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Introduction: Previous studies have suggested that the dysregulation of purine

metabolism may be associated with autism spectrum disorder (ASD). Here, we

adopted metabolomics and transcriptomics to verify and explore the underlying

molecular mechanism of purine metabolism dysfunction in ASD and identify

potential biomarkers within the purine metabolism pathway.

Methods: Ultra-high-performance liquid chromatography-mass spectrometry was

used to obtain the plasma metabolic profiles of 12 patients with ASD and 12

typically developing (TD) children. RNA sequencing was used to screen differentially

expressed genes related to the purine metabolic pathway and purine receptor-

coding genes in 24 children with ASD and 21 healthy controls. Finally, serum uric

acid levels were compared in 80 patients with ASD and 174 TD children to validate

the omics results.

Results: A total of 66 identified metabolites showed significant between-group

differences. Network analysis showed that purine metabolism was the most strongly

enriched. Uric acid was one of the most highlighted nodes within the network.

The transcriptomic study revealed significant differential expression of three purine

metabolism-related genes (adenosine deaminase, adenylosuccinate lyase, and

bifunctional enzyme neoformans 5-aminoimidazole-4-carboxamide ribonucleotide

(AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase) (p < 0.01) and

five purinergic receptor genes (P2X7, P2Y2, P2Y6, P2Y8, and P2Y10) (p < 0.05). In the

validation sample, there was a significant difference in serum uric acid levels between

the two groups (p < 0.001), and the area under the curve for uric acid was 0.812

(sensitivity, 82.5%; specificity, 63.8%).

Discussion: Patients with ASD had dysfunctional purine metabolic pathways, and

blood uric acid may be a potential biomarker for ASD.

KEYWORDS

autism spectrum disorders (ASD), purine metabolism, metabolomics (OMICS),
transcriptomics, RNA sequencing (RNA-seq), uric acid (UA)

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
impairments in social interaction, stereotyped behavioral patterns, and narrow interests
(Francesmonneris et al., 2013). The global prevalence of ASD has increased dramatically over the
past few decades, and to date, the prevalence of the disease has reached 1 in 44, with its prevalence
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being 4.2 times higher in boys than in girls (Maenner et al., 2021).
Currently, the etiology of ASD is unknown, with its occurrence
and progression being influenced by genetic and environmental risk
factors (Taylor et al., 2020). Several pathophysiological mechanisms
have been found to play a key role in the development of ASD, such
as oxidative stress, neuroinflammation, immune dysregulation, and
mitochondrial dysfunction (Vargas et al., 2005; Saffari et al., 2019;
Citrigno et al., 2020; Chen et al., 2021).

The diagnostic tools for ASD are limited, and the diagnosis
is mainly based on scale assessment; however, objective biological
diagnostic indicators are lacking. A previous study shows that most
ASD is not diagnosed in children until they are 4 years of age or
older, which may lead to a delay in treatment (Christensen et al.,
2019). With the current lack of medications for core ASD symptoms,
special education training remains the mainstay to improve patient
function, and the earlier it is performed, the better (Howes et al.,
2018). Therefore, to better target the underlying causes of ASD
for diagnosis and treatment, it is essential to identify reliable
biomarkers closely related to ASD (Shen et al., 2020). Biomarkers
help not only in early objective diagnosis but also in identifying
the pathophysiological mechanisms that influence the development
of the disease, thus allowing therapeutic interventions to stop or
improve the development of specific pathologies before the onset of
obvious psychiatric and behavioral symptoms (Marin, 2016).

Multiple metabolomics studies have identified dysregulated
purine metabolism in children with ASD, as well as abnormalities
in multiple metabolites in the purine metabolic pathway, such as
uric acid, inosine, and purine products (Gevi et al., 2016; Bitar
et al., 2018; Kurochkin et al., 2019; Xiong et al., 2019; Liang et al.,
2020; Mussap et al., 2020). It is worth noting that uric acid, an
end product of the purine metabolic pathway, is a hydrophilic
antioxidant that exerts neuroprotective effects through antioxidative
stress (Glantzounis et al., 2005; Bowman et al., 2010). In addition,
abnormal metabolism of enzymes related to purine metabolism is
associated with ASD. Adenylosuccinate lyase (ADSL) is a key enzyme
in purine de novo synthesis and purine nucleotide recycling pathways,
and ADSL deficiency may lead to ASD symptoms in some patients
(Jaeken et al., 1988; Toth and Yeates, 2000). However, the evidence
is limited and not always consistent, which may partly be due to
the small sample size or differences in the tissues tested. Other
sources of inconsistency include differences in daily living, such as
dietary habits, which may vary in different regions or ethnic groups
(Sanctuary et al., 2018). Hence, it is necessary to replicate and verify
previous findings in a particular population.

