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Introduction: Transferrin receptor protein 1 (TFRC), an ananda molecule

associated with ferroptosis, has been identified as affecting a wide spectrum of

pathological processes in various cancers, but the prognostic value correlates

with the tumor microenvironment of TFRC in lower-grade glioma (LGG) is still

unclear.

Materials and methods: Clinical pathological information and gene

expression data of patients with LGG come from The Cancer Genome Atlas

(TCGA), Chinese Glioma Genome Atlas (CGGA), GTEx, Oncomine, UCSC

Xena, and GEO databases. We then used various bioinformatics methods and

mathematical models to analyze those data, aiming to investigate the clinical

significance of TFRC in LGG and illustrate its association with tumor immunity.

In addition, the molecular function and mechanisms of TFRC were revealed

by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

and gene set enrichment analysis (GSEA). Immunohistochemical experiments

and single-cell analysis have been performed.

Results: TFRC expression was highly expressed in many tumors and showed a

poor prognosis. Including gliomas, it was significantly associated with several

poor clinical prognostic variables, tumor immune microenvironment, tumor

mutational burden (TMB), m6a modification, and ferroptosis in LGG. TFRC as

a key factor was further used to build a prediction nomogram. The C-index,

calibration curve, and decision curve analysis showed the nomogram was

clinically useful and calibration was accurate. At the same time, we also

demonstrated that promoter hypomethylation of DNA upstream of TFRC

could lead to high TFRC expression and poor overall survival. There is a

significant correlation between TFRC and CD8 + T cell, macrophage cell

infiltration, and several immune checkpoints, such as PD-L1(cd274), CTLA4,

and PD1, suggesting a novel direction for future clinical application. Functional

and molecular mechanism analysis showed an association of TFRC expression

with immune-related pathways through GSEA, GO, and KEGG analysis. Finally,
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immunohistochemical experiments and single-cell analysis confirmed the

expression of TFRC in glioma.

Conclusion: TFRC may be a potential prognostic biomarker and an

immunotherapeutic target for glioma.
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TFRC, LGG, prognosis, tumor microenvironment, ferroptosis

Introduction

Glioma is one of the most common malignant tumor types
in the brain or spine tumors formed by glial cells. Compared
with glioblastoma (GBM), lower-grade glioma (LGG) grows
slowly with not so much malignancy. However, some LGG
develops rapidly into GBM with a poor prognosis (Jakola et al.,
2017).

Ferroptosis is a newly described form of regulated cell
death; ferroptosis stimulation inhibits tumor growth, improves
patient survival, and increases the efficacy of radiation and
chemotherapy in the central nervous system neoplasms (Mitre
et al., 2022). The transferrin receptor protein 1 (TFRC) gene
encodes transferrin receptor 1 (TfR1) or cluster of differentiation
71 (CD71), a human protein. TfR1 is a receptor needed for iron
delivery from transferrin to target cells (Fillebeen et al., 2019).
However, the role of TFRC in LGG has not been illustrated.

Some reports suggest that ferroptosis is associated with the
tumor microenvironment and posttranscriptional regulation
(Demuynck et al., 2021; Shen et al., 2021). Some studies have
shown that tumor-infiltrating lymphocytes play different vital
roles in tumor progression by ferroptosis-related molecular
mechanisms (Zhou and Lu, 2017). Nevertheless, the effect of
TFRC on the microenvironment in LGG has not been described.

Therefore, we illustrated the association between TFRC
expression and the tumor prognosis, clinical–pathological
parameters, immunity, tumor mutational burden (TMB), and
m6A modification in RNA. Our research suggested that TFRC
expression may act as a potential effective prognostic marker
and target for immunotherapy.

Materials and methods

UCSC Xena, GTEx, CGGA Oncomine
database, and single-cell analysis

The UCSC Xena database1 combines about 200 public
databases, including TCGA, TARGET, GTEx, CCL, and ICGC

1 http://xena.ucsc.edu/

(Goldman et al., 2020). The database is useful for examining
gene expression methylation and copy number, gene expression,
somatic mutation, and clinical information. We can use the
data from the GTEx database to create a normal group for
comparison with the tumor group in TCGA using a boxplot
(Kruppa and Jung, 2017). In addition, glioma with different
subtypes and new types were obtained from the Chinese Glioma
Genome Atlas (CGGA)2 (dataset ID: mRNAseq_325).

