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We profile genome-wide histone 3 lysine 27 acetylation (H3K27ac) of 3 major

brain cell types from hippocampus and dorsolateral prefrontal cortex (dlPFC)

of subjects with and without Alzheimer’s Disease (AD). We confirm that single

nucleotide polymorphisms (SNPs) associated with late onset AD (LOAD) show

a strong tendency to reside in microglia-specific gene regulatory elements.

Despite this significant colocalization, we find that microglia harbor more

acetylation changes associated with age than with amyloid-β (Aβ) load. In

contrast, we detect that an oligodendrocyte-enriched glial (OEG) population

contains the majority of differentially acetylated peaks associated with Aβ

load. These differential peaks reside near both early onset risk genes (APP,

PSEN1, PSEN2) and late onset AD risk loci (including BIN1, PICALM, CLU,

ADAM10, ADAMTS4, SORL1, FERMT2), Aβ processing genes (BACE1), as well as

genes involved in myelinating and oligodendrocyte development processes.

Interestingly, a number of LOAD risk loci associated with differentially

acetylated risk genes contain H3K27ac peaks that are specifically enriched in

OEG. These findings implicate oligodendrocyte gene regulation as a potential

mechanism by which early onset and late onset risk genes mediate their

effects, and highlight the deregulation of myelinating processes in AD. More

broadly, our dataset serves as a resource for the study of functional effects of

genetic variants and cell type specific gene regulation in AD.
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Introduction

Alzheimer’s Disease (AD) is the most common age-related
neurodegenerative disorder (Gaugler et al., 2016). The hallmarks
of AD pathology are numerous and include neuronal loss,
synaptic dysfunction, gliosis, and the accumulation of amyloid-
β (Aβ) protein and neurofibrillary tangles (NFT) formed from
phosphorylated tau protein (MAPT) (Hardy and Selkoe, 2002).
Aβ plaques are formed by differential proteolytic cleavage of
the amyloid β precursor protein (APP) (Goldgaber et al., 1987;
Kang et al., 1987; Robakis et al., 1987; Tanzi et al., 1987) by the
α-secretase, β-secretase, and γ-secretase enzymes (De Strooper,
2010). Studies of individuals affected by early onset (<60 years)
familial AD (EOAD) have identified causal autosomal dominant
mutations primarily in the Aβ processing proteins presenilin-1
(PSEN1) and presenilin-2 (PSEN2), which are part of the γ-
secretase complex (Schellenberg et al., 1993; Levy-Lahad et al.,
1995; Rogaev et al., 1995). Causal mutations have also been
found in APP itself (St George-Hyslop et al., 1987; Goate et al.,
1991; Gatz et al., 2006; Goate, 2006). However, EOAD accounts
for a minority of AD cases (∼1–6%). Late onset sporadic AD
(LOAD) is more frequent and accounts for the majority of AD
cases (Bekris et al., 2010).

However, in contrast to EOAD, the genetic risk for LOAD
is less clear. Currently, the strongest known genetic risk factor
for LOAD is the ε4 allele of Apolipoprotein E (APOE) (Corder
et al., 1993; Poirier et al., 1993; Saunders et al., 1993; Roses,
1996; Saunders, 2000). More recently, genome wide association
studies (GWAS) (Harold et al., 2009; Lambert et al., 2009,
2013; Seshadri et al., 2010; Hollingworth et al., 2011; Naj et al.,
2011; Jansen et al., 2019; Kunkle et al., 2019) have identified
an additional 28 unique loci harboring genetic variants that
increase risk for developing LOAD (Bertram and Tanzi,
2019; Jansen et al., 2019; Kunkle et al., 2019). Notably, only
2% of GWAS-derived AD-associated sentinel genetic variants
[primarily single nucleotide polymorphisms (SNPs)] localize to
known exons (Kunkle et al., 2019). Since these SNPs do not alter
protein-coding sequences, it is difficult to trace their functional
importance in disease onset and progression.