Moreover, the relationship between abnormal purine metabolism
and the etiology of ASD is currently unclear, and further research
is necessary to investigate the molecular or genetic origin of
purine pathway abnormalities. Previous studies have indicated
that purinergic signaling may be involved in neurodevelopmental
processes such as cell proliferation, differentiation, and neuron-glial
cell interactions (Burnstock et al., 2011). Depending on the ligand,
purinergic signaling receptors are divided into two major classes: P1
(adenosine receptors) and P2 (ATP/ADP and UTP/UDP receptors)
(Burnstock, 2007). The latter includes P2X and P2Y, which mediate
glial cell hyperactivation and the onset of inflammatory responses
in the central nervous system (CNS) (Abbracchio and Ceruti, 2006;
Inoue, 2008; Huang et al., 2019).

It is known that omics is an effective method for finding
biomarkers (Shen et al., 2020). Transcripts of an organism can

reflect the dynamics of changes in the genes being expressed, while
metabolites can directly and accurately reflect the pathophysiological
state of the organism. Therefore, this study used a combined multi-
omics analysis to identify diagnostic biomarkers within the purine
metabolism pathway more comprehensively.

2. Materials and methods

2.1. Participants

This study contains three sample sets: metabolome,
transcriptome, and validation sets, which were used for ultra-
high-performance liquid chromatography mass spectrometry
(UHPLC-MS/MS) analysis, RNA sequencing (RNA-seq), and blood
uric acid detection, respectively. During 2018–2019, all ASD patients
were recruited from the Second Xiangya Hospital of Central South
University (Changsha, China), and typically developing (TD)
children as healthy controls were recruited from routine physical
examinations in general schools in Changsha, China.

The enrollment criteria for all ASD children were as follows:
(1) age 3–16 years; (2) met the American Diagnostic and Statistical
Manual of Mental Disorders-IV Text Revision (DSM-IV-TR)
diagnostic criteria for ASD; and (3) met the classification of
ASD by the validated Chinese version of the Autism Diagnostic
Interview-Revised (ADI-R) and the Autism Diagnostic Observation
Schedule (ADOS). The exclusion criteria for ASD were as follows:
(1) serious physical diseases or disabilities, such as congenital
heart disease, thyroid disease, diseases with severely abnormal
liver or kidney function, and diseases with abnormal vision or
hearing; (2) serious neurological disorders, such as traumatic
brain injury, encephalitis, epilepsy, hyperthermia, birth injury, and
electroencephalography (EEG) abnormalities; (3) known history
of genetic disorders or syndromes, such as Down syndrome and
Fragile-X syndrome; (4) other neurodevelopmental disorders, such
as attention-deficit/hyperactivity disorder, specific learning disorders,
and motor disorders; and (5) other severe mental illnesses, such
as schizophrenia and bipolar disorder. The enrollment criteria for
healthy control included: (1) age 3–16 years; and (2) typically
developing children without obvious language, behavioral, and social
problems. The exclusion criteria for healthy controls were consistent
with those of the ASD group.

The study was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South University, with voluntary
participation as the principle, to sign an informed consent form after
all parents or other legal guardians were informed about the relevant
content of this study in detail.

2.2. Blood sample collection

2.2.1. Metabolome set
Fasting peripheral blood from children with ASD and TD

was collected in 5 ml using EDTA anticoagulation tubes, mixed
thoroughly, and then centrifuged for 10 min. After centrifuging at
2000 rpm for 10 min at 4◦C using a cryogenic centrifuge, the plasma
(supernatant) was dispensed into multiple 0.5-ml centrifuge tubes
and stored in a−80◦C refrigerator for uniform testing.
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2.2.2. Transcriptome set
Venous blood (10 ml) was collected from the peripheral vein of

the children using a whole blood RNA tube (BD PAXgene tube),
which was then gently inverted 8–10 times after collection to mix
the protective agent in the tube with the blood more thoroughly, and
stored in a−80◦C refrigerator.

