *Ov-EIF2A*, and *Ov-Ltv1* (Allex and Adult); and *Ov-syvn1* and *Ov-UBE2F* (Nervous and Adult). Meanwhile, the *Ov-slc25a40* and *Ov-Ppm1b* results were shared among the three groups (Table 2).

Reference genes validation

To investigate the reliability of the selected candidate RGs, the expression profiles of nine target genes (i.e., *Ov-Naa15, Ov-Ltv1, Ov-CG9286, Ov-EIF3M, Ov-NOB1, Ov-CSDE1, Ov-Abi2, Ov-Homer2,* and *Ov-Snx20*) were assessed in tissues belonging to the nervous system. The role of these genes (see Supplementary Info: Selected target genes for validation) is still unknown in cephalopods. The selection was based on their known functions in different organisms, particularly those related to their involvement in neuronal signaling, cytoskeleton functions, axon guidance, synaptogenesis, and behavioral plasticity.

This also allowed comparison of gene expression profiles among brain masses and peripheral ganglia (**Nervous**). The gastric ganglion (GG) was considered as the reference 'tissue'. A combination of the two most stable (*Ov-RNF7* and *Ov-RIOK2*), the most stable (*Ov-RNF7*), and the least stable (most unstable; *Ov-Rps27a-FR*) RGs was used to normalize the expression of the target genes.

When the best RGs combination and the most stable gene were used for normalization of the expression of target genes in the nervous system of *O. vulgaris*, similar expression profiles were obtained for *Ov-CSDE1* and *Ov-Homer2* in the SEM, SUB, and OL, but the StG showed a significantly lower expression (Figure 2). A similar trend was also highlighted for *Ov-Snx20* (Figure 2) that showed a lower expression in the StG compared to the SEM and SUB. No significant differences resulted for the other target genes considered (Figure 2).

When the least stable reference gene *Ov-Rps27a-FR* was used for normalization, none of the nine genes investigated showed any significant change in expression except for *Ov-Homer2*, which appeared to be less expressed in the StG compared to the OL (Figure 2).

Discussion

Exploring gene expression in the nervous system and other tissues helps to find molecular correlates of biological and neural plasticity, learning, and memory. In cephalopods, the study of the molecular machinery occurring in these processes is still limited. Few studies of cuttlefish (Agin et al., 2000, 2001, 2003; Focareta et al., 2014; Focareta and Cole, 2016; Bian et al., 2018), squid (Giuditta et al., 2002; Kimbell and McFall-Ngai, 2003; Burbach et al., 2019), and octopus (Zarrella, 2011; Zarrella et al., 2015; van Giesen et al., 2020; see also Prado-Álvarez et al., 2022) have been based on an exiguous number of specific candidate molecules involved in given functions or biological aspects of cephalopod plasticity.

Despite the availability of a few candidate RGs (review in Supplementary Table 2), the application of qRT-PCR in *O. vulgaris* also appears limited. Our approach was to expand the list of potential stable RGs in octopus through the use of the

Relative expression levels of target genes: *Ov-Naa15*, *Ov-Ltv1*, *Ov-CG9286*, *Ov-EIF3M*, *Ov-NOB1*, *Ov-CSDE1*, *Ov-Abi2*, *Ov-Homer2*, and *Ov-Snx20* across all considered tissues (optic Lobe: OL; supraesophageal mass: SEM; suboesophageal mass: SUB; stellate ganglion: StG) normalized by the most stable reference gene combination (white bars), the most stable gene (grey), and the most unstable gene (black). Significant differences were assessed after ANOVA (*p*<0.05, Bonferroni *post hoc*). See main text for details.

available transcriptomes (Petrosino, 2015; Petrosino et al., 2015, 2022), with the aim of facilitating a large-scale analysis of gene expression profiles under various conditions in different tissues.

We focused on genes that demonstrated stability and a uniform predicted expression within different tissues (peripheral and central nervous system and appendages). We explored their relative gene expression through qRT-PCR experiments using a subset of target TABLE 2 Outcomes of the analysis for reference genes stability after application of the four algorithms (i.e., GeNorm, NormFinder, BestKeeper, and DeltaCt).

			GeNorm Algo	rithm			NormFinder algorithm						
	Nervou	ıs	Allex	Allex			Nervous		Allex		Adult		
	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	
1	Ov-CHCHD7/ Ov-RNF7	0.271	Ov-CUL1/ Ov-Naa15	0.386	Ov-Vbp1	0.544	Ov-RIOK2	0.238	Ov-EIF2A	0.371	Ov-EIF2A	0.382	
2	Ov-RIOK2	0.297	Ov-RIOK2	0.480	Ov-EIF2A	0.556	Ov-slc25a40	0.278	Ov-Naa15	0.373	Ov-CUL1	0.390	
3	Ov-UBE2F	0.317	Ov-slc25a40	0.520	Ov-RAD23B	0.573	Ov-RNF7	0.296	Ov-Ppm1b	0.376	Ov-Ppm1b	0.469	
4	Ov-slc25a40	0.333	Ov-usp10	0.534	Ov-syvn1	0.603	Ov-CHCHD7	0.299	Ov-CUL1	0.388	Ov-Vbp1	0.505	
5	Ov-BTBD17	0.355	Ov-KCMF1	0.544	Ov-CUL1	0.625	Ov-Ppm1b	0.330	Ov-RIOK2	0.411	Ov-syvn1	0.527	
6	Ov-Naa15	0.372	Ov-Ppm1b	0.555	Ov-Ppm1b	0.674	Ov-syvn1	0.336	Ov-KCMF1	0.444	Ov-slc25a40	0.584	
7	Ov-Ppm1b	0.396	Ov-EIF2A	0.562	Ov-CHCHD7	0.691	Ov-UBE2F	0.340	Ov-usp10	0.477	Ov-UBE2F	0.597	
8	Ov-CUL1	0.415	Ov-EIF3M	0.576	Ov-RIOK2	0.707	Ov-Naa15	0.349	Ov-EIF3M	0.495	Ov-RAD23B	0.599	
9	Ov-Snx25	0.432	Ov-CHCHD7	0.611	Ov-UBE2F	0.722	Ov-BTBD17	0.354	Ov-syvn1	0.499	Ov-Rnd3	0.627	
10	Ov-Dnaja3	0.445	Ov-syvn1	0.619	Ov-RNF7	0.738	Ov-Abi2	0.373	Ov-slc25a40	0.500	Ov-RIOK2	0.637	
11	Ov-usp10	0.454	Ov-Vbp1	0.627	Ov-Rnd3	0.769	Ov-EIF2A	0.374	Ov-Vbp1	0.505	Ov-CHCHD7	0.680	
12	Ov-Fam160a2	0.462	Ov-RAD23B	0.644	Ov-syvn1	0.782	Ov-Ltv1	0.399	Ov-CHCHD7	0.538	Ov-Dap3	0.686	
13	Ov-PTPN12	0.470	Ov-UBE2F	0.653	Ov-MRM2	0.805	Ov-usp10	0.405	Ov-RAD23B	0.539	Ov-MRM2	0.687	
14	Ov-ATPAF2	0.478	Ov-Dap3	0.661	Ov-Fam160a2	0.814	Ov-AP5Z1	0.406	Ov-Dap3	0.558	Ov-usp10	0.689	
15	Ov-AP5Z1	0.485	Ov-ATPAF2	0.668	Ov-usp10	0.824	Ov-CUL1	0.419	Ov-UBE2F	0.562	Ov-RNF7	0.696	
16	Ov-syvn1	0.491	Ov-Rnd3	0.675	Ov-Dap3	0.834	Ov-EIF3M	0.420	Ov-ATPAF2	0.574	Ov-gk5	0.697	
17	Ov-EIF2A	0.498	Ov-RNF7	0.682	Ov-gk5	0.843	Ov-CSDE1	0.422	Ov-MRPS5_FR	0.585	Ov-Fam160a2	0.735	
18	Ov-Abi2	0.503	Ov-Ltv1	0.689	Ov-ATPAF2	0.854	Ov-PTPN12	0.423	Ov-MRM2	0.592	Ov-Naa15	0.740	
19	Ov-KCMF1	0.508	Ov-MRM2	0.695	Ov-CG9286	0.863	Ov-Snx25	0.424	Ov-Rnd3	0.595	Ov-CPIJ005834	0.762	
20	Ov-Ltv1	0.515	Ov-Fam160a2	0.703	Ov-Ltv1	0.879	Ov-BTBD2	0.438	Ov-Ltv1	0.606	Ov-Ltv1	0.762	
21	Ov-CSDE1	0.520	Ov-MRPS5_FR	0.710	Ov-CPIJ005834	0.886	Ov-KCMF1	0.439	Ov-RNF7	0.612	Ov-Sdhd	0.766	
22	Ov-prrc1	0.525	Ov-MRPS5_F1R1	0.732	Ov-Naa15	0.893	Ov-MRPS5_FR	0.457	Ov-Fam160a2	0.646	Ov-CG9286	0.799	
23	Ov-BTBD2	0.529	Ov-CG9286	0.742	Ov-Sdhd	0.900	Ov-Rnd3	0.457	Ov-MRPS5_F1R1	0.660	Ov-ATPAF2	0.806	
24	Ov-tollip	0.534	Ov-gk5	0.751	Ov-EIF3M	0.915	Ov-Dnaja3	0.461	Ov-gk5	0.703	Ov-EIF3M	0.849	
25	Ov-EIF3M	0.540	Ov-mts	0.768	Ov-prrc1	0.925	Ov-Vbp1	0.464	Ov-CG9286	0.729	Ov-MRPS5_FR	0.856	
26	Ov-Rnd3	0.545	Ov-CPIJ005834	0.778	Ov-Abhd18	0.954	Ov-ATPAF2	0.478	Ov-mts	0.744	Ov-prrc1	0.863	