The Oncomine database3 integrates GEO databases (Rhodes
et al., 2004). This database is primarily used for gene expression
analysis. We used the Oncomine database to analyze TFRC
expression in normal and tumor tissues.

For a single-cell dataset, TISCH2 provides meta
information, cell-type annotation, expression visualization,
and differential gene expression (Sun et al., 2021).

Clinical specimen collection

The tumor tissue specimens of patients with glioma were
collected from the pathology department at The First Affiliated
Hospital of Shantou University Medical College (Shantou,
China). We named it the Shantou cohort. To understand the
expression and distribution of TFRC in tumor tissues, we
collected 10 specimens of low-grade gliomas and 10 specimens
of high-grade gliomas. Hematoxylin-eosin staining of the tissues
was confirmed by two different pathologists. This study was
approved by the Institutional Review Board of The First
Affiliated Hospital of Shantou University Medical College, and
informed consent was obtained from all individuals.

Cox regression analysis and nomogram
for predicting survival

The comparison of OS, DSS, PFI, and DFI between two
groups was performed by the Kaplan–Meier method. Both
univariate Cox regression and multivariate Cox regression

2 http://www.cgga.org.cn

3 https://www.oncomine.org/resource/main.html
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FIGURE 1

Association of TFRC expression level and survival in LGG. (A) TFRC mRNA expression in TCGA LGG tissues and GTEx adjacent normal tissues.
(B) TFRC expression in GEO. (C–H) TFRC expression effect on OS in TCGA tumor patients by Kaplan–Meier survival analysis. (I) Forest plot
showing TFRC expression effect on OS in TCGA tumor patients by Cox regression. Association of TFRC expression level and survival in LGG.
(J) TFRC mRNA expression correlation with DSS. (K) TFRC mRNA expression correlation with PFI. ***p < 0.001.

analyses were performed to assess the prognostic significance of
TFRC in patients with LGG, and they were visualized using the R
package “forest” (Clark et al., 2001). A nomogram is a graphical
representation of these factors that can be used to predict the

risk of recurrence by the points correlated to each risk factor
through the R package “rms.” The indexes of ROC, calibration
curves, and DCA, were used for the discrimination, calibration,
and clinical practicability of this model.
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TABLE 1 The association with TFRC and clinicopathological
characteristics in TCGA-LGG patients.

Variable N High,
N = 249

Low,
N = 249

p-valueb

Diagnosis agea 497 43 (33, 57) 39 (32, 50) 0.002

Cancer type 498 0.3

Astrocytoma 101 (41%) 87 (35%)

Low-grade glioma (NOS) 0 (0%) 1 (0.4%)

Oligoastrocytoma 56 (22%) 69 (28%)

Oligodendroglioma 92 (37%) 92 (37%)

Neoplasm histologic grade 496 <0.001

G2 93 (38%) 147 (59%)

G3 155 (62%) 101 (41%)

Sex 497 0.2

Female 118 (47%) 103 (42%)

Male 131 (53%) 145 (58%)

Subtype 491 <0.001

LGG_IDHmut-codel 69 (28%) 94 (38%)

LGG_IDHmut-non-codel 96 (40%) 142 (57%)

LGG_IDHwt 78 (32%) 12 (4.8%)

Tumor type 498 0.3

Astrocytoma 101 (41%) 87 (35%)

Low-grade glioma 0 (0%) 1 (0.4%)

Oligoastrocytoma 56 (22%) 69 (28%)

Oligodendroglioma 92 (37%) 92 (37%)

aMedian (IQR); n (%). bWilcoxon rank-sum test; Fisher’s exact test; Pearson’s Chi-
squared test.

Gene expression profiling and DNA
methylation analyses

The UCSC Xena platform includes gene expression and
DNA methylation data, and it was designed for visualization
and data analysis (Goldman et al., 2020). MethSurv is a
web measurement for performing survival analysis through
methylation data (Modhukur et al., 2018). We applied these
two bioinformatics tools for correlation analysis between gene
expression and DNA methylation. The ggpairs function of the
R package GGally was used to visualize the correlation for each
pair of variables.