2.2.3. Validation set
Fasting peripheral blood (2 ml) was collected from children

using separated gel coagulation-promoting tubes, stored at room
temperature, and protected from light for half an hour after
collection. The supernatant was aspirated after centrifugation at
3000 rpm for 10 min to obtain serum. Serum samples were sent to
a fully automated biochemical analyzer (7170A, Japan) for detection
of uric acid concentration within 2 h after collection.

2.3. UHPLC-MS/MS analysis

LC-MS/MS analyses were performed using the Vanquish UHPLC
system (Thermo Fisher Scientific, Waltham, MA, USA) coupled with
an Orbitrap Q Exactive HF-X mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). Q Exactive HF-X mass spectrometer
was operated in positive/negative polarity mode with a spray voltage
of 3.2 kV, a capillary temperature of 320◦C, a sheath gas flow rate of
35 arb, and an auxiliary gas flow rate of 10 arb (see Supplementary
methods 1 for details).

2.4. RNA-seq

RNA integrity was assessed using the RNA Nano 6000 Assay Kit
and the Bioanalyzer 2100 software (Agilent Technologies, Palo Alto,
CA, USA). Libraries were constructed according to the instructions of
the NEBNext R© UltraTM RNA Library Prep Kit (New England Biolabs
Inc., Ipswich, MA, USA). The effective concentration of the library
was quantified using qRT-PCR to ensure the quality of the library.

The basic principle of sequencing is sequencing during synthesis.
Clustering of index-coded samples was performed on a cBot Cluster
Generation System using the TruSeq PE Cluster Kit v3-cBot-HS
(Illumina, San Diego, CA, USA). After cluster generation, the library
preparations were sequenced on an Illumina Novaseq platform,
and 150 bp paired-end reads were generated (see Supplementary
methods 2 for details).

2.5. Data processing and statistical analysis

2.5.1. Metabolomic analysis
The raw data files generated by UHPLC-MS/MS were processed

using Compound Discoverer 3.0 (CD 3.0, Thermo Fisher) to perform
peak alignment, peak picking, and quantitation for each metabolite.
The main parameters were set as follows: retention time tolerance,
0.2 min; actual mass tolerance, 5 ppm; signal intensity tolerance, 30%;
signal/noise ratio, 3; and minimum intensity, 100000. Peak intensities
were normalized to the total spectral intensity. The peaks were then

matched using the mzCloud1 and ChemSpider2 databases to obtain
accurate qualitative and quantitative results.

A comprehensive analysis of the processed metabolomics dataset
was performed using the MetaboAnalyst 5.03 web tool (Pang et al.,
2021). The univariate analysis included Student’s t-test and fold
change (FC) analysis. To correct for multiple testing and false
positives, we used a false discovery rate (FDR) cut-off of P < 0.05.
For multivariate statistical analysis, orthogonal partial least squares
discriminant analysis (OPLS-DA) was performed, and the variable
importance in the projection (VIP) value of each variable was
calculated. VIP > 1, p < 0.05, and FDR < 0.05 were used to
screen for significantly differential metabolites. These metabolites
were subsequently subjected to network analysis (see Supplementary
methods 3 for details). Receiver operating characteristic (ROC)
curves and area under the curve (AUC) were calculated using SPSS26
to quantify the diagnostic performance of the differential metabolites.

2.5.2. Transcriptome analysis
Sequenced fragments were converted into sequence data (reads)

by CASAVA base identification, which mainly includes the sequence
information and quality information of the fragment. Through the
data quality control steps of raw data filtering, as well as inspections
of sequencing error rate and GC content distribution, sequence data
used for subsequent analysis (clean reads) were obtained. Annotation
files for the reference genome and gene model were downloaded
directly from the genome website. The index of the reference genome
was built using Hisat2 v2.0.5, and clean paired-end reads were aligned
to the reference genome using Hisat2 v2.0.5. FeatureCounts v1.5.0-p3
was used to count the number of reads mapped to each gene.

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotation, the following genes related to the purine
metabolism pathway were identified: (1) enzymes for purine
synthesis, recycling, and metabolism, including phosphoribosyl
pyrophosphate synthase (PRPS), adenosine deaminase (ADA),
adenylosuccinate lyase (ADSL), the bifunctional enzyme neoformans
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)
transformylase/inosine monophosphate (IMP) cyclohydrolase
(ATIC), and hypoxanthine guanine phosphoribosyltransferase
(HPRT); (2) purinergic receptors, divided into P1 and P2 receptors,
where P1 receptors include A1, A2A, A2B, and A3 receptors; P2
receptors include P2X1, P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2,
P2Y4, P2Y6, P2Y8, P2Y10, P2Y11, P2Y12, P2Y13, and P2Y14.