10.3389/fnmol.2023.1091305

			GeNorm Algoi	rithm			NormFinder algorithm						
	Nervou	IS	Allex		Adult		Nervo	us	Allex		Adult		
	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	
27	Ov-MRPS5_FR	0.551	Ov-prrc1	0.787	Ov-MRPS5_FR	0.965	Ov-MRM2	0.486	Ov-CPIJ005834	0.771	Ov-Abhd18	0.890	
28	Ov-Vbp1	0.558	Ov-PTPN12	0.797	Ov-KCMF1	0.976	Ov-prrc1	0.489	Ov-PTPN12	0.774	Ov-KCMF1	0.951	
29	Ov-Dap3	0.565	Ov-RPS18	0.807	Ov-C2CD2	0.998	Ov-Fam160a2	0.502	Ov-prrc1	0.802	Ov-rpf1	0.969	
30	Ov-CG9286	0.571	Ov-Sdhd	0.817	Ov-UGP2	1.009	Ov-tollip	0.504	Ov-Sdhd	0.809	Ov-MRPS5_F1R1	0.974	
31	Ov-MRM2	0.578	Ov-Abhd18	0.837	Ov-CSDE1	1.018	Ov-Dap3	0.513	Ov-RPS18	0.835	Ov-SUCLG2	0.997	
32	Ov-UGP2	0.585	Ov-SUCLG2	0.870	Ov-rpf1	1.027	Ov-CG9286	0.546	Ov-Abhd18	0.862	Ov-CSDE1	1.034	
33	Ov-RAD23B	0.592	Ov-tollip	0.880	Ov-MRPS5_F1R1	1.046	Ov-UGP2	0.568	Ov-tollip	0.916	Ov-timm	1.035	
34	Ov-Sdhd	0.599	Ov-Abi2	0.891	Ov-Abi2	1.055	Ov-RAD23B	0.578	Ov-Abi2	0.926	Ov-C2CD2	1.037	
35	Ov-WBP2	0.606	Ov-rpf1	0.902	Ov-SUCLG2	1.064	Ov-gk5	0.579	Ov-SUCLG2	0.928	Ov-UGP2	1.048	
36	Ov-gk5	0.614	Ov-RpL23	0.935	Ov-timm	1.073	Ov-WBP2	0.611	Ov-rpf1	0.972	Ov-WBP2	1.056	
37	Ov-RPS18	0.621	Ov-C2CD2	0.957	Ov-WBP2	1.093	Ov-Sdhd	0.616	Ov-RpL23	1.023	Ov-Abi2	1.063	
38	Ov-mts	0.630	Ov-CSDE1	0.969	Ov-PTPN12	1.103	Ov-RPS18	0.623	Ov-C2CD2	1.034	Ov-PTPN12	1.134	
39	Ov-MRPS5_F1R1	0.641	Ov-UGP2	0.990	Ov-BTBD17	1.115	Ov-MRPS5_F1R1	0.702	Ov-NOB1	1.069	Ov-BTBD17	1.181	
40	Ov-CPIJ005834	0.651	Ov-NOB1	1.000	Ov-AP5Z1	1.127	Ov-mts	0.709	Ov-timm	1.071	Ov-AP5Z1	1.233	
41	Ov-TUBG1_FR	0.661	Ov-timm	1.010	Ov-mts	1.140	Ov-CPIJ005834	0.727	Ov-CSDE1	1.077	Ov-mts	1.277	
42	Ov-C2CD2	0.674	Ov-WBP2	1.020	Ov-Snx25	1.179	Ov-TUBG1_FR	0.745	Ov-WBP2	1.082	Ov-RPS18	1.304	
43	Ov-SUCLG2	0.690	Ov-Snx25	1.029	Ov-tollip	1.193	Ov-C2CD2	0.825	Ov-UGP2	1.113	Ov-Snx25	1.369	
44	Ov-rpf1	0.705	Ov-BTBD17	1.052	Ov-BTBD2	1.206	Ov-PCK1	0.888	Ov-Snx25	1.122	Ov-tollip	1.378	
45	Ov-PCK1	0.720	Ov-Dnaja3	1.063	Ov-AGL	1.231	Ov-rpf1	0.894	Ov-Dnaja3	1.211	Ov-PCK1	1.382	
46	Ov-Tuba1a	0.738	Ov-Tuba1a	1.075	Ov-RPS18	1.245	Ov-SUCLG2	0.919	Ov-Tuba1a	1.216	Ov-BTBD2	1.398	
47	Ov-AGL	0.758	Ov-AP5Z1	1.087	Ov-PIP4K2B	1.271	Ov-Tuba1a	1.035	Ov-BTBD17	1.216	Ov-AGL	1.425	
48	Ov-Abhd18	0.777	Ov-TUBG1_FR	1.100	Ov-PCK1	1.284	Ov-AGL	1.061	Ov-TUBG1_FR	1.267	Ov-PIP4K2B	1.450	
49	Ov-RpL23	0.798	Ov-Homer2	1.112	Ov-Dnaja3	1.298	Ov-Abhd18	1.095	Ov-AP5Z1	1.284	Ov-Dnaja3	1.544	
50	Ov-NOB1	0.819	Ov-BTBD2	1.127	Ov-Snx20	1.314	Ov-RpL23	1.175	Ov-Homer2	1.312	Ov-Snx20	1.551	
51	Ov-Rpl6	0.842	Ov-AGL	1.141	Ov-NOB1	1.330	Ov-NOB1	1.252	Ov-PIP4K2B	1.386	Ov-NOB1	1.576	
52	Ov-Homer2	0.867	Ov-PIP4K2B	1.155	Ov-Homer2	1.346	Ov-Rpl6	1.283	Ov-PCK1	1.403	Ov-TUBG1_FR	1.655	
53	Ov-timm	0.893	Ov-PCK1	1.169	Ov-wdr44	1.361	Ov-Homer2	1.365	Ov-BTBD2	1.437	Ov-Homer2	1.672	
54	Ov-TUBG1_F1R1	0.920	Ov-wdr44	1.183	Ov-TUBG1_FR	1.396	Ov-timm	1.460	Ov-AGL	1.442	Ov-wdr44	1.684	

