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Background: Despite its role in inflammation and the redox system under 
hypoxia, the effects and molecular mechanisms of hypoxia-inducible factor 
(HIF) in neuroinflammation-associated depression are poorly explored. 
Furthermore, Prolyl hydroxylase domain-containing proteins (PHDs) regulate 
HIF-1; however, whether and how PHDs regulate depressive-like behaviors under 
Lipopolysaccharides (LPS)-induced stress conditions remain covered.

Methods: To highlight the roles and underlying mechanisms of PHDs-HIF-1  in 
depression, we employed behavioral, pharmacological, and biochemical analyses 
using the LPS-induced depression model.

Results: Lipopolysaccharides treatment induced depressive-like behaviors, as 
we found, increased immobility and decreased sucrose preference in the mice. 
Concurrently, we examined increased cytokine levels, HIF-1 expression, mRNA 
levels of PHD1/PHD2, and neuroinflammation upon LPS administration, which 
Roxadustat reduced. Furthermore, the PI3K inhibitor wortmannin reversed 
Roxadustat-induced changes. Additionally, Roxadustat treatment attenuated 
LPS-induced synaptic impairment and improved spine numbers, ameliorated by 
wortmannin.

Conclusion: Lipopolysaccharides-dysregulates HIF-PHDs signaling may 
contribute to neuroinflammation-coincides depression via PI3K signaling.
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Introduction

Major depression disorder (MDD) is a global concern with increasing prevalence, 
expected to be a single leading cause among all disease burdens by 2030. Clinically, MMD 
is characterized by a lack of energy, persistent low mood, despairs, sleep disorders, and in 
severe cases, suicidal behaviors (Athira et al., 2020; Gutiérrez-Rojas et al., 2020; Abdoli 
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et al., 2022). Unfortunately, due to its complexity and heterogeneity 
as determined by genetic and environmental factors, the molecular 
mechanisms of MDD are enigmatic (Athira et  al., 2020). The 
current hypothesis of depression focuses on the hypothalamus-
pituitary–adrenal (HPA) axis, neuroplasticity, and monoamine 
neurotransmitter depletion (Brigitta, 2002; Hasler, 2010). However, 
the delayed effect of available antidepressants and lack of focus on 
cells other than neurons demonstrate the limitation of these 
specific pathological mechanisms (Andrade and Rao, 2010; Malhi 
et al., 2020). Thus， around one-third of MDD patients do not 
respond well to the existing treatments that demand the 
revitalization of psychiatric therapeutics with novel intervention 
options that engage non-monoaminergic molecular targets. In 
recent years, the inflammatory hypothesis has been proposed for 
depressive symptoms (Madeeh Hashmi et al., 2013; Gałecki and 
Talarowska, 2018) as an activated immune system has been 
founded in MMD patients (Cassano et al., 2017; Zou et al., 2018), 
which opened new avenues for depression investigation. 
We  reported previously that lipopolysaccharides (LPS) could 
induce neuroinflammation and depressive-like behavior in mice. 
Besides, it modulated inflammatory signaling molecules, including 
NLRP3, NF-кB, p-p38, etc., accompanied by depressive symptoms 
such as immobility, decreased sucrose preferences in the mice, and 
synaptic defects (Ali et al., 2020b; Li et al., 2021b).

Mechanistically, LPS administration dysregulates PI3K/Akt/
NF-kB signaling, which may lead to neuroinflammation. 
Concurrently, the altered neuroinflammatory response can coincide 
with synaptic defect via different signaling, including HDAC1 and 
Sirt3/HO-1 signaling (Li et al., 2019; Zhao et al., 2019; Ali et al., 2020a; 
Jamali-Raeufy et al., 2021; Li et al., 2021b). Similarly, LPS can initiate 
the transcription factor HIF-1 signaling, which may be  mediated 
through the NF-kB signaling (Frede et al., 2006; Palladino et al., 2018), 
as NF-kB has a binding site on the promoter of the HIF-1 gene as a 
transcription factor (van Uden et al., 2008). However, it has also been 
reported that hypoxia-activated HIF-1 is synergistic with LPS in 
macrophages (Mi et  al., 2008). Similarly, PI3K signaling could 
contribute to the translation of HIF-1 via mTOR (Xu et al., 2020), 
while its role in neuroinflammation and synaptic defects is not 
highlighted yet.