Differential expression analysis of these genes was performed
using the DESeq2 R package (1.20.0). The resulting P-values were
adjusted using Benjamini and Hochberg’s approach for controlling
the FDR. Adjusted p-values < 0.05 and absolute FC > 1.5 (|
log2FC| > 0.585) were set as the threshold for significantly differential
gene expression.

2.5.3. Validation set analysis
Using SPSS26, the Mann–Whitney U test was used to compare

blood uric acid concentrations between the ASD and TD groups.
Binary logistic regression and ROC curve analysis were used
to determine the adjunctive diagnostic value of uric acid in
children with ASD.

1 https://www.mzcloud.org/

2 http://www.chemspider.com/

3 https://www.metaboanalyst.ca/
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FIGURE 1

Flowchart of this study. ASD, autism spectrum disorder; TD, typically developing; UHPLC-MS/MS, ultra-high-performance liquid chromatography mass
spectrometry; ROC, receiver operating characteristic curve.

3. Results

3.1. Demographic and clinical
characteristics of participants

Three datasets were included in this study (Figure 1). The
metabolome set included plasma samples from 24 boys (12 ASD
patients aged 9–13 years and 12 TD children aged 10–14 years)
used for metabolomic analysis. The transcriptome set included blood
samples from 24 ASD patients (male/female: 24/0, 10–15 years)
and 21 TD children (male/female: 10/11, 13–14 years) used for
transcriptome analysis. The validation set included 80 patients with
ASD (male/female: 75/5, 3–16 years) and 174 children with TD
(male/female: 152/22, 3–16 years). The clinical and demographic
characteristics of the participants are shown in Table 1.

3.2. Metabolite identification

Twenty-four plasma samples were subjected to untargeted
metabolomics analysis, which identified 611 positive-mode features
and 170 negative-mode features. After log transformation and Pareto
scaling of the data, a t-test, fold-change analysis, and OPLS-DA
analysis were performed. As shown in Supplementary Figure 1,
there were remarkable separations between ASDs and TDs. After the
permutation test, all models were statistically significant (p ≤ 0.001).
Finally, 66 identified metabolites showed significant group differences
(VIP > 1 and FDR-P < 0.05) (Supplementary material).

We further performed a metabolite-metabolite network
analysis of the differential metabolites to highlight the potential
functional relationships among them. Uric acid, dihydrotestosterone
(androstanolone), bilirubin, pantothenic acid, allantoic acid,
and 3,3’,4’5-tetrahydroxystilbene (piceatannol) were the most
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TABLE 1 Demographic characteristics of the study participants.

Characteristics Metabolomics sample set Transcriptome sample set Validation sample set

ASD (n = 12) TD (n = 12) ASD (n = 24) TD (n = 21) ASD (n = 80) TD (n = 174)

Male, n (%) 12 (100.0) 12 (100.0) 24 (100.0) 10 (47.6) 75 (93.8) 152 (87.4)

Age (years, Mean± SD) 11.00± 1.54 13.08± 1.31 11.38± 1.56 13.62± 0.50 9.03± 3.49 9.11± 3.44

ADOS (Mean ± SD)

Communication 6.82± 2.23 — 7.63± 2.34 — 7.53± 2.13 —

Reciprocal social interaction 10.35± 2.01 — 10.33± 2.85 — 10.92± 2.28 —

Communication + social interaction 17.18± 3.82 — 17.96± 4.97 — 18.45± 4.13 —

Play/Imagination and Creativity 2.64± 1.29 — 3.00± 1.22 — 2.91± 1.17 —

Stereotyped behavior and restricted interests 2.09± 2.34 — 3.29± 2.65 — 3.24± 2.13 —

ADI-R (Mean ± SD)

Qualitative abnormalities in social
interaction

24.00± 4.57 — 26.38± 3.70 — 23.99± 4.41 —

Qualitative abnormalities in communication 18.00± 4.82 — 18.75± 3.59 — 17.64± 4.24 —