Tumor microenvironment

The tumor microenvironment comprises infiltrating
immune cells, stromal cells, tumor cells, and an extracellular
matrix. Furthermore, the tumor microenvironment of LGG
consists primarily of non-tumor cells, such as stromal cells
and immune cells (Deng et al., 2020; Guo et al., 2020). The
ESTIMATE algorithm can be used to assess the stromal and
immune cell content in tumor tissue, predict the immune and
stromal scores, and calculate the tumor purity in each tumor

sample (Sturm et al., 2019; Meng et al., 2020). The ICB response
map was made using the TIDE algorithm with the R packages
“ggplot2” and “ggpubr” (Jiang et al., 2018).

Differential genes expression, gene
ontology, and Kyoto Encyclopedia of
Genes and Genomes analysis

In the LGG-TCGA databases, we first grouped the patients
according to median values of TFRC mRNA value, if it was
greater than the median value; it was defined as the high
expression group. Differentially expressed genes were searched
using the Limma package in R software based on the threshold
(adjusted P < 0.05 and Log2 (Fold Change) > 1 or Log2(Fold
Change) <−1). The ClusterProfiler package in R was used to
perform GO functional analysis of potential targets and enrich
KEGG pathways (Yu et al., 2012).

Immunohistochemistry

In the Shantou cohort, the tissue sections were incubated
with boiled citrate buffer for 15 min and 3% hydrogen
peroxide for 10 min. Anti-transferrin receptor (ab214039)
antibody and anti-PD-L1 (ab205921) were purchased from
Abcam (Cambridge, UK). The sections were incubated at 4◦C
overnight with the primary antibodies anti-TFRC (Abcam,
ab84036, 1:300). The intensity of positive cells was verified by

TABLE 2 The association with TFRC and clinicopathological
characteristics in CGGA-LGG patients.

Variable N High,
N = 92

Low,
N = 93

p-valueb

PRS.type 181 0.9

Primary 70 (80%) 73 (78%)

Recurrent 18 (20%) 20 (22%)

Grade 181 0.002

WHO II 40 (45%) 63 (68%)

WHO III 48 (55%) 30 (32%)

Gender 185 >0.9

Female 35 (38%) 36 (39%)

Male 57 (62%) 57 (61%)

Agea 185 41 (35, 47) 38 (34, 44) 0.2

IDH.mutation.status 184 < 0.001

Mutant 53 (58%) 81 (88%)

Wildtype 39 (42%) 11 (12%)

X1p19q.codel. status 180 0.015

Codel 22 (25%) 38 (42%)

Non-codel 67 (75%) 53 (58%)

an (%); Median (IQR). bPearson’s Chi-squared test; Wilcoxon rank-sum test.
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FIGURE 2

Relationship between TFRC expression and clinicopathologic variables of patients with LGG and OS analysis. (A–F) Histopathologic
classification (A), histology grade (B), race (C), sex (D), IDH mutation status (E), and diagnosis age (F) in TCGA. (G–I) Histology grade (G), IDH
mutation status (H), chromosomal 1p/19q codeletions (I) in CGGA. (J,K) Association with TFRC expression and overall survival time.
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FIGURE 3

Univariate and multivariate Cox regression analysis in LGG and nomogram predicting. (A) Univariate Cox regression. (B) Multivariate Cox
regression. (C) Nomogram predicting probability in LGG. TFRC and 3 clinicopathologic factors are located on each variable axis. The sum of
these numbers is located on the Total Points axis, and the three lines are drawn downward to the 1, 3, 5-year survival probability of LGG axes to
determine the probability. (D,E) The ROC curve showed the area under curve (AUC) values and the nomogram prediction calibration curve. (F,G)
Decision curve analyses demonstrating the benefit for predicting survival, model 1: TFRC group, Diagnosis Age, Histologic Grade, and Subtype.
Model 2: TFRC group. Model 3: TFRC group, Histologic Grade, Subtype. Model 4: TFRC group, Subtype. *p < 0.05, **p < 0.01, and ***p < 0.001.
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two separate pathologists. The Image-Pro Plus 7.0 software was

used to assess the percentage of positive cells.