To this end, epigenomic studies are revealing that these
SNPs likely alter the function of gene regulatory elements in
LOAD. Indeed, 26% of these SNPs localize in regions containing
promoter histone marks, 69% lie in enhancer states, and 46%
lie in DNase I accessible sites (Ward and Kellis, 2012; Kunkle
et al., 2019). Furthermore, non-coding SNPs were found at
sites of altered histone 3 lysine 27 acetylation (H3K27ac) in
the human postmortem AD brain (Marzi et al., 2018; Nativio
et al., 2018). H3K27ac is a histone residue associated with
transcriptionally active promoters and enhancers (Creyghton
et al., 2010). Gene regulatory elements, especially enhancers, are
highly context-specific with differing activities across tissues, cell
types and environments (Consortium et al., 2015). Therefore,
it is likely that different cell types in the brain orchestrate

different regulatory programs during AD progression. Indeed,
many LOAD risk loci are primarily implicated in immune
function, suggesting immune cell types may mediate their effects
(Gjoneska et al., 2015; Huang et al., 2017; Lake et al., 2017).
Recently, these SNPs were confirmed to reside primarily within
microglia-specific enhancers (Nott et al., 2019). Additionally,
alterations in H3K27ac in AD vs. non-AD brain tissue is
not restricted to AD risk loci, indicating other regulatory
mechanisms are altered beyond those associated with AD
GWAS SNPs.

Notably, many previous studies of histone acetylation in
post-mortem brain samples were performed utilizing whole
brain tissue, and not all were performed with tissue from AD
patients (Marzi et al., 2018; Klein et al., 2019). This may obscure
changes that occur within specific cell populations. We address
this gap in knowledge by profiling H3K27ac in individual cell
types from AD and non-AD postmortem brain tissue. We utilize
fluorescence-activated nuclei sorting (FANS) (Marion-Poll et al.,
2014) to purify neuronal, microglial and other glial populations
in the dorsolateral prefrontal cortex (dlPFC) and hippocampus.
We then perform H3K27ac chromatin immunoprecipitation
followed by sequencing (ChIP-seq) to mark putative regulatory
elements in these populations. In addition to establishing the
first genome-wide H3K27ac profiles in neuronal, microglial,
and oligodendrocyte-enriched glial (OEG) populations from
AD postmortem brain samples, our cell type-specific approach
confirms that GWAS-derived LOAD risk loci are primarily
enriched in microglia-specific H3K27ac peaks. Despite the well-
established roles of microglial and neuronal processes in the
progression of AD, we detect the vast majority of disease-
associated H3K27ac dysregulation in the oligodendrocyte-
enriched glia population. Interestingly, many of these altered
peaks occur near AD risk genes, Aβ processing genes, and
myelin-associated genes. Due to the limited size of our cohort
however, further validation of these oligodendrocyte H3K27ac
alterations are required. Despite this caveat, these findings
suggest distinct gene-regulatory mechanisms of AD onset and
progression in different brain cell types and highlight specific
cell types, loci, and pathways for future study.

Results

Fluorescence-activated nuclei sorting
and H3K27ac chromatin
immunoprecipitation followed by
sequencing of dorsolateral prefrontal
cortex and hippocampus