(Continued)

10.3389/fnmol.2023.1091305

TABLE	2	(Continued)
	_	(

			GeNorm Algor	rithm			NormFinder algorithm						
	Nervous		Allex		Adult		Nervous		Allex		Adult		
	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	Gene name	Stab. value	
55	Ov-Snx20	0.953	Ov-TUBG1_F1R1	1.197	Ov-TUBG1_F1R1	1.413	Ov-TUBG1_F1R1	1.512	Ov-TUBG1_F1R1	1.442	Ov-TUBG1_F1R1	1.719	
56	Ov-PIP4K2B	0.990	Ov-Snx20	1.212	Ov-RpL23	1.434	Ov-Snx20	1.699	Ov-wdr44	1.443	Ov-RpL23	1.916	
57	Ov-wdr44	1.031	Ov-Rps27a_FR	1.261	Ov-Rpl6	1.465	Ov-PIP4K2B	1.888	Ov-Snx20	1.535	Ov-Rpl6	2.370	
58	Ov-Rps27a_FR	1.090	Ov-Rpl6	1.297	Ov-Rps27a_FR	1.500	Ov-wdr44	2.035	Ov-Rps27a_FR	2.047	Ov-Rps27a_FR	2.539	
59					Ov-Tuba1a	1.537	Ov-Rps27a_FR	2.687	Ov-Rpl6	2.443	Ov-Tuba1a	2.677	

			BestKeeper a	lgorithm			Delta Ct method					
	Nervou	ıs	Allex		Adult	Adult		us	Allex		Adult	:
	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev
1	Ov-Abi2	0.610	Ov-Ltv1	0.850	Ov-Ltv1	0.750	Ov-RIOK2	0.780	Ov-Naa15	1.020	Ov-EIF2A	1.190
2	Ov-RPS18	0.610	Ov-RPS18	0.910	Ov-RpL23	0.750	Ov-RNF7	0.790	Ov-EIF2A	1.020	Ov-CUL1	1.190
3	Ov-RpL23	0.630	Ov-Abi2	0.920	Ov-RPS18	0.800	Ov-slc25a40	0.790	Ov-Ppm1b	1.020	Ov-Ppm1b	1.210
4	Ov-EIF3M	0.640	Ov-RpL23	0.930	Ov-prrc1	0.820	Ov-CHCHD7	0.790	Ov-CUL1	1.030	Ov-Vbp1	1.240
5	Ov-RNF7	0.690	Ov-EIF3M	0.940	Ov-gk5	0.860	Ov-UBE2F	0.810	Ov-RIOK2	1.040	Ov-syvn1	1.240
6	Ov-BTBD17	0.700	Ov-BTBD17	0.980	Ov-BTBD17	0.860	Ov-Ppm1b	0.820	Ov-KCMF1	1.050	Ov-slc25a40	1.260
7	Ov-Sdhd	0.710	Ov-RIOK2	0.990	Ov-slc25a40	0.890	Ov-Naa15	0.820	Ov-usp10	1.060	Ov-UBE2F	1.270
8	Ov-MRM2	0.730	Ov-gk5	1.010	Ov-Rnd3	0.900	Ov-BTBD17	0.820	Ov-EIF3M	1.080	Ov-RAD23B	1.280
9	Ov-RAD23B	0.740	Ov-NOB1	1.030	Ov-CPIJ005834	0.930	Ov-syvn1	0.820	Ov-syvn1	1.080	Ov-Rnd3	1.290
10	Ov-CHCHD7	0.760	Ov-MRPS5_F1R1	1.050	Ov-EIF3M	0.940	Ov-EIF2A	0.830	Ov-Vbp1	1.080	Ov-RIOK2	1.300
11	Ov-syvn1	0.770	Ov-Rnd3	1.060	Ov-Abi2	0.940	Ov-Abi2	0.830	Ov-slc25a40	1.080	Ov-usp10	1.300
12	Ov-EIF2A	0.770	Ov-UBE2F	1.100	Ov-MRPS5_F1R1	0.950	Ov-usp10	0.850	Ov-CHCHD7	1.090	Ov-MRM2	1.310
13	Ov-MRPS5_F1R1	0.770	Ov-RAD23B	1.130	Ov-RIOK2	0.960	Ov-CUL1	0.850	Ov-UBE2F	1.100	Ov-Dap3	1.310
14	Ov-RIOK2	0.800	Ov-CPIJ005834	1.130	Ov-usp10	0.970	Ov-EIF3M	0.850	Ov-RAD23B	1.100	Ov-CHCHD7	1.320
15	Ov-Ltv1	0.810	Ov-EIF2A	1.140	Ov-NOB1	1.000	Ov-Ltv1	0.860	Ov-Dap3	1.110	Ov-RNF7	1.320
16	Ov-CPIJ005834	0.810	Ov-syvn1	1.150	Ov-BTBD2	1.000	Ov-AP5Z1	0.860	Ov-ATPAF2	1.120	Ov-gk5	1.330
17	Ov-UBE2F	0.810	Ov-slc25a40	1.170	Ov-UBE2F	1.000	Ov-PTPN12	0.860	Ov-MRM2	1.130	Ov-Fam160a2	1.330
18	Ov-Vbp1	0.810	Ov-Sdhd	1.170	Ov-KCMF1	1.020	Ov-Snx25	0.860	Ov-Rnd3	1.130	Ov-Naa15	1.350
19	Ov-BTBD2	0.850	Ov-CUL1	1.180	Ov-MRM2	1.020	Ov-CSDE1	0.870	Ov-Ltv1	1.130	Ov-Sdhd	1.360

Imperadore et al.