Moreover, formalin-fixed paraffin-embedded sample

specimens of patients with glioma were obtained from

the Human Protein Atlas Project.4 This project includes
immunohistochemical and cytological experiment

4 https://www.proteinatlas.org

FIGURE 4

The DNA hypomethylation and gene expression of TFRC in LGG. (A) The UCSC Xena shows the gene expression and methylation level.
(B) Survival analysis in TFRC promoter region. (C,D) Methylation levels of DNA sites in the presence of genomic regions and clinicopathological
information. (E) Hypomethylation of the TFRC promoter region was negatively correlated with gene expression. (F,G) Kaplan–Meier survival
curve in methylation of TFRC promoter region. *p < 0.05, ***p < 0.001.
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data. Immunohistochemistry staining was re-evaluated
independently by two experienced pathologists. The
quantification of immunohistochemistry (IHC) staining of

TFRC and PD-L1 was performed by Image-Pro Plus 7.0. The
combined positive score (CPS) is defined as the number of
positive tumor cells, lymphocytes, and macrophages, divided

FIGURE 5

The influence of TFRC on tumor microenvironment, immune checkpoints, and ICB response in LGG. (A,B) Microenvironment scores.
(C) Distribution of immune cells. (D) TFRC mRNA expression relationship with different immune cells in TCGA LGG tissue. (E,F) The influence of
TFRC expression level on immune checkpoints. (G) The influence of TFRC expression level on the ICB response. *p < 0.05, **p < 0.01,
***p < 0.001.
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FIGURE 6

The correlation of TFRC expression and TMB, MSI, m6A methylation, ferroptosis, and enrichment analysis in LGG. (A) The correlation between
TFRC levels and TMB. (B) The correlation of TFRC levels and MSI. (C–E) The correlation of TFRC levels and ferroptosis. (F,G) The correlation of
TFRC levels and m6A methylation. (H,I) Enrichment plots from gene set enrichment analysis (GSEA). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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by the total number of viable tumor cells multiplied by 100 (de
Ruiter et al., 2021).

Statistical analysis

The statistical analysis diagrams shown above were
produced by the R software (4.1.0).

Results

Upregulation of transferrin receptor
protein 1 in multiple tumors including
lower-grade glioma

A schematic diagram of this study is displayed in
Supplementary Figure 1. Through a comparative analysis

FIGURE 7

The differential gene expression and Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis. (A) Volcano
plot, red dots: upregulated genes; blue dots: downregulated genes. (B) Heat map: Different colors represent gene expression trends in different
tissues. (C,D) GO and KEGG analysis showed that the biological functional enrichment, the circle’s size represents how many genes are
differentially enriched, and the color represents its significance.
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FIGURE 8

Immunohistochemistry and single-cell analysis of TFRC and PD-L1 expression in LGG. (A–D) Shantou project. (E–H) Human Protein Atlas
project. (I) Single-cell analysis of TFRC. ∗∗p < 0.01.
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of the expression data from the GTEx (dbGaP Accession
phs000424.v8. p2) and TCGA databases, we found that TFRC
had a higher expression in multiple cancers, including LGG,
glioblastoma multiforme (GBM), invasive breast carcinoma no
special type (NST), kidney chromophobe cancer (KICH), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (AML), and liver
hepatocellular carcinoma (LIHC), than in the corresponding
normal tissues (Figure 1A and Supplementary Figure 2). To
verify the expression pattern of TFRC in LGG, we analyzed
the Oncomine database and found that there was also a higher
TFRC expression level in different kinds of glioma than in the
normal group (Figure 1B).

High transferrin receptor protein 1
expression causes low survival

In the TCGA database, higher TFRC expression was
significantly associated with poorer overall survival (OS)
(Figure 1C, P < 0.00), disease-specific survival, and
progression-free interval (Figures 1J,K, P < 0.001) in LGG.
On the other hand, TFRC expression has a significant effect
on OS in patients with LIHC, HNSC, KIRP, KICH, and NSC
(Figures 1C–H, P < 0.05). Furthermore, the forest plot of
covariates in the Cox proportional hazards model indicated
that the P-values less than 0.05 (<0.05) are considered to
be statistically significant in LGG, CESC, HNSC, KIRC, and
LUSC and that the hazard ratio of LGG was 1.269 (1.90–2.87)
(Figure 1I). Therefore, those results showed that patients
with LGG and high TFRC expression levels have a poor
prognosis.