We obtained 10 dlPFC and 16 hippocampus samples from
19 participants in the Religious Orders Study and Memory
and Aging Project (ROSMAP) (Bennett et al., 2012a,b, 2018)
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(mean age = 87.84 years, s.d. = 7.75, range = 74.77–101.94).
We classified 5 of 10 dlPFC samples and 10 of 16 hippocampus
samples as “high Aβ.” These samples were from individuals
that displayed high Aβ load across the brain, (mean percentage
area occupied by Aβ across 8 brain regions = 7.30, s.d = 4.14,
range = 2.31–15.40), high overall neurofibrillary tangle density
(mean density of NFT across 8 brain regions = 22.81,
s.d. = 13.73, range = 1.80–61.01) and low global cognition scores
(mean cogn_global_lv = −2.1, s.d. = 1.46, range = −3.87–
0.51). Samples classified as “no Aβ” had 0 Aβ load, mild
neurofibrillary tangle load (mean density of NFT across 8
brain regions = 0.84, s.d. = 0.6, range = 0.11–2.05), and
were not cognitively impaired (mean cogn_global_lv = −0.3,
s.d. = 0.6, range = −1.6–0.27) (Supplementary Table 1 and
Supplementary Figure 1). The self-reported sex of 6 of the 10
dlPFC samples was male, and the remaining 4 were female.
Of the 16 hippocampus samples, the self-reported sex of 6 was
male, and the remaining 10 were female. Our sample sets were
controlled for age at death (high Aβ mean age = 88.77 yrs.,
s.d = 7.0, no Aβ mean age = 86.25 yrs., s.d = 8.04; unpaired t-test
for difference in means p-value = 0.51), years of education (high
Aβ mean educ = 20 yrs., s.d = 2.12, no Aβ mean educ = 18.85
yrs., s.d = 2.94, unpaired t-test p = 0.37), and postmortem
interval (high Aβ mean pmi = 9.04 h, s.d. = 6.02, no Aβ

mean pmi = 9.87 h, s.d. = 5.49; unpaired t-test p = 0.78).
We provide additional information regarding our sample set in
Supplementary Figures 2, 3.

For each brain tissue sample, we used FANS to collect three
different cell populations. First, we used NeuN as a neuronal
biomarker to capture mature neuronal nuclei. NeuN has been
successfully used as a biomarker for mature postmitotic neurons
in previous cell type-specific chromatin analyses (Fullard et al.,
2018; Girdhar et al., 2018; Nott et al., 2019). We then used
the transcription factor Pu.1 as a microglial biomarker to
isolate microglial nuclei from the NeuN- population. Pu.1 is
responsible for the expression of genes that drive myeloid
differentiation, and has been previously used as a biomarker
for microglia for cell type-specific chromatin analysis (Nott
et al., 2019). Nuclei that did not stain positively for NeuN
and Pu.1 were also collected as a putative glia-enriched
population. An equal number of nuclei (400,000) were sorted
for each cell population (NeuN+, Pu.1+, and NeuN-/Pu.1-
) (Figure 1A and Supplementary Figures 4–6) (Marion-Poll
et al., 2014). We performed H3K27ac ChIP sequencing on
the chromatin isolated from each sorted cell population in
duplicate. We assessed sample quality by calling regions of
H3K27ac enrichment (peaks) for each individual sequencing
sample and computing quality metrics based on standard
ENCODE guidelines (Landt et al., 2012). We detected an
average of 91,614 (s.d = 21,197, range = 50,662–149,681) peaks
per sample. These peaks overlapped with a large fraction of
total sequencing reads (mean FRiP = 0.256, s.d. = 0.136,
range = 0.047–0.567), comparable to previous high quality

H3K27ac profiles (Consortium et al., 2015). We further curated
these samples based on normalized strand cross correlation
(NSC) and relative strand cross correlation (RSC) measures
to ensure that we retained the highest quality sequencing
samples for all downstream analyses (Methods, Supplementary
Figure 1). Based on these parameters, 20 out of a total of
159 libraries were excluded from our analysis. Information
regarding read depth, duplicate reads, and other quality control
information can be found for each library in Supplementary
Table 2.