Restricted, repetitive, and stereotyped
patterns of behavior

6.75± 3.82 — 6.83± 2.75 — 6.08± 2.65 —

Abnormality of development evident at or
before 36 months

3.25± 1.06 — 3.75± 1.19 — 3.76± 1.32 —

ADOS, autism diagnostic observation schedule; ADI-R, autism diagnostic interview-revised.

highlighted nodes in the network (Figure 2). Concomitantly, this
network analysis module also performed a KEGG enrichment
analysis of these significant metabolites, which revealed that
purine metabolism and steroid hormone biosynthesis were
most strongly enriched (Supplementary Table 1). Details of
the significant metabolites are presented in Table 2. Compared with
TDs, uric acid, allantoic acid, bilirubin, and dihydrotestosterone
(androstanolone) levels decreased, while D-pantothenic acid and
3,3’,4’5-tetrahydroxystilbene (piceatannol) levels increased in ASD
patients.

To quantify the diagnostic performance of these six plasma
metabolites, a ROC curve analysis was performed. The results showed
that uric acid had the highest AUC, with a value of 0.958 (p < 0.001).
Therefore, we performed validation of uric acid in a larger sample.
The ROC curves of other metabolites ranked by AUC are shown in
Supplementary Table 2.

3.3. Transcriptomics result

Forty-five samples were subjected to RNA transcriptional
sequencing to obtain read counts of individual gene expression
for each sample. The results showed significant differences in
the expression of purine metabolism-related genes ADA, ADSL,
and ATIC between ASDs and TDs, in which, ADA and ATIC
were significantly up-regulated while ADSL was significantly down-
regulated (Table 3; Supplementary Table 3). The normalized count
values of purinergic receptor transcripts in ASDs and TDs were
measured using the same method as above. The results showed
significant differences in the expression of P2X7, P2Y2, P2Y6,
P2Y8, and P2Y10, with the expression of P2Y2, P2Y6, and P2Y8
being significantly upregulated, while the expression of P2X7 and
P2Y10 being significantly down-regulated (Table 3; Supplementary
Table 3). The results of the ROC curve analysis of purine metabolism-
related genes are shown in Supplementary Table 2.

3.4. Measurement of serum uric acid
concentration

The Mann–Whitney U test was used to compare uric acid
concentrations in 80 patients with ASD (median: 293.10, IQR:
94.05) and 174 children with TD (n = 176, median: 364.00, IQR:
110.75), with the results showing a significant difference (p < 0.001)
(Supplementary Figure 2). Binary logistic regression and ROC
analyses were performed to quantify the diagnostic performance
of uric acid. Sex, age, and uric acid (odds ratio [OR], 0.979; 95%
confidence interval [CI], 0.973–0.985; P < 0.001) were entered into
the regression model, with an overall correct prediction rate of
75.2% (Supplementary Table 4). The AUC for uric acid in the
validation set was 0.812 (P < 0.001) (Supplementary Figure 3), with
a sensitivity of 82.5%, specificity of 63.8%, Youden index of 0.463, and
corresponding uric acid concentration of 347.7 umol/L.

4. Discussion

To the best of our knowledge, this is the first study to utilize
metabolomics complemented with transcriptomics in ASD. Through
metabolomics analysis, we verified that the purine metabolic pathway
was significantly altered in patients with ASDs and found that uric
acid was one of the most significant differential metabolites between
ASDs and TDs. RNA-seq analysis revealed significant differences
in the transcriptional expression of several key enzymes of purine
metabolism (ADA, ADSL, and ATIC) (Figure 3; Supplementary
Figure 4) and purinergic signaling receptor genes (P2Y2, P2Y6, P2Y8,
P2X7, and P2Y10) between the two groups.

In this study, uric acid, an antioxidant, was reduced in the blood
of patients with ASD. Similarly in the Chinese Han population,
Wang et al. (2016) also found reduced serum uric acid levels in
children with ASD; however, when logistic regression analysis was
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FIGURE 2

Analysis of metabolic networks between significantly different metabolites. The chemical-chemical associations of the metabolite networks were
extracted from STITCH (http://stitch.embl.de/), using only highly confident interactions. In graph networks, nodes with a higher number of connections
to other nodes are more important and have larger node sizes, and they act as hubs in the network. The colors represent the direction of change of ASD
relative to the TD group: green nodes indicate a decrease, and red nodes indicate an increase. The metabolites represented by the gray nodes are not
included in the results found in this study but are based on metabolites associated with similar chemical structures and similar molecular activities.