Frontiers	
=.	
_	
3	
<u> </u>	
e	
2	
ຝ	
-	
Z	
<u>۾</u>	
3	
S	
Ω.	
e	
5	
ö	

TABLE 2	(Continued)
---------	-------------

			BestKeeper a	lgorithm			Delta Ct method						
	Nervous		Allex		Adul	t	Nervoi	us	Allex		Adult		
	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	
20	Ov-Rnd3	0.850	Ov-usp10	1.200	Ov-EIF2A	1.040	Ov-KCMF1	0.870	Ov-MRPS5_FR	1.130	Ov-Ltv1	1.360	
21	Ov-NOB1	0.860	Ov-prrc1	1.230	Ov-Sdhd	1.040	Ov-Dnaja3	0.870	Ov-RNF7	1.130	Ov-CPIJ005834	1.370	
22	Ov-MRPS5_FR	0.870	NAA15	1.230	NAA15	1.050	Ov-MRPS5_FR	0.880	Ov-Fam160a2	1.150	Ov-ATPAF2	1.380	
23	Ov-UGP2	0.890	Ov-MRM2	1.230	Ov-Dap3	1.060	Ov-BTBD2	0.880	Ov-MRPS5_F1R1	1.170	Ov-CG9286	1.380	
24	Ov-WBP2	0.890	Ov-MRPS5_FR	1.250	Ov-CSDE1	1.060	Ov-Rnd3	0.880	Ov-gk5	1.190	Ov-prrc1	1.410	
25	Ov-slc25a40	0.890	Ov-timm	1.260	Ov-UGP2	1.070	Ov-ATPAF2	0.890	Ov-mts	1.210	Ov-EIF3M	1.410	
26	Ov-Ppm1b	0.890	Ov-UGP2	1.280	Ov-syvn1	1.080	Ov-Vbp1	0.890	Ov-CG9286	1.210	Ov-MRPS5_FR	1.440	
27	Ov-prrc1	0.900	Ov-rpf1	1.290	Ov-CUL1	1.080	Ov-prrc1	0.900	Ov-PTPN12	1.230	Ov-Abhd18	1.450	
28	Ov-Tuba1a	0.900	Ov-BTBD2	1.300	Ov-CG9286	1.090	Ov-tollip	0.900	Ov-CPIJ005834	1.240	Ov-KCMF1	1.450	
29	Ov-timm	0.910	Ov-Vbp1	1.300	Ov-C2CD2	1.110	Ov-Fam160a2	0.900	Ov-prrc1	1.250	Ov-rpf1	1.500	
30	Ov-AP5Z1	0.920	Ov-Dap3	1.310	Ov-RAD23B	1.130	Ov-MRM2	0.900	Ov-Sdhd	1.250	Ov-MRPS5_F1R1	1.510	
31	Ov-gk5	0.930	CHCHD	1.330	Ov-ATPAF2	1.140	Ov-Dap3	0.920	Ov-RPS18	1.280	Ov-CSDE1	1.510	
32	Ov-CG9286	0.940	<i>Ov-CG9286</i>	1.330	Ov-rpf1	1.160	Ov-CG9286	0.940	Ov-Abhd18	1.310	Ov-C2CD2	1.510	
33	Ov-Naa15	0.940	Ov-CSDE1	1.330	Ov-Dnaja3	1.160	Ov-UGP2	0.940	Ov-Abi2	1.320	Ov-SUCLG2	1.520	
34	Ov-PCK1	0.950	Ov-Ppm1b	1.330	Ov-Ppm1b	1.160	Ov-RAD23B	0.950	Ov-tollip	1.330	Ov-UGP2	1.530	
35	Ov-tollip	0.960	Ov-RNF7	1.340	Ov-SUCLG2	1.190	Ov-gk5	0.960	Ov-SUCLG2	1.350	Ov-WBP2	1.540	
36	Ov-CUL1	0.960	Ov-PCK1	1.360	Ov-MRPS5_FR	1.190	Ov-Sdhd	0.970	Ov-rpf1	1.380	Ov-timm	1.550	
37	Ov-ATPAF2	0.960	Ov-ATPAF2	1.370	Ov-Abhd18	1.200	Ov-WBP2	0.980	Ov-C2CD2	1.400	Ov-Abi2	1.550	
38	Ov-Dap3	0.970	Ov-Abhd18	1.380	Ov-timm	1.220	Ov-RPS18	0.980	Ov-RpL23	1.420	Ov-PTPN12	1.580	
39	Ov-TUBG1_FR	0.980	Ov-C2CD2	1.380	Ov-tollip	1.230	Ov-mts	1.030	Ov-CSDE1	1.430	Ov-BTBD17	1.650	
40	Ov-usp10	0.980	Ov-KCMF1	1.420	Ov-RNF7	1.250	Ov-MRPS5_F1R1	1.040	Ov-WBP2	1.440	Ov-AP5Z1	1.670	
41	Ov-CSDE1	1.010	Ov-TUBG1_FR	1.480	CHCHD	1.270	Ov-CPIJ005834	1.060	Ov-NOB1	1.450	Ov-mts	1.670	
42	Ov-PTPN12	1.020	Ov-SUCLG2	1.500	Ov-Vbp1	1.280	Ov-TUBG1_FR	1.070	Ov-UGP2	1.450	Ov-RPS18	1.730	
43	Ov-KCMF1	1.030	Ov-Rps27a_FR	1.520	Ov-Rps27a_FR	1.300	Ov-C2CD2	1.130	Ov-timm	1.460	Ov-Snx25	1.770	
44	Ov-Snx25	1.030	Ov-Fam160a2	1.540	Ov-PTPN12	1.340	Ov-PCK1	1.190	Ov-Snx25	1.470	Ov-tollip	1.770	
45	Ov-Dnaja3	1.050	Ov-Dnaja3	1.650	Ov-PCK1	1.390	Ov-rpf1	1.190	Ov-Tuba1a	1.550	Ov-BTBD2	1.780	
46	Ov-Abhd18	1.070	Ov-PTPN12	1.660	Ov-Fam160a2	1.420	Ov-SUCLG2	1.200	Ov-BTBD17	1.560	Ov-AGL	1.800	
47	Ov-Fam160a2	1.080	Ov-tollip	1.670	Ov-AGL	1.440	Ov-Tuba1a	1.290	Ov-Dnaja3	1.560	Ov-PCK1	1.810	

(Continued)

lg	C
	S
F	

	BestKeeper algorithm						Delta Ct method					
	Nervous		Allex		Adult		Nervous		Allex		Adult	
	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev	Gene name	Std. dev
48	Ov-rpf1	1.120	Ov-PIP4K2B	1.720	Ov-TUBG1_FR	1.440	Ov-AGL	1.330	Ov-AP5Z1	1.590	Ov-PIP4K2B	1.840
49	Ov-TUBG1_F1R1	1.130	Ov-AGL	1.750	Ov-mts	1.460	Ov-Abhd18	1.360	Ov-TUBG1_FR	1.610	Ov-Dnaja3	1.910
50	Ov-Rpl6	1.140	Ov-Snx20	1.770	Ov-wdr44	1.490	Ov-RpL23	1.410	Ov-Homer2	1.630	Ov-Snx20	1.930
51	Ov-SUCLG2	1.180	Ov-Rpl6	1.770	Ov-PIP4K2B	1.500	Ov-NOB1	1.470	Ov-PIP4K2B	1.710	Ov-NOB1	1.940
52	Ov-AGL	1.230	Ov-WBP2	1.800	Ov-TUBG1_F1R1	1.500	Ov-Rpl6	1.510	Ov-BTBD2	1.710	Ov-Homer2	2.010
53	Ov-C2CD2	1.250	Ov-TUBG1_F1R1	1.830	Ov-WBP2	1.650	Ov-Homer2	1.570	Ov-PCK1	1.710	Ov-TUBG1_FR	2.020
54	Ov-mts	1.250	Ov-mts	1.840	Ov-Rpl6	1.680	Ov-timm	1.660	Ov-AGL	1.720	Ov-wdr44	2.030
55	Ov-Homer2	1.370	Ov-Tuba1a	1.850	Ov-Snx20	1.700	Ov-TUBG1_F1R1	1.710	Ov-wdr44	1.750	Ov-TUBG1_F1R1	2.080
56	Ov-Snx20	1.400	Ov-wdr44	1.890	Ov-Tuba1a	1.700	Ov-Snx20	1.880	Ov-TUBG1_F1R1	1.760	Ov-RpL23	2.220
57	Ov-Rps27a_FR	1.420	Ov-AP5Z1	2.020	Ov-Homer2	1.820	Ov-PIP4K2B	2.050	Ov-Snx20	1.820	Ov-Rpl6	2.640
58	Ov-PIP4K2B	1.660	Ov-Snx25	2.060	Ov-Snx25	1.860	Ov-wdr44	2.180	Ov-Rps27a_FR	2.280	Ov-Rps27a_FR	2.800
59	Ov-wdr44	1.710	Ov-Homer2	2.100	Ov-AP5Z1	2.050	Ov-Rps27a_FR	2.800	Ov-Rpl6	2.640	Ov-Tuba1a	2.920