Across both brain region and each cell population, we
used ENCODE recommended approaches (Landt et al., 2012)
to call a consensus H3K27ac peak set consisting of 352,012
peaks, covering 17.7% of the hg19 genome. This peak set
represented the combined H3K27ac profile of all three sorted
cell populations in the dlPFC and hippocampus of individuals
with and without Aβ pathology (Methods, Supplementary
Table 3). We found that a majority of peaks were either
intronic (59.2%) or intergenic (31.7%) and the remaining
few lay in annotated exons, promoter-TSS sites, transcription
termination sites, and 5′ and 3′ untranslated regions (UTRs).
To look for brain enrichment, we intersected this peak set
against H3K27ac peaks from 98 tissues/cell types in the
Roadmap Epigenomics dataset (Consortium et al., 2015). As
expected, we found that brain tissues/cell types ranked the
highest in terms of jaccard index (Quinlan and Hall, 2010)
for intersection with our peak set compared to other non-
brain tissues/cell types (Supplementary Table 4). We computed
read counts at these peaks for every sample and performed
principal components analysis (PCA) using normalized read
counts from the differential analysis software package DESeq2
(Love et al., 2014) to identify major sources of variation. We
observed separation primarily based on cell population. For
example, principal component 1 separated NeuN+ samples
from NeuN- samples and explained 53% of the total variance
(Supplementary Figure 7). We also applied variance partition
analysis (Hoffman and Schadt, 2016; Hoffman and Roussos,
2021) which again showed that cell type population is the
biggest contributor to variance in H3K27ac levels at each peak
(Supplementary Figure 8). Following cell type population,
we found that brain region and subject ID contribute to the
most variance. Additionally, intersecting peaks from different
brain regions, and cell types in a pairwise manner, we
found that the peaks for each cell type displayed stronger
intersections with peaks for the same cell type in the other
brain region (Supplementary Table 5). This concordance
in cell type between brain regions also suggests successful
sorting. We note that DLPFC Pu.1+ peaks showed some
overlap with hippocampus NeuN-/Pu.1- peaks which is likely
due to cleaner microglia sorting in the hippocampus samples
(Supplementary Table 5). We then used DESeq2 to contrast
each cell type against the other two cell types to identify cell
type-specific H3K27ac peaks (q < 0.05; number NeuN+-specific
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FIGURE 1

FANS sorting captures neurons, microglia and oligodendrocyte enriched populations from postmortem brain tissue. (A) Workflow for sorting
nuclei and performing H3K27ac ChIP-seq from postmortem human brain tissue: nuclei were isolated from fresh frozen hippocampus or
prefrontal cortex and FANS was performed to collect NeuN+, Pu.1+, and NeuN-/Pu.1- populations. H3K27ac ChIP-seq was performed on each
population (B). Genome browser visualization of H3K27ac signal over background (Input) averaged across all profiled samples for the three
populations. Loci containing the genes RBFOX3 (NeuN), SPI1 (Pu.1) and OLIG2 (an oligodendrocyte marker) are visualized (C). Top heatmap
displaying average H3K27ac enrichment at the promoters of marker genes (<5kb from TSS) from 15 cell type clusters profiled in Habib et al.
(2017). Rows represent individual tissue samples. Columns represent the 15 different cell type clusters and are repeated three times to display
NeuN+ specificity, Pu.1+ specificity and NeuN-/Pu.1- specificity. Bottom collapsed version of the top heatmap created by averaging the log2fc
values for groups of samples defined by Aβ load, sex and brain region. Habib et al. (2017) cell type cluster abbreviations are defined here: exPFC,
glutamatergic neurons from the PFC; GABA, GABAergic interneurons; exCA1/3, pyramidal neurons from the hippocampus CA region; exDG,
granule neurons from the hippocampus dentate gyrus region; ASC, astrocytes; MICROGLIA, microglia; OLIGO, oligodendrocytes; OPC,
oligodendrocyte precursor cells; NSC, neuronal stem cells; END, endothelial cells.

peaks = 160,321, Pu.1+-specific peaks = 121,558, NeuN-/Pu.1-
specific peaks = 122,441).