Transferrin receptor protein 1
expression effect on the
clinical-pathological parameters in
lower-grade glioma

A total of 499 LGG samples with TFRC expression data and
the patients’ clinical-pathological parameters from the TCGA
database were analyzed. We used the Chi-square and Fisher-
square tests to explore the association (Zhou et al., 2020). Then,
we found that TFRC expression was highly correlated with
gender (P = 0.04326), race (P = 0.01443), and histology grade
(P = 2.11e–06), whereas TFRC expression did not have a close
relationship between histological type by Chi-square (Table 1).
For histology grade, TFRC expression was significantly higher
in G3 than in the others (Figure 2B, P < 0.00). For
the human population, Black or African Americans had a
higher TFRC expression than Whites (Figure 2C, P < 0.01).
More importantly, for the classification of tumors of the
central nervous system (WHO CNS5), patients with isocitrate

dehydrogenase (IDH) wildtype have a higher expression level
of TFRC than those with isocitrate dehydrogenase (IDH)
mutations and chromosomal 1p/19q codeletions (Figure 2E,
P < 0.00). After reviewing other reports, we took the
age of 40 as the boundary and found that people with
age≥ 40 years old had a higher TFRC expression than those with
age <40 years (Figure 2F, P < 0.05). Nevertheless, the gender
and histopathologic classification of our patients did not show a
clear difference (P = 0.06; Figures 2A,D).

Furthermore, in the CGGA database, the Table 2 and
Figures 2G–I showed that the expression levels of TFRC
were also correlated with the histology grade (P = 0.003),
IDH mutation status (P < 0.001), and chromosomal 1p/19q
codeletions (P = 0.005). Meanwhile, patients in the high TFRC
expression group had a poorer survival time than those in
the low TFRC expression group, especially in WHO Grade III
(Figures 2J,K).

Multivariate Cox regression analysis
and nomogram model

The expression of TFRC (P < 0.001), age (P < 0.001),
grade (P < 0.001), and radiation therapy (P = 0.0119)
were highly correlated to tumor prognosis through univariate
Cox regression (Figure 3A). Meanwhile, multivariate Cox
regression analysis showed that TFRC expression was associated
with overall survival independently (Figure 3B; P < 0.001).
Subsequently, we used a nomogram model to predict the
prognosis in patients with LGG based on Cox regression using
the R package “regplot.” We found that TFRC expression
contributes greatly to the outcome of the patient. Our internal
validation of the nomogram showed a consistency index (C-
index) of 0.819 (Figure 3C), indicating a relatively reliable
predictive performance, the ROC curve showed that the area
under curve (AUC) values at 1, 3, and 5 years were 0.852,
0.854, and 0.888, respectively (Figure 3D). The calibration
plot for the 1-, 3-, and 5-year overall survival rate in LGG
exhibited agreements between predictive survival probability
and actual overall survival percentage (Figure 3E). In addition,
DCA curves displayed a superior prognostic accuracy of OS and
showed more clinical benefits (Figures 3F,G).

DNA methylation and survival

The UCSC Xena database was employed to show the
gene expression and methylation level of TFRC in LGG. The
methylation status of the TFRC promoter in LGG showed
hypomethylation throughout the TFRC gene coordinates region
analysis (Figure 4A), and the promoter hypomethylation of
DNA upstream of TFRC could lead to poor overall survival
(Figure 4B). We showed methylation levels of 16 DNA sites in
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the presence of genomic regions of TFRC through the MethSurv
tool (Figures 4C,D). Hypomethylation of the TFRC promoter
region was negatively correlated with gene expression of TFRC,
such as the cg22956956 and cg24870846 sites (Figure 4E).
Meanwhile, the promoter hypomethylation in the cg22956956
and cg24870846 sites of TFRC predicts poor overall survival
(Figures 4F,G, p < 0.01).