Roxadustat (FG-4592) is the reversible inhibitor of hypoxia-
inducible factor prolyl hydroxylase (PHDs), a hypoxia-inducible 
factor (HIF-1) stabilizer, orally available and approved by the 
FDA. Initially, this drug was approved for treating anemia, including 
in China. FG-4592 showed considerable protection against other 
hypoxia-related disorders, including cancer, fibrosis, and chronic 
inflammation. Besides, in the sepsis animal model, Roxadustat-
treatment significantly reduced the cytokines, including IL-1β, IL-6, 
and TNF-α (Akizawa et al., 2019; Liu et al., 2021; Zhu et al., 2022). 
Furthermore, prolyl hydroxylases (PHDs) regulate HIF-1 under 
different conditions (Appelhoff et  al., 2004), whose underlying 
mechanisms have not been explored in LPS-induced stress conditions. 
Similarly, the HIF-1 anti-inflammatory consensus has not been 
currently elucidated (Zhu et  al., 2022). Therefore, we  aimed to 
determine whether LPS-altered HIF-1 signaling can affect depressive 
symptoms coinciding with neuroinflammation and synaptic defects. 
Surprisingly, our data showed that LPS lead to HIF-1 signaling 
impairment, neuroinflammation, synaptic defects, spine number 

modification, and depressive symptom, which PI3K-signaling 
could alter.

Materials and methods

Animals

C57BL/6 J male mice (6–8 weeks) were obtained from the 
Guangdong Medical Laboratory Animal Centre, China. The 
experimental animals were housed at the Laboratory Animal Research 
Centre, Peking University Shenzhen Graduate School, under a 12 h 
light/12 h dark cycle at 18–22°C, ad libitum access to food and water 
throughout the study. The experimental procedures were set in such 
a way as to minimize mice suffering. The Animal Care and Use 
Committee of the Experimental Animal Center at Peking University, 
Shenzhen Graduate School, approved the animal experiments.

Lipopolysaccharides-induced depression is associated with 
inflammation (Ali et  al., 2020a), and FG-4592 has shown anti-
inflammatory action by reducing cytokine levels in the animal model 
(Akizawa et al., 2019; Liu et al., 2021; Zhu et al., 2022). Besides, the 
HIF-1 anti-inflammatory mechanism is largely unknown. Therefore, 
this was one reason for HIF-1 stabilizer selection for the LPS-induced 
neuroinflammation-coinciding depression. The rationale for the 
FG-4592 treatment for the depression model is unavailable; thus, 
we initially checked the dose-dependent action of the FG-4592 while 
performing OFT and SPT tests (Supplementary Figure S1A).

We performed the present study in two experiments. In the first 
experiment, animals were assigned to three groups (each 
group = 6–10): saline-treated group (Saline), LPS-treated group 
(1.5 mg/kg/day), Roxadustat: FG-4592 (Roxa; 5 mg/kg/day) plus LPS 
group (Roxa+LPS). LPS (0.1 ml/10 g mice) and Roxadustat 
(0.1 ml/10 g mice, were intraperitoneally administered to the mice. 
Besides, Roxadustat was treated 1 h before LPS administration. The 
drug treatment schedule is shown in Figure 1A. After 24 h of the 
final LPS administration, behavioral tests were performed. Finally, 
the mice were sacrificed, and tissues were collected and quickly 
stored at-80°C until further use. Notably, LPS (Sigma-Aldrich, 
#L2880) was dissolved with sterile water directly to its working 
concentration. Roxadustat was dissolved in 5% dimethyl-sulfoxide 
(DMSO) and was administrated 2 h before the behavior test.

In the second experiment, animals were again divided into three 
groups (8–15 mice/group): LPS group, Roxa+LPS group, and 
Roxa+LPS + Wort group (Wortmannin,1 mg/kg). Wortmannin (wort) 
was administered intraperitoneally for 2 days, before 2 h behavior tests 
(Figure 1C). Wortmannin was dissolved in 5% DMSO. The behavior 
and organ/tissues collection process were the same as above.