Active promoters and enhancers in
neurons, microglia and
oligodendrocyte enriched glia

To assess the efficacy of the sorting, we generated genome
browser tracks of H3K27ac signal for each cell population
by averaging signal across all individuals. We visualized these

genome browser tracks near genes encoding the proteins used
as biomarkers for neurons and microglia—RBFOX3 which
encodes NeuN, and SPI1 which encodes Pu.1 (Figure 1B).
As expected, we observed hyperacetylation near the RBFOX3
gene in NeuN+ samples relative to Pu.1+ and NeuN-/Pu.1-
samples (log2fc of peak closest to RBFOX3 promoter = 1.99,
FDR q = 4.88e-107), and hyperacetylation near the SPI1
gene in Pu.1+ samples relative to NeuN+ and NeuN-/Pu.1-
samples (log2fc of peak closest to SPI1 promoter = 1.8, FDR
q = 8.22e-58). This suggests our sorting successfully enriched
for the intended cell populations. Interestingly, compared to
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NeuN+ and Pu.1+ samples, we observed hyperacetylation
in the NeuN-/Pu.1- samples near genes that are highly
expressed in oligodendrocytes, such as OLIG2 (log2fc of
peak closest to OLIG2 promoter = 1.23, FDR q = 3.8e-
52). This suggested NeuN-/Pu.1- samples were enriched for
oligodendrocytes.

To further assess sorting efficacy and to better identify
the cell types captured in the NeuN-/Pu.1- population, we
compared our H3K27ac ChIP-seq data with an independent
single nucleus gene expression (snRNA-seq) dataset from the
prefrontal cortex and hippocampus of non-diseased individuals
(Habib et al., 2017). As expected, the NeuN+ samples displayed
significant hyperacetylation at peaks annotated to nearby
genes defined to be markers of excitatory neuron clusters
from prefrontal cortex (average log2fc of H3K27ac peaks
annotated to excitatory PFC cluster 1 marker genes = 0.89,
FDR q = 7.6e-207, average log2fc excitatory PFC cluster
2 = 0.87, FDR q = 4.7e-95), hippocampus (avg. log2fc
excitatory CA1 cluster = 0.94, FDR q = 1.37e-175, avg.
log2fc excitatory CA3 cluster = 0.75, FDR q = 4.39e-83),
and dentate gyrus (avg. log2fc excitatory DG cluster = 0.65,
FDR q = 7.76e-38), and also GABAergic neuron clusters
(avg. log2fc GABA cluster 1 = 0.66, FDR q = 1.8e-30,
avg. log2fc GABA cluster 2 = 0.66, FDR q = 4.75e-34)
(Supplementary Figure 9B). Similarly, the Pu.1+ samples
displayed significant hyperacetylation on average at peaks
annotated to genes significantly upregulated in microglia
(avg. log2fc microglia cluster = 0.64, FDR q = 1.01e-24).
Strikingly, the NeuN-/Pu.1- samples displayed significant
hyperacetylation at peaks annotated to genes enriched in
oligodendrocyte clusters (avg. log2fc oligodendrocyte cluster
1 = 0.65, FDR q = 3.57e-61, avg. log2fc oligodendrocyte
cluster 2 = 0.58, FDR q = 4.76e-28), but not any of the
other cell type clusters queried, confirming oligodendrocyte
enrichment.

Since AD pathology, brain region, and sex could potentially
influence sample quality and sorting efficacy, we repeated
this analysis separately for (i) samples with and without
Aβ, (ii) samples from dlPFC and hippocampus, (iii) male
and female samples, and (iv) each sample individually. In
each of these analyses, we observed neuronal enrichment
in NeuN+ samples, microglial enrichment in Pu.1+
samples, and oligodendrocyte enrichment in NeuN-/Pu.1-
samples (Figure 1C and Supplementary Figure 9C). Since
enhancers are known to have long range effects and may not
necessarily regulate their nearest genes, we also restricted
the analysis to peaks proximal to gene transcription start
sites (TSS) (<5 kilobases) and observed the same results
(Figure 1C and Supplementary Figure 9A). In addition,
intersection of our cell type-specific peak sets with single
nucleus ATAC-seq (snATAC-seq) data of non-diseased
adult human brain (Corces et al., 2020) revealed similar cell
type enrichments (Supplementary Table 6). Therefore,

we conclude that the NeuN+ population successfully
captures neurons, the Pu.1+ population successfully
captures microglia, and the NeuN-/Pu.1- population is
highly enriched for oligodendrocytes. We termed the
NeuN-/Pu.1- population “oligodendrocyte enriched glia”
(OEG).