	RefFinder								
	N	ervous	F	Allex	Adult				
	Gene name	Geomean of ranking values	Gene name	Geomean of ranking values	Gene name	Geomean of ranking values			
l	Ov-RNF7	2.340	Ov-Naa15	2.170	Ov-EIF2A	1.970			
2	Ov-RIOK2	2.550	Ov-CUL1	4.560	Ov-CUL1	4.420			
3	Ov-CHCHD7	3.560	Ov-EIF2A	4.920	Ov-RAD23B	5.630			
1	Ov-slc25a40	5.130	Ov-RIOK2	5.850	Ov-Vbp1	6.110			
5	Ov-UBE2F	6.770	Ov-slc25a40	6.510	Ov-syvn1	6.320			
5	Ov-BTBD17	7.140	Ov-Ppm1b	6.980	Ov-Ppm1b	6.500			
7	Ov-Abi2	8.040	Ov-KCMF1	7.650	Ov-UBE2F	8.010			
3	Ov-Ppm1b	8.710	Ov-usp10	7.650	Ov-slc25a40	9.260			
)	Ov-syvn1	10.020	Ov-EIF3M	9.240	Ov-Ltv1	9.810			
10	Ov-Naa15	10.580	Ov-Ltv1	9.390	Ov-Rnd3	10.260			
11	Ov-EIF3M	12.350	Ov-Rnd3	12.330	Ov-RIOK2	11.470			
12	Ov-EIF2A	12.420	Ov-Dap3	13.960	Ov-usp10	13.000			

10.3389/fnmol.2023.1091305

TABLE 2 (Continued)

TABLE 2 (Continued)

	RefFinder							
	Ne	ervous	ŀ	Allex	Adult			
	Gene name Geomean of ranking values		Gene name Geomean of ranking values		Gene name	Geomean of ranking values		
13	Ov-RPS18	15.200	Ov-syvn1	14.050	Ov-gk5	13.210		
14	Ov-CUL1	15.740	Ov-UBE2F	14.460	Ov-MRM2	13.780		
15	Ov-Ltv1	15.920	Ov-RpL23	15.600	Ov-Dap3	15.610		
16	Ov-usp10	16.440	Ov-ATPAF2	16.460	Ov-RNF7	15.840		
17	Ov-AP5Z1	18.110	Ov-gk5	16.790	Ov-CHCHD7	16.430		
18	Ov-Snx25	19.580	Ov-prrc1	16.900	Ov-EIF3M	17.500		
19	Ov-PTPN12	20.600	Ov-RPS18	17.150	Ov-Abi2	18.500		
20	Ov-MRM2	21.160	Ov-Vbp1	17.390	Ov-CPIJ005834	18.830		
21	Ov-BTBD2	21.160	Ov-RAD23B	17.820	Ov-Fam160a2	18.870		
22	Ov-Dnaja3	22.350	Ov-MRM2	19.230	Ov-Sdhd	18.990		
23	Ov-Rnd3	23.120	Ov-MRPS5_F1R1	20.170	Ov-Naa15	20.060		
24	Ov-CSDE1	23.230	Ov-CHCHD7	20.220	Ov-RPS18	20.070		
25	Ov-Vbp1	23.430	Ov-CPIJ005834	20.510	Ov-ATPAF2	22.590		
26	Ov-MRPS5_FR	23.880	Ov-MRPS5_FR	23.270	Ov-prrc1	23.480		
27	Ov-Sdhd	23.900	Ov-RNF7	23.770	Ov-CG9286	23.490		
28	Ov-RAD23B	24.390	Ov-Abi2	24.500	Ov-BTBD17	24.110		
29	Ov-ATPAF2	24.510	Ov-CG9286	25.190	Ov-MRPS5_F1R1	24.470		
30	Ov-KCMF1	24.660	Ov-BTBD17	26.120	Ov-MRPS5_FR	27.340		
31	Ov-RpL23	24.750	Ov-Fam160a2	26.450	Ov-RpL23	28.950		
32	Ov-Fam160a2	26.300	Ov-Sdhd	26.650	Ov-Abhd18	29.040		
33	Ov-prrc1	26.420	Ov-mts	31.030	KCMF1	29.500		
34	Ov-tollip	30.000	Ov-NOB1	32.210	Ov-UGP2	29.830		
35	Ov-MRPS5_F1R1	30.010	Ov-Abhd18	33.440	Ov-rpf1	29.920		
36	Ov-UGP2	31.090	Ov-PTPN12	33.530	Ov-CSDE1	30.710		
37	Ov-CG9286	31.990	Ov-CSDE1	33.740	Ov-C2CD2	31.240		
38	Ov-Dap3	32.350	Ov-C2CD2	34.100	Ov-timm	32.860		
39	Ov-WBP2	33.310	Ov-SUCLG2	34.490	Ov-NOB1	33.370		
40	Ov-CPIJ005834	33.370	Ov-rpf1	35.440	Ov-SUCLG2	34.730		

(Continued)

10.3389/fnmol.2023.1091305

TABLE 2 (Continued)

	RefFinder							
	Ne	ervous	ŀ	Allex	Adult			
	Gene name	Geomean of ranking values	Gene name	Geomean of ranking values	Gene name	Geomean of ranking values		
41	Ov-gk5	34.430	Ov-UGP2	35.770	Ov-BTBD2	38.610		
42	Ov-NOB1	40.850	Ov-tollip	36.210	Ov-PTPN12	40.120		
43	Ov-Tuba1a	41.290	Ov-BTBD2	38.930	Ov-WBP2	40.280		
44	Ov-TUBG1_FR	41.490	Ov-timm	40.960	Ov-mts	43.380		
45	Ov-PCK1	41.710	Ov-Dnaja3	42.420	Ov-PCK1	44.430		
46	Ov-mts	42.380	Ov-WBP2	45.300	Ov-AP5Z1	44.510		
47	Ov-CSDE1	45.520	Ov-Snx25	46.880	Ov-tollip	44.980		
48	Ov-rpf1	45.730	Ov-TUBG1_FR	48.240	Ov-AGL	45.950		
49	Ov-timm	46.230	Ov-Tuba1a	48.880	Ov-Snx25	47.140		
50	Ov-SUCLG2	46.680	Ov-AGL	50.720	Ov-Dnaja3	47.720		
51	Ov-Abhd18	48.230	Ov-AP5Z1	50.800	Ov-PIP4K2B	47.750		
52	Ov-AGL	48.970	Ov-PCK1	51.830	Ov-Snx20	50.000		
53	Ov-Rpl6	51.490	Ov-Homer2	52.170	Ov-TUBG1_FR	50.400		
54	Ov-TUBG1_F1R1	53.430	Ov-PIP4K2B	52.240	Ov-wdr44	52.720		
55	Ov-Homer2	53.490	Ov-wdr44	53.460	Ov-Rps27a_FR	53.820		
56	Ov-Snx20	56.000	Ov-Rps27a_FR	53.820	Ov-TUBG1_F1R1	54.240		
57	Ov-PIP4K2B	57.250	Ov-TUBG1_F1R1	54.710	Ov-Homer2	54.440		
58	Ov-wdr44	58.250	Ov-Snx20	56.750	Ov-Rpl6	55.440		
59	Ov-Rps27a_FR	58.490	Ov-Rpl6	57.710	Ov-Tuba1a	57.970		

The results from the four approaches were integrated using *RefFinder*. The integration of the results was done calculating the geometric mean of the rank of each gene in all algorithms. In boldface common genes for the first 10 positions are highlighted for each algorithm. Integration of the different algorithms using the geometric mean of the rank of each gene is also provided. Stab. value, Stability value; Std. dev, Standard deviation; Geomean, geometric mean.

genes. This approach allowed us to identify the most extensive set of stable reference genes currently available for the adult *O. vulgaris*.

Through *in silico* analysis of the octopus transcriptome, we found more than 2000 candidate RGs. However, we tested less than hundreds because of limitations in gene annotation. We identified a list of stable and uniformly expressed RGs across different body parts in adult individuals and in tissues including the nervous tissues (e.g., brain, gastric and stellate ganglia, and arm; Figure 1). The gene expression profiles of these potential RGs (n = 59) were assessed *via* qRT-PCR, and their stability was calculated and analyzed using different algorithms. The analysis of potential RGs in *O. vulgaris* revealed that there was no single reference gene that exhibited a constant expression level in all the samples, similarly to what has been reported in other organisms (e.g., Guo et al., 2014; Gao et al., 2017; Jin et al., 2019).