Transferrin receptor protein 1
expression associated with tumor
microenvironment and immune
checkpoints in lower-grade glioma

For the tumor microenvironment, the ESTIMATE
algorithm identified that TFRC expression was associated
with the stromal score (p < 0.01), not with the immune
score and tumor purity in LGG (Figures 5A,B). That is to
say, with the increased stromal cell content, the expression
of TFRC was increased. The distribution of immune cells
was also analyzed (Figure 5C). The heatmap showed that
high expression of TFRC was related to increased immune
cells, such as CD8 + T cells, macrophage cells, and myeloid
dendritic cells (p < 0.01) in LGG (Figure 5D). Meanwhile,
we performed a simple analysis of immune checkpoints that
were associated with immunotherapy (Wang et al., 2019). Some
immune checkpoint-related molecules had a close correlation
with TFRC expressions, such as PD-L1 (cd274) and CTLA4
(Figures 5E,F).

Then, we analyzed the immune checkpoint blockade (ICB)
response to predict the immunotherapy effect in LGG. The
TIDE algorithm showed that elevated expression of TFRC
was related to high TIDE scores, suggesting tumor immune
dysfunction and exclusion may occur (Figure 5G).

Correlation of tumor mutational
burden, ferroptosis, m6A, and
transferrin receptor protein 1
expression in lower-grade glioma

Tumor mutational burden (TMB) is a promising immune-
response biomarker and a potential spearhead in advancing
targeted therapy trials (Choucair et al., 2020). We found
that TFRC expression in LGG significantly influenced TMB
(Figure 6A, P < 0.01); programmed death 1 (PD-1) blockade
had clinical benefits in microsatellite-instability-high (MSI-
H) or mismatch-repair-deficient (dMMR) tumors after the
previous therapy (André et al., 2020). However, we found
no significant correlation between MSI and TFRC expression
in LGG (Figure 6B). TFRC has an obvious correlation
with ferroptosis-related genes, such as HSPA1, SLC7A11, and

NFE2L2 (Figures 6C–E). For N6-methyladenosine (m6A) RNA
modification, we found that a variety of m6A modification-
related genes had an obvious relation with TFRC expression,
such as METTL4, WTAP, and VIRMA (Figures 6F,G).

Gene set enrichment analysis, gene
ontology, and Kyoto Encyclopedia of
Genes and Genomes analysis

To explore the biological roles of TFRC in LGG,
we performed GSEA to find the gene sets or tumor-
associated pathways. Several immune-related pathways (such as
complement and coagulation cascades, cytosolic DNA sensing
pathway, the Janus kinase-signal transducer and activator of
transcription pathway (JAK-STAT signaling pathway), and
neuroactive ligand–receptor interaction) were also differentially
enriched in the high TFRC expression group (Figures 6H,I).

The volcano plot and heatmap showed that differential
gene expression in different groups of patients with LGG based
on the median value of TFRC (Figures 7A,B). To further
confirm the potential function of TFRC, we employed gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis, and the result also showed that
tumorigenesis and immune-related pathways were associated
with TFRC (Figures 7C,D).

Experiment validation and single-cell
analysis

In the Shantou cohort, the result showed that the TFRC
protein expression in the high-grade group of LGG was higher
than those in the low-grade group, and the spatial distribution of
TFRC was mainly in tumor cytoplasm and blood vessels by the
immunohistochemical method (Figures 8A,B). According to
the CPS score, the expression of PD-L1, there may have a certain
correlation between PDL1 expression and TFRC (R = 0.46) but
the p-value is 0.06 in LGG (Figures 8C,D).

We also obtained experimental data from the Human
Protein Atlas Project. For 21 immunohistochemistry
staining slides of glioma, we re-evaluated independently
by two experienced pathologists. The result showed
that the expression of TFRC in the high-grade group
of LGG was higher than those in the low-grade group
(Figures 8E,F). Studies using immunofluorescence and
subcellular localization showed that TFRC proteins are
primarily located in the cytoplasm (Figure 8G). According
to the CPS score, the expression of PD-L1 in the high-
grade group tended to be higher than those in the
low-expression group in LGG (Figure 8H). These results
suggest that TFRC has a certain correlation with prognosis and
immunity.
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For a single-cell analysis, we employed the TISCH2 tool to
understand the TFRC expression comparison with different cell
populations. The result showed that TFRC was mainly expressed
in tumor cells, vascular endothelial cells, and macrophages
(Figure 8I).

Discussion

With the development of medicine, the diagnosis and
treatment of the brain glioma (LGG) have been more and
more in-depth and clear. However, there are still many
unknowns about the molecular mechanism of its occurrence,
development, and prognosis.