Together, our peak annotations represent the first
genome-wide maps of H3K27ac in microglia, neurons,
and OEG from AD hippocampus and dlPFC. These
annotations will enable a better understanding of the
gene regulatory activity within the profiled cell types in
many different contexts, not limited to AD. In the next
sections, we utilize these annotations to understand cell
type-specific epigenomic mechanisms in AD. First, we
compare these annotations with GWAS data to annotate
LOAD associated SNPs to the cell types and regulatory
elements they may potentially disrupt. Second, we perform
differential acetylation analysis in each sex, brain region, and
cell type to identify AD-associated variations in H3K27ac.
Third, we identify H3K27ac differences associated with age
in each cell type.

Interpreting cell-type specificity and
potential disruptions of non-coding
Alzheimer’s disease associated variants

Overall, our H3K27ac peak annotations improve the
interpretation of the functional effects of non-coding LOAD-
associated SNPs. We point out specific examples such as the
locus containing the INPP5D gene, where the sentinel SNP
rs10933431 (GWAS p-values = 8.9e-10, 2.5e-07) overlaps a
peak that is acetylated only in microglia but not neurons
and OEG (log2fc Neuron = −0.75; log2fc Microglia = 1.61,
q = 6.62e-81; log2fc OEG = −0.86) (Figure 2D). This
suggests that rs10933431 may alter regulatory function in
microglia and potentially other immune cell types. Future
studies on the functional effect of this SNP should include
culture or model systems that can capture phenotypes of
these cell types. Secondly, at the locus containing the BIN1
gene, which displays the second largest genome wide AD
association behind the APOE locus, two sentinel SNPs,
rs4663105 (GWAS p-values = 3.37e-44, 2.16e-26) and
rs6733839 (GWAS p-values = 1.28e-29, 4.02e-28), overlap
with a peak significantly enriched in both microglia and
OEG, but not neurons (log2fc Neuron = −0.74; log2fc
Microglia = 0.21, q = 2.66e-3; log2fc OEG = 0.53, q = 2.11e-
15) (Figure 2E). This suggests that studies to test the effects
of rs6733839 or rs4663105 on BIN1 expression should be
conducted in oligodendrocytes in addition to cells of the
myeloid lineage (Nott et al., 2019). Similarly, at the locus
containing PICALM, one sentinel SNP, rs10792832 (GWAS
p-values = 7.36e-18, 7.55e-16) and another SNP in tight
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linkage, rs3851179 (GWAS p-values = 2.02e-17, 5.81e-16)
overlap with microglia and OEG H3K27ac peaks (log2fc
Neuron = −2.0; log2fc Microglia = 1.17, FDR q = 4.09e-
41; log2fc OEG = 0.83, FDR q = 7.34e-22) (Figure 2F).
These examples highlight the utility of our data as a
resource for informing future studies of non-coding SNPs
associated with traits that include, but are not limited to
AD.

Genome wide association studies
derived common single nucleotide
polymorphisms associated with late
onset sporadic Alzheimer’s disease risk
preferentially colocalize with
microglial H3K27ac