Open field test

Open field test (OFT) was performed according to previous 
protocols (Ali et  al., 2020b). Briefly, mice were adapted to the 
experimental room for 1 h and then placed in a 45 × 45 × 30 cm 
chamber. Each mouse was started in the center of the chamber and 
was allowed to move freely for 5 min. The total distance traveled was 
recorded and analyzed using Smart v3.0 software.
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Sucrose preference test

A sucrose preference test was performed using a two-bottle free-
choice paradigm (Liu et al., 2018). Initially, the mice were habituated 
for 48 h hrs with two drinking bottles (one containing 1% sucrose and 
the other water) in their home cage. Next, on the third day of the drug 

administration, the mice were deprived of water and food for 24 h. 
The next day, each mouse had free access to two bottles of either 1% 
sucrose solution or standard drinking water. The positions of the 
bottles were switched halfway through testing to prevent the possible 
effects of side preference on drinking behavior. Percentage preference 
for sucrose was calculated at the end of the test using the following 

A

B

C

D

FIGURE 1

Roxadustat treatment reduced LPS-induced depressive-like behaviors via PI3K signaling. (A) Drugs treatment schedule, (B) open field test (OFT), forced 
swimming test (FST), and a sucrose preference test (SPT). (C) Drugs treatment schedule, (D) Sucrose preference Test (SPT), and tail suspension Test 
(TST). All the values are expressed as mean ± SEM: ANOVA followed by post hoc analysis. p = <0.05 were considered significant *p < 0.05, **p < 0.01. ns: 
non-significant.
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formula: Sucrose Preference = Sucrose consumption/ (Sucrose 
consumption + Water consumption) × 100%.

Tail suspension test

The tail suspension test was performed as described previously (Li 
et al., 2022). Mice were suspended by the tails to a rod about 45 cm 
above the floor by placing adhesive tape 1 cm from the tail tip. By the 
commonly accepted criteria, immobility was defined as the absence of 
movement of the animals’ heads and bodies. The immobility time was 
recorded for 6 min in a dark room. Etho Vision XT software was used 
for TST recording and analysis.

Forced swimming test

The forced swimming test (FST) was performed as described 
previously. Animals were forced to swim in a Plexiglas cylinder 
(height: 70 cm, diameter: 30 cm) filled with water (23 ± 1°C) to a 
height of 30 cm. The video was recorded for 6 min, and the immobility 
time was analyzed during the last 5 min of the test. Mice were 
immobile when they remained motionless or only made movements 
necessary to keep their heads above the water’s surface.

ELISA

According to the manufacturer’s protocols, cytokines expression 
was quantified using ELISA kits (Elabscience). Briefly, a 100 μL 
standard or sample was added to the wells and incubated for 90 min 
at 37°C. The plates were then washed, and a Biotinylated Detection Ab 
working solution was added to each well. The plates were incubated 
for 1 h at 37°C. Next, 100ul HRP conjugate working solution was 
added for 30 min at 37°C. Finally, the reaction was stopped, and the 
optical density was measured.

Immunofluorescence

Immunofluorescence staining was performed according to 
described previously (Li et al., 2022). Briefly, mice were perfusion-fixed 
with 4% paraformaldehyde and soaked in PFA for 48 h, then brian was 
replaced with sucrose, and 30um brain tissue sections were prepared. 
Sections were washed with PBS for 15 min (5 min × 3). After washing, 
the sections were blocked with blocking buffer (10% normal goat serum 
in 0.3% Triton X-100 in PBS) for 1 h at room temperature and then 
incubated with primary antibodies overnight at 4°C, Rabbit anti-Iba1 
(1: 1000, Wako,#019–19,741); Mouse anti-GFAP (1,1,000, Sigma-
Aldrich, #MAB360). The next day, sections were incubated with 
secondary antibodies (Alexa Flour secondary antibodies, Thermo 
Fisher) at room temperature for 1 h; the hoechst was applied in the last 
10 min. The sections were washed with PBS for 15 min (5 min × 3). After 
washing, sections were transferred onto glass slides, and glass coverslips 
were mounted using a mounting medium. Images were captured using 
a confocal microscope and were analyzed by ImageJ software.