Via *RefFinder*, we identified RGs specific to the nervous system (Nervous, *Ov-RNF7*, and *Ov-RIOK2*), all tissues but the arm tips (Allex, *Ov-Naa15*, and *Ov-CUL1*), or those that are transcriptionally stable across all considered tissues (Adult, *Ov-EIF2A*, and *Ov-CUL1*, Table 2). In addition, *Ov-slc25a40* and *Ov-Ppm1b* were identified as shared best reference genes in the Nervous, Allex, and Adult groups of tissues (Table 2). Notably, the arm tips showed the highest variation in gene expression among the analyzed anatomical structures, likely due to the biological peculiarities of the octopus' arm that maintains the ability of regeneration and indeterminate growth throughout adult ontogeny (Fossati et al., 2013, 2015; Nödl et al., 2015; Zullo et al., 2017; Tarazona et al., 2019; e.g., Zullo et al., 2019; van Giesen et al., 2020; see also De Sio and Imperadore, 2023).

The identified RGs are related to ubiquitination, rRNA processing, translation, and post-translational protein modifications, which are housekeeping functions in line with the typical references. Interestingly, none of them has ever been used as references in cephalopods before. Our approach—i.e., a large number of candidate transcripts and several tissues belonging to putatively different cell types (Styfhals et al., 2022)—provided more than 70 candidate RGs for *O. vulgaris*.

We also validated RGs by assessing the expression profiles of nine target genes (*Ov-Naa15*, *Ov-Ltv1*, *Ov-CG9286*, *Ov-EIF3M*, *Ov-NOB1*, *Ov-CSDE1*, *Ov-Abi2*, *Ov-Homer2*, and *Ov-Snx20*) in different tissues of the octopus nervous system. The expression after normalization by *Ov-RNF7* and *Ov-RIOK2* (the most stable RGs) differed from that of *Ov-Rps27a-FR* (the least stable gene), which is commonly used as an RG for data normalization (Figure 2).

In conclusion, we utilized different algorithms to evaluate the expression profiles of tens of candidate RGs of *O. vulgaris*. We identified those that can be used in the normalization of the qRT-PCR data and suggested RGs that can be used cautiously with different tissue groups.

Our findings will aid future investigations of the transcriptional landscape of cephalopods and facilitate the study of the molecular basis of neural plasticity and other phenomena.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the animal study because killing animals solely for tissue removal does not require authorization from the National Competent Authority under Directive 2010/63/EU (European Parliament & Council of the European Union, 2010) and its transposition into National legislation. Sampling of octopuses from artisanal fishermen included in this study was authorized by the local Animal Welfare Body (Ethical Clearance: case 5/2021/ec AWB-SZN).

Author contributions

PI and SC performed the experiments, data curation, and analysis and contributed to the study conceptualization. VA and CM contributed to the experiments and data curation. PI, SC, and GF contributed to writing the original draft. GF and GP contributed to the study conceptualization, investigation, writing, and funding acquisition. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the Stazione Zoologica Anton Dohrn intramural research fund granted to GF and GP and by a HSA-Ceph 1/2019 grant to GP. VA was supported by a short-term fellowship from the Stazione Zoologica Anton Dohrn.

Acknowledgments

We thank Elena Baldascino, Giuseppe Petrosino, and Remo Sanges for their advice and support.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be identified as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnmol.2023.1091305/ full#supplementary-material

References

Agin, V., Chichery, R., and Chichery, M. P. (2000). Effects of learning and memory on regional brain variations of cytochrome oxidase activity in *Sepia officinalis. Eur. J. Neurosci.* 12:91.

Agin, V., Chichery, R., and Chichery, M. P. (2001). Effects of learning on cytochrome oxidase activity in cuttlefish brain. *Neuroreport* 12, 113–116. doi: 10.1097/00001756-200101220-00030

Agin, V., Chichery, R., Maubert, E., and Chichery, M. P. (2003). Time-dependent effects of cycloheximide on long-term memory in the cuttlefish. *Pharmacol. Biochem. Behav.* 75, 141–146. doi: 10.1016/S0091-3057(03)00041-8

Albertin, C. B., Medina-Ruiz, S., Mitros, T., Schmidbaur, H., Sanchez, G., Wang, Z. Y., et al. (2022). Genome and transcriptome mechanisms driving cephalopod evolution. *Nat. Commun.* 13:2427. doi: 10.1038/s41467-022-29748-w

Albertin, C. B., and Simakov, O. (2020). Cephalopod biology: at the intersection between genomic and organismal novelties. *Ann. Rev. Anim. Biosci.* 8, 71–90. doi: 10.1146/annurev-animal-021419-083609

Amable, P. R., Teixeira, M. V. T., Carias, R. B. V., Granjeiro, J. M., and Borojevic, R. (2013). Identification of appropriate reference genes for human mesenchymal cells during expansion and differentiation. *PLoS One* 8:e73792. doi: 10.1371/journal. pone.0073792

Amodio, P., Josef, N., Shashar, N., and Fiorito, G. (2021). Bipedal locomotion in *Octopus vulgaris*: a complementary observation and some preliminary considerations. *Ecol. Evol.* 11, 3679–3684. doi: 10.1002/ece3.7328

Asok, A., Kandel, E. R., and Rayman, J. B. (2019). The neurobiology of fear generalization. Front. Behav. Neurosci. 12:329. doi: 10.3389/fnbeh.2018.00329

Baldascino, E., Di Cristina, G., Tedesco, P., Hobbs, C., Shaw, T. J., Ponte, G., et al. (2017). The gastric ganglion of *Octopus vulgaris*: preliminary characterization of geneand Putative neurochemical-complexity, and the effect of *Aggregata octopiana* digestive tract infection on gene expression. *Front. Physiol.* 8:1001. doi: 10.3389/ fphys.2017.01001

Bian, L., Liu, C., Chen, S., Zhao, F., Ge, J., and Tan, J. (2018). Transcriptome analysis of gene expression patterns during embryonic development in golden cuttlefish (*Sepia esculenta*). *Genes Genom.* 40, 253–263. doi: 10.1007/s13258-017-0588-6

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120. doi: 10.1093/bioinformatics/ btu170

Borrelli, L., and Fiorito, G. (2008). "Behavioral analysis of learning and memory in cephalopods" in *Learning and memory: a comprehensive reference*. ed. J. J. Byrne (Oxford: Academic Press), 605–627.