We performed partitioned heritability analysis by
stratified LD score regression (Bulik-Sullivan et al., 2015;
Finucane et al., 2015, 2018) (S-LDSC) to estimate the
genome wide strength of colocalization between cell type-
specific H3K27ac peaks and AD SNP heritability. We
assessed AD SNP heritability from two large AD GWAS
meta analyses (Jansen et al., 2019; total observed scale
heritability = 0.0095; s.e. = 0.0021, and Kunkle et al.,
2019, total observed scale heritability = 0.0534; s.e = 0.01).
We found that microglia-specific peaks displayed a
statistically significant preference for colocalization with
AD associated SNPs (Figures 2A,B; Jansen et al., 2019,
GWAS coefficient = 1.6e-08, FDR q = 1.58e-4, observed
scale heritability = 0.0035, s.e. = 0.0027; Kunkle et al.,
2019, GWAS coefficient = 1.94e-08, FDR q = 0.011,
observed scale heritability = 1.64e-02, s.e. = 0.012) relative
to neuronal and OEG-specific peaks. Since choice of
computational method can influence these assessments,
we repeated the analysis with an independent method
that utilizes a permutation test (Consortium et al., 2015;
Gjoneska et al., 2015). We again observed that AD SNP
heritability has a strong preference for colocalization with
microglia-specific peaks (Supplementary Figure 10; Kunkle
log2FC = +0.39, FDR q = 3e-6, Jansen log2FC = +0.33,
FDR q = 3e-6). Additionally, we conducted S-LDSC analysis
with all acetylated peaks in each cell type (as opposed to
the cell type-specific peaks derived from DESeq2 cell type
contrasts). These were obtained by running the ENCODE
ChIP-seq pipeline to call reproducible peaks (Li et al.,
2011) across all control (no Aβ) samples for each of the
3 cell type populations (number reproducible NeuN+
peaks = 215,929, reproducible Pu.1+ peaks = 174,123,
reproducible NeuN-/Pu.1- peaks = 154,562). Only control
subjects were used in this analysis to avoid including or
excluding peaks associated with AD. This S-LDSC analysis

with reproducible peaks yielded similar results (Jansen
et al., 2019, GWAS coefficient for microglia = 1.05e-8, FDR
q = 7.9e-4, observed scale heritability = 0.01, s.e. = 0.0031;
Kunkle et al., 2019, GWAS coefficient for microglia = 4.28e-
8, FDR q = 0.019, observed scale heritability = 7.15e-2,
s.e. = 0.0166). These findings agree with previous analyses
conducted on myeloid cells (Gjoneska et al., 2015; Huang et al.,
2017; Keren-Shaul et al., 2017), reinforcing the hypothesis
that myeloid cell gene regulation strongly influences AD
predisposition.

We note that neuron-specific peaks overlap with a lower
number (log2fc from permutation test approach = −0.38) of
GWAS derived AD associated SNPs compared to microglia
and OEG-specific peaks (Supplementary Figure 10 and
Figure 2C). This finding is consistent with previous analyses
conducted on bulk brain tissue histone modification profiles
(Consortium et al., 2015; Gjoneska et al., 2015) and open
chromatin (Gosselin et al., 2017; Lake et al., 2017), where
signals from neuronal regulatory elements are dominant.
Since biases in GWAS sampling and neuronal sample
quality could potentially influence the results of these
analyses, we performed a positive control S-LDSC analysis
to partition Schizophrenia SNP heritability (total observed
scale heritability = 0.4103, s.e. = 0.0186) (Consortium Swg
of the PG, 2014) across each set of cell type-specific peaks.
As expected, only neuron-specific peaks displayed significant
colocalization (Supplementary Figure 11; coefficient = 1.5e-
07, FDR q = 4.2e-8, observed scale heritability = 4.84e-2,
s.e. = 0.0254). This agrees with previous findings regarding
neuron-specific open chromatin in Schizophrenia (Fullard
et al., 2017, 2018), and therefore confirms that our analysis
is robust to biases in GWAS sampling and cell type sample
quality.