Golgi staining

Golgi staining was performed according to Sami Zaqout’s 
protocols (Li et al., 2021a). Impregnation step: the mice brain sample 
was kept in Golgi-Cox solution at room temperature in the dark; after 
24 h, the sample was transferred into a new Golgi solution-containing 
bottle with the help of a histological cassette and kept settling at room 
temperature in the dark for 7–10 days. Tissue protection step: the 
brain sample is transferred from the Golgi-Cox impregnation solution 
to a new bottle with the tissue-protectant solution and kept at 4°C in 
the dark. After 24 h, the tissue-protectant solution is replaced by a new 
solution in a new bottle for 4–7 days. Sectioning step: the brain sample 
is embedded in 4% low melting point agarose. 150–200 um sections 
were prepared using a sliding microtome and mounted to gelatin-
coated microscope slides. Then, the brain tissue was placed in a 
staining solution for 10 min and rinsed with double distilled water, 
followed by dehydration (sequential rinse 50,75, and 95% ethanol) and 
xylene treatment finally, examined under an inverted fluorescence 
microscope IX73 Olympus.

Real-time quantitative RT-PCR

Total RNA was isolated from the hippocampus with Trizol 
(Invitrogen, Germany) and reversed to cDNA using the Reverse 
Transcription System (Promega). Primers ordered with the following 
sequences: HIF-1, 5′-GAAACGACCACTGCTAAGGCA-3′(forward) 
and 5′-GGCAGACAGCTTAAGGCTCCT-3′(reverse); prolyl 
hydroxylase (PHD)1, 5′-GGCCAGTGGTAGCCAACATC-
3′(forward) and 5′-GTGGCATAGGCTGGCTTCAC-3′(reverse); 
PHD2, 5′- TGACCACACCTCTCCAGCAA-3′ (forward) and 5′- 
CTGCCAACAATGCCAAACAG-3′ (reverse); and PHD3, 
5′-GGTGGCTTGCTATCCAGGAA-3′(forward) and 5′-ATACAG 
CGGCCATCACCATT-3′(reverse).

Western blotting

Western blotting was also performed according to the standard 
protocol. Briefly, the protein sample was denatured by boiling at 
95°C for 5 min and separated via SDS-PAGE. The separated protein 
was then transferred onto a nitrocellulose membrane. The membrane 
was blocked with non-fat milk in TBST (Tris-buffered saline, 0.1% 
Tween 20) and then incubated with primary antibody (1:1000) 
(Table  1) overnight at 4°C. The next day, the membranes were 
incubated with a secondary antibody (1:10000) for 1 h at room 
temperature. For detection, the ECL Super signal chemiluminescence 
kit was used according to the manufacturer’s protocol. Blots were 
developed using ChemiDoc MP BIO-RAD. Densitometric analysis 
of the bands was performed using the Image Lab software. The 
stripping buffer was purchased from Thermo Scientific (LOT: 
WE32238 Scientific) blot stripping. Briefly, blots were washed with 
TBST 3 times. Immerse blot in stripping buffer, followed by 
incubating for 15-30 min at room temperature. Finally, removed the 
stripping buffer by washing it with TBST three times, followed by 
re-blocking the membrane for 1 h.
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Statistical analysis

All the statistical analyses were performed using the 
GraphPad Prism 8 software. Data are presented as 
mean ± SEM. One-way analysis of variance (ANOVA) followed 
by post hoc Tukey/Bonferroni Multiple Comparison tests was 
performed to compare different groups. p < 0.05 was regarded as 
statistically significant.

Results

Roxadustat (FG-4592) reversed 
lipopolysaccharides-induced depressive 
symptoms

Lipopolysaccharides is a well-known inflammatory agent that 
can induce depressive-like behaviors in mice (Ali et al., 2020a). 
Similarly, our LPS-treated mice displayed depressive symptoms, as 

demonstrated by increased immobility during TST and FST, while 
decreased sucrose preference for 1% sucrose solution over normal 
water. However, Roxadustat (FG-4592) treatment significantly 
attenuated these LPS-induced depressive-like behaviors 
(Figures 1A,B).

PI3K Signaling mediated the effects of 
Roxadustat

Previous studies evidenced LPS-altered PI3K signaling 
(Saponaro et al., 2012; Zheng et al., 2018). However, its association 
with HIF-1 is enigmatic. Herein, we treated mice with wortmannin 
to determine the interplay among LPS, HIF-1, and PI3K signaling 
in depression. Surprisingly, PI3K antagonism significantly reversed 
Roxadustat anti-depressive effects in the presence of LPS, as it 
found that increased mice immobility decreased sucrose preference 
(Figures 1C,D). These findings suggested the involvement of HIF-1 
and PI3K signaling in LPS-induced depressive symptoms. 
Moreover, we  found an increase in HIF-1 expression, PHD1,2 

TABLE 1  List of antibodies.