TABLE 2 Significant differential metabolites and their metabolic pathways derived from network analysis discriminated between ASD and TD children.

Metabolite FDR-P value VIP Fold change Trenda Pathway

Uric acid 0.001 2.42 0.48 ↓ Purine metabolism

Dihydrotestosterone 0.026 1.90 0.60 ↓ Steroid hormone biosynthesis

Allantoic acid 0.040 1.71 0.71 ↓ Purine metabolism

Bilirubin 0.046 1.77 0.48 ↓ Porphyrin and chlorophyll metabolism

D-Pantothenic acid 0.040 1.76 1.70 ↑ Pantothenate and CoA biosynthesis

3,3’,4’5-tetrahydroxystilbene 0.002 2.17 1.16 ↑ Stilbenoid, diarylheptanoid, and gingerol biosynthesis

FDR-P values, adjusted P-values by False Discovery Rate method; VIP, variable importance in the projection.
aThe arrow shows the change direction of ASD group relative to TD group: ↑means increase, ↓means decrease.

performed, uric acid became less significant. The metabolomic results
of that study also showed significant changes in docosahexaenoic
acid and sphingosine 1-phosphate, which finding was not obtained
in the present study. The reasons for this discrepancy may be
due to differences in technical or analytical methodologies, and the
issue of dietary control prior to sample collection may also have
a different impact on the results. In addition, there is inconsistent
metabolism of uric acid levels in the urine of children with ASD.
Multiple metabolomic studies have identified a significant decrease
in uric acid levels in the urine of patients with ASD. In contrast,

Page and Coleman (2000) observed hyperuricemic metabolism in
some patients with autism subtypes, which was attributed to
increased de novo purine synthesis in these patients. We speculate
that there are two possible reasons for the inconsistent metabolism of
uric acid. First, the metabolism varies between ASD subtypes; second,
the metabolism can be affected by drugs, such as an increase in serum
uric acid in ASD patients treated with risperidone (Vanwong et al.,
2016).

According to our transcriptomic results, ADSL expression was
reduced, whereas ADA and ATIC expression were increased, and
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TABLE 3 Significant differentially expressed genes and their trends were obtained by comparing the normalized counts of gene expression in the
ASD and TD groups.

Gene name ASD (n = 24) TD (n = 21) Between-group difference

Mean SD Mean SD P-adja Log2FC Trendb

Purine pyrimidine synthase

ADA 456.09 79.24 353.47 59.63 <0.001 0.51 ↑

ADSL 71.02 13.06 85.89 16.50 0.004 −0.29 ↓

ATIC 541.48 62.18 458.21 64.94 <0.001 0.24 ↑

Purinergic receptor

P2X7 353.06 86.40 428.28 91.48 0.015 −0.281 ↓

P2Y2 176.50 69.64 129.19 49.99 0.006 0.450 ↑

P2Y6 37.51 12.67 26.74 8.06 0.002 0.484 ↑

P2Y8 3134.74 445.38 2512.10 299.43 <0.001 0.319 ↑

P2Y10 389.04 81.16 485.39 62.38 <0.001 −0.319 ↓

ADA, adenosine deaminase; ADSL, adenylosuccinate lyase; ATIC, bifunctional enzyme AICAR transformylase/IMP cyclohydrolase; Log2FC, Log2FoldChange.
aThe adjusted significance level of the least significant difference was 0.05.
bThe arrow shows the change direction of ASD group relative to TD group: ↑means increase, ↓means decrease.

FIGURE 3

Changes in key enzymes and the end product uric acid in the purine metabolism pathway of ASD. PRPP, phosphoribosylpyrophosphate; SAICAR,
succinylaminoimidazole carboxamide ribotide; AICAR, aminoimidazole carboxamide ribotide; FAICAR, formyloaminoimidazole carboxamide ribotide;
IMP, inosine monophosphate; AMP, adenine monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphosphate; XMP, xanthine
monophosphate; GMP, guanine monophosphate; GDP, guanine diphosphate; GTP, guanine triphosphate; ADSL, adenylosuccinate lyase; ATIC,
bifunctional enzyme AICAR transformylase/IMP cyclohydrolase; ADA, adenosine deaminase.