Ferroptosis has been demonstrated to inhibit tumor growth
(Liu et al., 2020). However, some reports found that the
ferroptosis-related molecular TFRC can induce the activation
of ferroptosis in neuroblastoma (NB) (Yuxiong et al., 2021). In
addition, we found that TFRC has a high expression level in
several cancers, including LGG. Patients with LGG and high
TFRC expression levels have a poor prognosis. Therefore, we
speculated that TFRC might have a dual role in regulating
tumor progress. Alternatively, the increased expression pattern
of TFRC may be an adaptive compensatory response for
LGG.

To understand the correlation between TFRC and tumor
clinicopathological factors, we conducted a correlation analysis
in LGG. According to the five editions of the WHO classification
of the central nervous system, Isocitrate dehydrogenase (IDH)
mutations are related to better survival outcomes for patients
with glioma (Louis et al., 2021). Our study illustrated that the
TFRC positively correlates with tumor progress factors, such as
IDH mutation status and clinical tumor grade. Thus, the results
demonstrated that TFRC plays a certain role in influencing
tumor progression.

To further characterize the effect of TFRC on tumor
prognosis, we performed univariate and multivariate analyses
using the Cox-proportional hazards model. As a result, TFRC
molecules were identified as significant prognostic factors in
LGG. Furthermore, through the nomogram prognosis model
(Wang et al., 2018), we found that the TFRC expression
contributes greatly to the patient’s outcome.

For gene regulation, it is generally believed that promoter
hypomethylation is associated with high gene expression (Razin
and Kantor, 2005). Multiple omics analyses were used to clarify
the upstream mechanisms affecting the TFRC expression. We
found that DNA methylation has a conspicuous influence on
the TFRC expression and the overall survival of LGG. Therefore,
we hypothesized that DNA methylation could influence survival
by regulating the TFRC expression. However, its detailed
mechanism should be further explored.

The interaction between ferroptosis and immunity has
been a topic of substantial interest since its discovery in
2012 (Shi et al., 2021). However, it is not clear whether the

ferroptosis-related molecule TFRC affects tumor immunity in
LGG. In this study, our research showed that the high expression
of TFRC has been associated with tumor-infiltrating lymphocyte
(TIL) levels (CD8 + T cell, Macrophage cell) and immune
checkpoints, suggesting a novel immunotherapy target.

Tumor mutational burden (TMB) and microsatellite
instability (MSI) are genomic biomarkers used to identify
patients who are likely to benefit from immune checkpoint
inhibitors (Jardim et al., 2021; Palmeri et al., 2022). Therefore,
we carried out those primary analyses to clarify the relationship
between TFRC and tumor immunotherapy. Our results
showed that the TFRC expression was positively correlated
with TMB in LGG and had no obvious correlation with
MSI.

N6-methyladenosine (m6A) methylation plays an
important role in the genesis and development of various
tumors (Liuer et al., 2019; Yi et al., 2020). Our study found
that TFRC expression is highly correlated with m6A writer,
m6A eraser, and m6A reader-related genes. Furthermore,
we found that all m6A-related genes in LGG tissues were
positively correlated with TFRC, and it was speculated that
TFRC expression was affected by the m6A modification in the
RNA transcription level in LGG.

To further explore the molecular function of TFRC in LGG,
we conducted a GSEA, GO, and KEGG analysis, and we found
that autophagy, ECM–receptor interaction signaling pathways,
and complement and coagulation cascades were differentially
enriched in the TFRC expression phenotype. From a molecular
mechanism perspective, this result also demonstrated that
TFRC might promote tumor progression and is closely related
to tumor immunity.

At last, we demonstrated the correlation of TFRC with
prognosis and immune checkpoints (PD-L1) by experimental
analysis. This is consistent with the results of previous
bioinformatics methods. Moreover, the single-cell analysis
showed TFRC expression comparison in different cell
populations, especially in vascular endothelial cells and
macrophages. This helps us understand the relationship
between TFRC and metastasis and the cell-cell interaction of
the immune microenvironment.

This study is based on bioinformatics and preliminary
experimental methods to investigate the role of TFRC.
Therefore, this study has some limitations.

In conclusion, our study showed that the TFRC could lead
to a poor prognosis in LGG. It may also be an effective target for
immunotherapy for patients with LGG.
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