Antibody Company Lot number Dilute Source

P-P38 (Thr180/Tyr182) Cell signaling technology 4,511 1/1,00 Rabbit

P38 Cell signaling technology 9,212 1/1,000 Rabbit

P-PI3K (Tyr458) Cell signaling technology 4,228 1/1,000 Rabbit

PI3K Cell signaling technology 4,257 1/1,000 Rabbit

P-AKT (Ser473) Cell signaling technology 4,060 1/1,000 Rabbit

AKT Cell signaling technology 4,691 1/1,000 Rabbit

P-GSK3β(Ser9) Cell signaling technology 5,558 1/1,000 Rabbit

GSK3β Cell signaling technology 12,456 1/1,000 Rabbit

P-AMPKα(Thr172) Cell signaling technology 2,535 1/1,000 Rabbit

AMPKα Cell signaling technology 5,832 1/1,000 Rabbit

P-EEF2 (Thr56) Cell signaling technology 2,331 1/1,000 Rabbit

EEF2 Abcam Ab33523 1/1,000 Rabbit

Iba1 Cell signaling technology 17,198 1/1,000 Rabbit

GFAP Cell signaling technology 3,670 1/1,000 Mouse

NLRP3 Cell signaling technology 15,101 1/1,000 Rabbit

Nrf2 Cell signaling technology 12,721 1/1,000 Rabbit

HO-1 Cell signaling technology 70,081 1/1,000 Rabbit

SOD2 Cell signaling technology 13,194 1/1,000 Rabbit

PSD95 Abcam Ab18258 1/1,000 Rabbit

SNAP25 Cell signaling technology 5,308 1/1,000 Rabbit

SYNAPSIN1 Abcam Ab254349 1/1,000 Rabbit

GAPDH Cell signaling technology 5,174 1/1,000 Rabbit

β-Actin Santa Cruz biotechnology Sc-47,778 1/500 Mouse

HIF-1α Cell signaling technology 14,179 1/1,000 Rabbit

PHD1 ABclonal A3730 1/1,000 Rabbit

PHD2 ABclonal A14557 1/1,000 Rabbit

PHD3 ABclonal A0851 1/1,000 Rabbit
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(mRNA), and PI3K phosphorylation upon LPS administration, 
which was reduced by Roxadustat treatment (Figure  2;  
Supplementary Figures S1B,C). As the PI3K-Akt signaling could 

be activated by LPS stimulus (Hemmings and Restuccia, 2012), 
we examined Akt and its downstream signaling changes in the 
hippocampus of LPS-treated mice. Notably, LPS administration 

A

B C

D E

FIGURE 2

Roxadustat effects on HIF-1a and PHDs expression. (A) Representative immune blot images and average protein levels of HIF-1 levels were normalized 
with β-Actin. (B–E) Showing mRNA levels of HIF-1, PHD1, PHD2, and PHD3. Image lab software was used for quantitative blot analysis and was 
analyzed via GraphPad prism. Data were expressed as mean ± SEM, One-way ANOVA, followed by post hoc analysis. p = <0.05 were considered 
significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns: non-significant.
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significantly enhanced Akt/GSK3β phosphorylation which was 
reduced by Roxadustat treatment.

Contrarily, Roxadustat treatment significantly increased AMPKα 
phosphorylation in the presence of LPS (Figure 3A), indicating a 
link between HIF-1 and AMPK singling under LPS-induced stress 
conditions. As reported, AMPK is involved in the Akt signaling 
activation (Han et al., 2018); its link to PI3K is largely unknown, 
particularly in LPS-initiated stress conditions. Thus, we examined 
AMPKα/Akt/GSK3b signaling changes upon PI3K antagonism in 
the presence of LPS. Except for Akt, wortmannin treatment 
significantly attenuated Roxadustat-induced p-AMPKα, GSK3b, and 
p-p38 expressional changes in the mice hippocampal tissues in the 
presence of LPS (Figure 3B). These findings indicated the interplay 
among AMPK/PI3K and HIF-1 signaling under LPS-induced 
stress conditions.