Breslauer, K. J., Frank, R., Blöcker, H., and Marky, L. A. (1986). Predicting DNA duplex stability from the base sequence. *Proc. Natl. Acad. Sci. U. S. A.* 83, 3746–3750. doi: 10.1073/pnas.83.11.3746

Burbach, J. P. H., Grant, P., Senft, S., Kripke, L., Hellemons, A. J. C. G. M., and Pant, H. C. (2019). FMRF gene expression in the nervous system of the squid *Doryteuthis pealei* hatchling. bioRxiv, 684001 [Preprint]. doi: 10.1101/684001

Bustin, S. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. *J. Mol. Endocrinol.* 29, 23–39. doi: 10.1677/ jme.0.0290023

Bustin, S. A., Benes, V., Nolan, T., and Pfaffl, M. W. (2005). Quantitative real-time RT-PCR – a perspective. J. Mol. Endocrinol. 34, 597–601. doi: 10.1677/jme.1.01755

Cavallaro, S., D'Agata, V., Manickam, P., Dufour, F., and Alkon, D. L. (2002). Memoryspecific temporal profiles of gene expression in the hippocampus. *Proc. Natl. Acad. Sci.* 99, 16279–16284. doi: 10.1073/pnas.242597199

Chung, W.-S., Kurniawan, N. D., and Marshall, N. J. (2022). Comparative brain structure and visual processing in octopus from different habitats. *Curr. Biol.* 32, 97–110.e114. doi: 10.1016/j.cub.2021.10.070

Chung, W.-S., López-Galán, A., Kurniawan, N. D., and Marshall, N. J. (2023). The brain structure and the neural network features of the diurnal cuttlefish *Sepia plangon*. *iScience* 26:105846. doi: 10.1016/j.isci.2022.105846

De Sio, F., and Imperadore, P. (2023). Deciphering regeneration through non-model animals: a century of experiments on cephalopod mollusks and an outlook at the future. *Front. Cell Dev. Biol.* 10:1072382. doi: 10.3389/fcell.2022.1072382

Edelman, D. B., and Seth, A. K. (2009). Animal consciousness: a synthetic approach. *Trends Neurosci.* 32, 476–484. doi: 10.1016/j.tins.2009.05.008

Eisenberg, E., and Levanon, E. Y. (2013). Human housekeeping genes, revisited. *Trends Genet.* 29, 569–574. doi: 10.1016/j.tig.2013.05.010

European Parliament & Council of the European Union (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [Online]. Strasbourg: Concil of Europe. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32010L0063 (Accessed March, 2023). Focareta, L., and Cole, A. G. (2016). Analyses of sox-B and sox-E family genes in the cephalopod *Sepia officinalis*: revealing the conserved and the unusual. *PLoS One* 11:e0157821. doi: 10.1371/journal.pone.0157821

Focareta, L., Sesso, S., and Cole, A. G. (2014). Characterization of homeobox genes reveals sophisticated regionalization of the central nervous system in the European cuttlefish *Sepia officinalis*. *PLoS One* 9:e109627. doi: 10.1371/journal.pone.0109627

Fossati, S. M., Candiani, S., Nodl, M. T., Maragliano, L., Pennuto, M., Domingues, P., et al. (2015). Identification and expression of acetylcholinesterase in *Octopus vulgaris* arm development and regeneration: a conserved role for ACHE? *Mol. Neurobiol.* 52, 45–56. doi: 10.1007/s12035-014-8842-2

Fossati, S. M., Carella, F., De Vico, G., Benfenati, F., and Zullo, L. (2013). Octopus arm regeneration: role of acetylcholinesterase during morphological modification. *J. Exp. Mar. Biol. Ecol.* 447, 93–99. doi: 10.1016/j.jembe.2013.02.015

Gao, X.-K., Zhang, S., Luo, J.-Y., Wang, C.-Y., Lü, L.-M., Zhang, L.-J., et al. (2017). Identification and validation of reference genes for gene expression analysis in *Aphidius gifuensis* (hymenoptera: Aphidiidae). *PLoS One* 12:e0188477. doi: 10.1371/journal. pone.0188477

García-Fernández, P., Castellanos-Martínez, S., Iglesias, J., Otero, J. J., and Gestal, C. (2016). Selection of reliable reference genes for RT-qPCR studies in *Octopus vulgaris* paralarvae during development and immune-stimulation. *J. Invertebr. Pathol.* 138, 57–62. doi: 10.1016/j.jip.2016.06.003

Giuditta, A., Eyman, M., and Kaplan, B. B. (2002). Gene expression in the squid giant axon: neurotransmitter modulation of RNA transfer from periaxonal glia to the axon. *Biol. Bull.* 203, 189–190. doi: 10.2307/1543389

Giuditta, A., Libonati, M., Packard, A., and Prozzo, N. (1971). Nuclear counts in the brain lobes of *Octopus vulgaris* as a function of body size. *Brain Res.* 25, 55–62. doi: 10.1016/0006-8993(71)90566-X

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644–652. doi: 10.1038/nbt.1883

Guo, J., Ling, H., Wu, Q., Xu, L., and Que, Y. (2014). The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. *Sci. Rep.* 4:7042. doi: 10.1038/srep07042

Hochner, B., Shomrat, T., and Fiorito, G. (2006). The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. *Biol. Bull.* 210, 308–317. doi: 10.2307/4134567

Hong, S.-Y., Seo, P. J., Yang, M.-S., Xiang, F., and Park, C.-M. (2008). Exploring valid reference genes for gene expression studies in *Brachypodium distachyon* by real-time PCR. *BMC Plant Biol.* 8:112. doi: 10.1186/1471-2229-8-112

Huffard, C. L., Boneka, F., and Full, R. J. (2005). Underwater bipedal locomotion by octopuses in disguise. *Science* 307:1927. doi: 10.1126/science.1109616

Huggett, J., Dheda, K., Bustin, S., and Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. *Genes Immun.* 6, 279–284. doi: 10.1038/ sj.gene.6364190

Imperadore, P. (2017). Nerve regeneration in the cephalopod mollusc *Octopus vulgaris*: A journey into morphological, cellular and molecular changes including epigenetic modifications. PhD Thesis. Rende, Italy: Università della Calabria.

Jin, Y., Liu, F., Huang, W., Sun, Q., and Huang, X. (2019). Identification of reliable reference genes for qRT-PCR in the ephemeral plant *Arabidopsis pumila* based on full-length transcriptome data. *Sci. Rep.* 9:8408. doi: 10.1038/s41598-019-44849-1

Kandel, E.R. (1979). Behavioral biology of Aplysia. A contribution to the comparative study of opisthobranch molluscs. San Francisco, CA: W.H. Freeman and Company.

Kimbell, J. R., and McFall-Ngai, M. J. (2003). The squid-vibrio symbioses: from demes to Genes. *Integr. Comp. Biol.* 43, 254–260. doi: 10.1093/icb/43.2.254

Liscovitch-Brauer, N., Alon, S., Porath, H. T., Elstein, B., Unger, R., Ziv, T., et al. (2017). Trade-off between transcriptome plasticity and genome evolution in cephalopods. *Cells* 169, 191–202.e11. doi: 10.1016/j.cell.2017.03.025

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta$ CT method. *Methods* 25, 402–408. doi: 10.1006/meth.2001.1262

Macchi, F., Edsinger, E., and Sadler, K. C. (2022). Epigenetic machinery is functionally conserved in cephalopods. *BMC Biol.* 20:202. doi: 10.1186/s12915-022-01404-1

Marini, G., De Sio, F., Ponte, G., and Fiorito, G. (2017). "Behavioral analysis of learning and memory in cephalopods" in *Learning and memory: A comprehensive reference*. ed. J. H. Byrne. *2nd* ed (Amsterdam, The Netherlands: Academic Press, Elsevier), 441–462.

Martinez, J. L., Thompson, K. J., and Sikorski, A. M. (2007). "Chapter 4 - gene expression in learning and memory" in *Neurobiology of learning and memory*. eds. R. P. Kesner and J. L. Martinez. 2nd ed (Burlington, MA: Academic Press), 129–153.