these three enzymes were closely associated with de novo purine
synthesis (Toth and Yeates, 2000; Cristalli et al., 2001; Boutchueng-
Djidjou et al., 2015). Previous studies (Stubbs et al., 1982; Marie
et al., 2004) related to neurodevelopmental disorders have shown
reduced concentrations or deficiencies of ADA and ATIC, while
very few cases of elevated expression levels have been reported.
ADSL deficiency leads to autism-related features, which have been
consistently reported in studies on inborn errors of metabolism

(IEM) associated with ASD (Jaeken and Van den Berghe, 1984; Jaeken
et al., 1988; Cohen et al., 2005). Accordingly, we speculate that the
reduced uric acid concentration in ASD may be due to an imbalance
in purine metabolism, the most critical reason for which is probably
the decreased expression of upstream ADSL. However, a noteworthy
point is that innate errors associated with purine synthesis and
metabolism may arise from mutations in specific proteins, which
interfere with the function of various key enzymes to different degrees
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and affect their activity (Dewulf et al., 2022). Therefore, measuring
the expression of enzymes alone is not sufficient, but the activity of
enzymes should also be considered.

Oxidative stress has been implicated as one of the
pathophysiological mechanisms underlying ASD, which may be
caused by an imbalance between endogenous/exogenous prooxidant
generation and antioxidant defense mechanisms against reactive
oxygen species (ROS) in children with ASD (Kern and Jones, 2006;
Manivasagam et al., 2020). Considering that blood uric acid can
reflect uric acid levels in the cerebrospinal fluid (Bowman et al.,
2010), this suggests that the decrease in uric acid may lead to the CSN
of ASD patients experiencing more oxidative stress, which affects
the neurodevelopment process. We further compared the blood uric
acid levels in a larger sample of ASD and TD children, and the results
were significantly different. Moreover, uric acid showed excellent
diagnostic performance in both the metabolomic and validation
sample sets. Therefore, we believe that uric acid can be used as a
reliable biomarker for ASD, which is not only easy to detect but also
cost-effective.

Additionally, this study found that the expression of the P2X7
receptor was lower in children with ASD. Naviaux et al. (2013)
found that the expression of the P2X7 receptor decreased in the
ASD mouse model, which returned to normal after treatment with
antipurinergic drugs. Under pathological conditions, the purinergic
receptor is upregulated or downregulated, which regulates the
occurrence and development of CNS inflammatory responses in a
complex manner (Huang et al., 2019). Among the P2X subtypes,
P2X7 plays a key role in the pathophysiology of CNS disorders and
mediates the strongest evidence of neuroinflammation (Lister et al.,
2007; Sperlágh and Illes, 2014). Microglia are key regulators of the
neuroinflammatory response, and when microglia-dependent P2X7
receptors are activated, a range of pro-inflammatory cytokines such
as IL-1β are released (Monif et al., 2009; Matta et al., 2019). Thus,
our results may provide preliminary research clues regarding the
mechanism of neuroinflammatory action in ASD.

There are several limitations in this study that deserve mention.
First, our omics sample size was relatively small due to the unique
nature of children with ASD, where most children did not cooperate
well during blood collection, making it difficult to obtain blood
samples. Second, there was an imbalance in the ratio of males
to females in this study. This is because in the ASD population,
the prevalence is higher in men than in women (Maenner et al.,
2021), and therefore we collected a higher proportion of male
samples. Third, only the expression levels of enzymes related to
purine metabolism were examined in this study. However, in fact,
the expression status of enzyme activity is also important for the
disease, and attention should be paid to measuring enzyme activity
in future studies as well. Fourth, the food intake of the children
prior to sample collection was not controlled in this study, while
diet plays an important role in metabolomics studies. We included
transcriptomics to increase the reliability of the metabolomic results
because the diet does not affect transcript levels. Nevertheless, our
study examined changes in the blood uric acid and purine metabolic
pathways in patients with ASD at the metabolic and transcriptional
levels, providing broader insights for future studies. If follow-up
studies can combine with genomics, it will be more convincing to
verify changes in purine metabolism at the genetic level.

5. Conclusion

In summary, blood uric acid levels were significantly lower in
children with ASD, and there were differences in the transcript levels
of multiple purine metabolism-related genes between children with
ASD and TD children. The results of this study suggest that serum
uric acid may be used as a biomarker for objective diagnosis of a
subtype of ASD, which may provide a valuable reference for more
accurate treatment of ASD in the future.
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