Roxadustat treatment attenuated 
lipopolysaccharides-induced 
neuroinflammation

Lipopolysaccharides-induced neuroinflammation played an 
integral role of depressive symptoms in mice (Li et  al., 2017, 
2021a). Here, we  sought to determine whether LPS-induced 
neuroinflammation is linked to HIF-1 signaling. Our results 
indicated that Roxadustat significantly reduced IBA-1 and GFAP 
expression in the hippocampus (DG region) of the LPS-treated 
mice (Figures 4A,B). Similarly, Roxadustat treatment decreased 
cytokines, including IL-1b, IL-6, and TNF-a levels in the 
hippocampal tissue of the brain (Figure 4D). However, the anti-
inflammatory effects of Roxadustat could be  attenuated by 
wortmannin treatment (Figures  4A,C,D), suggesting PI3K 
signaling was involved in HIF-1 modulation of LPS-induced 
neuroinflammation. The cellular signaling changes associated with 
neuroinflammation were examined to validate these results further. 
Surprisingly, Roxadustat treatment significantly reduced 
LPS-elevated expression of NLRP3  in mice brains (Figure 5A), 
which could be  increased by wortmannin (Figure  5B). As 
LPS-induced inflammation accompanies oxidative stress, we thus 
measured the expressions of anti-oxidative markers, including 
Nrf2, SOD2, and HO-1. However, no significant changes in NRF2, 
SOD2, and HO-1 Roxadustat and Wortmannin treatment could 
be defined (Figures 5A,B).

HIF-1-PHD antagonism by Roxadustat 
attenuated lipopolysaccharides-induced 
synaptic defects

Previous studies, including ours, showed that LPS 
administration could induce synaptic defects, which may underly 
the pathological processes of depression symptoms (Postnikova 
et  al., 2020; Li et  al., 2021a). Our results revealed dysregulated 
synaptic factors and reduced spins in hippocampal tissues 
(Figure  6C). Besides, the eEF2 phosphorylation level, which 
regulates synaptic plasticity, was also increased in LPS-treated mice 
but reversed by Roxadustat treatment (Figure 6A; Verpelli et al., 
2010). Moreover, wortmannin attenuated the effects of Roxadustat 

and enhanced synaptic proteins, including PSD95, SNAP25, and 
Synapsin-1 (Figure 6B). These findings suggest that Roxadustat 
could alleviate dysregulated synaptic proteins induced by LPS via 
HIF-1/PI3K signaling.

Discussion

Results from our previous studies and other groups have 
documented the interplay between neuroinflammation and 
depressive-like behaviors (Li et al., 2017; Postnikova et al., 2020; Ali 
et al., 2020b; Li et al., 2021b), but its mechanistic link to HIF-1/PI3K 
signaling remains poorly explored. Here, we determined that LPS 
administration dysregulated HIF-1 via the PI3K pathway in the mice 
hippocampus, which underlined LPS elicited neuroinflammation and 
depressive-like behaviors. HIF-1-PHD inhibitor (Roxadustat) 
treatment attenuated LPS-mediated changes, which could be reversed 
by wortmannin, suggesting an etiological role of HIF-1  in 
neuroinflammation-associated depressive-like behaviors. However, 
conventional antidepressants show their effects slowly and may take 
about 2–3 weeks (Szegedi et al., 2009), immediate/quick antidepressant 
effects of several compounds/drugs (including Roxadustat treated 
here for 3 days) have also been documented in the LPS-induced model 
of depression (O’Connor et al., 2009; Cordeiro et al., 2019; Zhang 
et al., 2019).