Mather, J. A. (1998). How do octopuses use their arms? J. Comp. Psychol. 112, 306–316. doi: 10.1037/0735-7036.112.3.306

Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F., et al. (2009). A novel and universal method for microRNA RT-qPCR data normalization. *Genome Biol.* 10:R64. doi: 10.1186/gb-2009-10-6-r64

Musacchia, F., Basu, S., Petrosino, G., Salvemini, M., and Sanges, R. (2015). Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. *Bioinformatics* 31, 2199–2201. doi: 10.1093/ bioinformatics/btv106

Nödl, M.-T., Fossati, S. M., Domingues, P., Sánchez, F. J., and Zullo, L. (2015). The making of an octopus arm. *EvoDevo* 6:19. doi: 10.1186/s13227-015-0012-8

Nolan, T., Hands, R. E., and Bustin, S. A. (2006). Quantification of mRNA using realtime RT-PCR. *Nat. Protoc.* 1, 1559–1582. doi: 10.1038/nprot.2006.236

O'Brien, C. E., Ponte, G., and Fiorito, G. (2019). "Octopus☆" in *Encyclopedia of animal behavior*. ed. J. C. Choe. *Second* ed (Oxford: Academic Press), 142–148. doi: 10.1016/B978-0-12-809633-8.90074-8

Packard, A. (1972). Cephalopods and fish: the limits of convergence. *Biol. Rev.* 47, 241–307. doi: 10.1111/j.1469-185X.1972.tb00975.x

Packard, A., and Albergoni, V. (1970). Relative growth, nucleic acid content and cell numbers of the brain in *Octopus vulgaris* (Lamarck). *J. Exp. Biol.* 52, 539–552. doi: 10.1242/jeb.52.3.539

Petrosino, G. (2015). The transcriptional landscape of the nervous system of *Octopus vulgaris*. PhD Thesis. Naples, Italy: Università degli Studi di Napoli Federico II.

Petrosino, G., Ponte, G., Volpe, M., Zarrella, I., Ansaloni, F., Langella, C., et al. (2022). Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain. *BMC Biol.* 20:116. doi: 10.1186/s12915-022-01303-5

Petrosino, G., Zarrella, I., Ponte, G., Basu, S., Calogero, R., Fiorito, G., et al. (2015). "De-novo assembly of the octopus transcriptome integrating custom and public sequencing data" in *BIOINFO - BITS*. Available at: https://bioinformatics.hsanmartino. it/bits_library/library/01652.pdf

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 29:e45. doi: 10.1093/nar/29.9.e45

Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – excel-based tool using pair-wise correlations. *Biotechnol. Lett.* 26, 509–515. doi: 10.1023/B:BILE.0000019559.84305.47

Ponte, G., Chiandetti, C., Edelman, D. B., Imperadore, P., Pieroni, E. M., and Fiorito, G. (2022). Cephalopod behavior: from neural plasticity to consciousness. *Front. Syst. Neurosci.* 15:787139. doi: 10.3389/fnsys.2021.787139

Prado-Álvarez, M., Dios, S., García-Fernández, P., Tur, R., Hachero-Cruzado, I., Domingues, P., et al. (2022). De novo transcriptome reconstruction in aquacultured early life stages of the cephalopod *Octopus vulgaris*. *Sci. Data* 9:609. doi: 10.1038/ s41597-022-01735-2

Rubie, C., Kempf, K., Hans, J., Su, T., Tilton, B., Georg, T., et al. (2005). Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. *Mol. Cell. Probes* 19, 101–109. doi: 10.1016/j.mcp.2004.10.001

Schmidbaur, H., Kawaguchi, A., Clarence, T., Fu, X., Hoang, O. P., Zimmermann, B., et al. (2022). Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. *Nat. Commun.* 13:2172. doi: 10.1038/s41467-022-29694-7

Shigeno, S., Andrews, P. L. R., Ponte, G., and Fiorito, G. (2018). Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates. *Front. Physiol.* 9:952. doi: 10.3389/fphys.2018.00952

Shigeno, S., Parnaik, R., Albertin, C. B., and Ragsdale, C. W. (2015). Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. *Zool. Lett.* 1:26. doi: 10.1186/s40851-015-0026-z

Shigeno, S., and Ragsdale, C. W. (2015). The gyri of the octopus vertical lobe have distinct neurochemical identities. J. Comp. Neurol. 523, 1297–1317. doi: 10.1002/cne.23755

Silver, N., Best, S., Jiang, J., and Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *BMC Mol. Biol.* 7:33. doi: 10.1186/1471-2199-7-33

Sirakov, M., Zarrella, I., Borra, M., Rizzo, F., Biffali, E., Arnone, M. I., et al. (2009). Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the cephalopod mollusc *Octopus vulgaris*. *BMC Mol. Biol.* 10:70. doi: 10.1186/1471-2199-10-70

Styfhals, R., Zolotarov, G., Hulselmans, G., Spanier, K. I., Poovathingal, S., Elagoz, A. M., et al. (2022). Cell type diversity in a developing octopus brain. *Nat. Commun.* 13:7392. doi: 10.1038/s41467-022-35198-1

Tarazona, O. A., Lopez, D. H., Slota, L. A., and Cohn, M. J. (2019). Evolution of limb development in cephalopod mollusks. *eLife* 8:e43828. doi: 10.7554/eLife.43828

Udvardi, M. K., Czechowski, T., and Scheible, W.-R.d. (2008). Eleven Golden rules of quantitative RT-PCR. *Plant Cell* 20, 1736–1737. doi: 10.1105/tpc.108.061143

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., et al. (2012). Primer3—new capabilities and interfaces. *Nucleic Acids Res.* 40:e115. doi: 10.1093/nar/gks596

van Giesen, L., Kilian, P. B., Allard, C. A. H., and Bellono, N. W. (2020). Molecular basis of chemotactile sensation in octopus. *Cells* 183, 594–604.e514. doi: 10.1016/j. cell.2020.09.008

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* 3 research0034.0031, 1–12. doi: 10.1186/gb-2002-3-7-research0034

Whang, I., Kang, H.-S., and Kim, Y. (2020). Validation of reference genes for quantitative gene expression studies in *Octopus minor*. *Ocean Sci. J.* 55, 183–191. doi: 10.1007/s12601-020-0007-9

Xie, F., Xiao, P., Chen, D., Xu, L., and Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. *Plant Mol. Biol.* 80, 75–84. doi: 10.1007/s11103-012-9885-2

Xu, R., and Zheng, X. (2018). Selection of reference genes for quantitative real-time PCR in *Octopus minor* (Cephalopoda: Octopoda) under acute ammonia stress. *Environ. Toxicol. Pharmacol.* 60, 76–81. doi: 10.1016/j.etap.2018.04.010

Young, J. Z. (1932). Memoirs: on the cytology of the neurons of cephalopods. J. Cell Sci. s2-75, 1–47. doi: 10.1242/jcs.s2-75.297.1

Young, J. Z. (1963). The number and sizes of nerve cells in *octopus. Proc. Zool. Soc. Lond* 140, 229–254. doi: 10.1111/j.1469-7998.1963.tb01862.x

Young, J.Z. (1964). A model of the brain. Oxford: Clarendon Press.

Zar, J.H. (1999). Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall.

Zarrella, I. (2011). Testing changes in gene expression profiles for *Octopus vulgaris* (Mollusca, Cephalopoda). PhD Thesis, Naples, Italy: Stazione Zoologica Anton Dohrn (Italy) and Open University (UK).

Zarrella, I., Ponte, G., Baldascino, E., and Fiorito, G. (2015). Learning and memory in *Octopus vulgaris*: a case of biological plasticity. *Curr. Opin. Neurobiol.* 35, 74–79. doi: 10.1016/j.conb.2015.06.012

Zhang, X., Mao, Y., Huang, Z., Qu, M., Chen, J., Ding, S., et al. (2012). Transcriptome analysis of the *Octopus vulgaris* central nervous system. *PLoS One* 7:e40320. doi: 10.1371/journal.pone.0040320

Zullo, L., Eichenstein, H., Maiole, F., and Hochner, B. (2019). Motor control pathways in the nervous system of *Octopus vulgaris* arm. *J. Comp. Physiol. A.* 205, 271–279. doi: 10.1007/s00359-019-01332-6

Zullo, L., Fossati, S. M., Imperadore, P., and Nödl, M. T. (2017). Molecular determinants of cephalopod muscles and their implication in muscle regeneration. *Front. Cell Dev. Biol.* 5:53. doi: 10.3389/fcell.2017.00053