As a transcriptional factor, HIF-1 controls the immune cell 
metabolism and function. Additionally, it plays a crucial role in 
regulating inflammatory functions in dendritic, mast, and 
epithelial cells (Imtiyaz and Simon, 2010). Besides, TNF-α and 
IL-1β can activate and increase HIF-1 expression/transcriptional 
via NF-kB (Jung et al., 2003; Zhou et al., 2003), indicating that 
HIF-1 could play an essential role in inflammation. Furthermore, 
it has also been reported that LPS can stimulate HIF-1 activities via 
several pathways, including NF-kB, ROS, and p42/p44 mitogen-
activated protein kinases (MAPKs; Frede et al., 2006). In addition, 
in macrophages, LPS accumulates HIF-1 via decreasing PHD2 and 
PHD3 levels in a Toll-like receptor-4 (TLR-4) dependent manner 
(Peyssonnaux et al., 2007; Imtiyaz and Simon, 2010). This evidence 
supports our findings that LPS-induced neuroinflammation was 
reduced in the hippocampus of mice after Roxadustat treatment. 
However, it was more interesting to be identified here that PI3K 
inhibition reversed the effects of Roxadustat, indicating a link 
between HIF-1 and PI3K signaling in the presence of LPS. Previous 
studies have also demonstrated that PI3K/Akt signaling could 
regulate HIF-1 levels via mTOR signaling at the posttranslational 
level but not at the mRNA level (under hypoxic conditions; Zhang 
et al., 2018). Because PI3K inhibitor (LY294002) and Dual PI3K/
mTOR inhibitor NVP-BEZ235 treatment suppressed Akt and 
HIF-1 activation and expression (Karar et al., 2012), respectively. 
These results indicated that the PI3K-Akt cascade is a highly 
conserved intracellular signaling pathway involved in the immune 
system’s growth, motility, survival, metabolism, and coordinating 
defense mechanisms by transducing extracellular stimuli 
(Hemmings and Restuccia, 2012).

Studies demonstrate the beneficial effects of intermittent 
hypoxia on neurological disorders, including depression, by 
promoting neurogenesis via BDNF signaling (Ferrari et al., 2017; 
Meng et al., 2020); however, the mechanisms are not fully explored 

https://doi.org/10.3389/fnmol.2023.1048985
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnmol.2023.1048985

Frontiers in Molecular Neuroscience 08 frontiersin.org

A B

FIGURE 3

Roxadustat reduced LPS-induced PI3K and its associated signaling. (A,B) representative western blots of PI3K, Akt, GSK3β, APMKα, and P38 and 
quantitative column graphs for mice treated with LPS, Roxadustat and wortmannin. All the values were normalized with GAPDH. Image lab software 
was used for blots quantitative analysis and was analyzed via GraphPad prism. Data were expressed as mean ± SEM, One-way ANOVA, followed by post 
hoc analysis. p = <0.05 were considered significant. *p < 0.05, **p < 0.01), ***p < 0.001. ns: non-significant.
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FIGURE 4

Roxadustat reduced LPS-induced neuroinflammation. (A) Microscopy results of Iba-1 expression in the different experimental groups of brain tissues, 
with respective bar graphs (n = 6). Magnification 10×. The image data were collected from three independent experiments and were analyzed by 
ImageJ software. The differences are shown in the graphs. (B,C) Representative immune blots with individual level column graphs showing Iba-1 and 
GFAP expression n = 3–6. All the values were normalized with β-Actin. (D) Bar graphs showing the expression level of IL-1β, IL-6, and TNF-α. Data were 
expressed as mean ± SEM, One-way ANOVA, followed by post hoc analysis. p = <0.05 were considered significant. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. ns: non-significant.
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as for the potential beneficial effects through the HIF-1 hypoxia 
responding factor. Our results showed that Roxadustat treatment 
rescued LPS-altered synaptic protein level and spin-altered 
morphology. Interestingly, similar neuroprotective roles of 
Roxadustat have been recently reported, while its link to LPS/PI3K 
signaling has not been explored. Our results further demonstrated 
that PI3K signalling-antagonism reversed the protective effects of 
Roxadustat, indicating that HIF-1/PI3K signaling mediated the 
LPS-induced neuroinflammation, synaptic deficits, and 
depressive symptoms.

In conclusion, HIF-1 contributed to inflammation and the redox 
system under hypoxia conditions; it also played a role in 
neuroinflammation-induced depression, which might be associated 
with PI3K-related signalings. Furthermore, Roxadustat showed 
potent anti-depressive effects via reducing neuroinflammation by 
stabilizing HIF-1 expression; however, the proper LPS-stimulated 
signaling cross-talk to HIF-1 under depression conditions is 
enigmatic, which is the limitation of the present study, and it needs 
further investigation.
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