Lastly, we annotated all non-coding sentinel SNPs identified
in Jansen et al. (2019) and Kunkle et al. (2019) that may
influence gene regulatory activity at promoters and enhancers
(<1 kb distance between SNP and nearest peak, and SNP is not
a missense mutation in a protein) to nearby H3K27ac peaks
(Figure 2C and Table 1). For each variant, this enables the
identification of potential cell types in which they may alter
gene regulatory activity. As expected, at a majority of GWAS
derived risk loci, the sentinel SNPs directly overlapped with
H3K27ac peaks that are significantly enriched in microglia
(avg. log2fc Microglia = 0.81; avg. log2fc OEG = −0.34; avg.
log2fc Neuron = −0.47). Interestingly, sentinel SNPs at 8
loci, including those containing genes BIN1, CLU, ADAM10,
NYAP1, and CR1, directly overlap with H3K27ac peaks that
are significantly enriched in OEG (avg. log2fc OEG = 0.35;
avg. log2fc Microglia = 0.06; avg. log2fc Neuron = −0.414).
Only 2 sentinel SNPs, near CLU (log2fc Neuron = 0.80, FDR
q = 1.94e-31; log2fc Microglia = 0.33, FDR q = 4.21e-6; log2fc
OEG = −1.14) and KAT8 (log2fc Neuron = 0.77, q = 4.72e-13;
log2fc Microglia =−0.19; log2fc OEG =−0.58), overlapped with
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FIGURE 2

AD associated SNPs derived from GWAS prefer to colocalize with peaks enriched in the microglial population relative to peaks enriched in the
OEG and neuronal populations (A,B). Results of stratified LD score regression from two AD GWAS studies (Jansen et al., 2019; Kunkle et al.,
2019) and cell type-specific H3K27ac peaks. Plots show the estimated LD score regression coefficient for the three peak sets. Benjamini
Hochberg FDR corrected q-values across the three tests for enrichment are indicated above each bar (C). Cell type enrichment of peaks
annotated to sentinel SNPs at AD risk loci identified by Jansen et al. (2019) and Kunkle et al. (2019). Plots show fold change (log2-transformed)
of H3K27ac signal for each population against the other two populations for (i) in black: peaks closest to the sentinel SNP at each locus
associated with AD from GWAS, and (ii) in red: promoter peaks of early onset AD risk genes (APP, PSEN1, PSEN2). ∗Indicates DeSeq2 FDR
q < 0.05 for the cell type-specific contrast. Sentinel SNPs that introduce missense mutations in proteins or SNPs where the closest H3K27ac
peak is annotated > 1kb away are not included. This restriction was to ensure the analysis comprised only of SNPs that likely have functional
effects on promoters or enhancer activity (D–F) top: Genome browser tracks of (i) reproducible peaks in each cell type for subjects without Aβ

load, (ii) average H3K27ac signal in subjects without Aβ load for each cell type, and (iii) Manhattan plots of Jansen et al. (2019) and Kunkle et al.
(2019) genetic variants. Plots are focused at loci where sentinel non-coding SNPs overlap with peaks enriched in non-neuronal cell types (d.
INPP5D, e. BIN1, f. PICALM); bottom: zoomed in versions of the genome browser tracks displayed on top. INPP5D locus: the sentinel SNP
rs10933431 overlaps with a peak that is enriched only in the microglial population; BIN1 locus: the top two AD-associated SNPs based on GWAS
p-value (rs4663105 and rs6733839) overlap with peaks enriched in both the microglial and OEG populations; PICALM locus: the top two SNPs
(rs10792832 and rs3851179) also overlap with non-neuronal peaks. Regions of overlap are highlighted with a yellow box.

peaks that are significantly enriched in neurons. In addition to
GWAS derived risk loci, we were interested to see if H3K27ac
peaks associated with familial AD genes displayed any cell type-
specific enrichment. Interestingly, the peaks closest to the TSS
of APP (log2fc Neuron = −0.25; log2fc Microglia = −0.15;
log2fc OEG = 0.41, q = 5.23e-10) and PSEN1 (log2fc
Neuron = −0.71; log2fc Microglia = 0.33, FDR q = 2.59e-6;
log2fc OEG = 0.38, q = 1.59e-8) displayed significant enrichment
in OEG, whereas the peak closest to the TSS of PSEN2
(log2fc Neuron = −0.03; log2fc Microglia = 0.22, q = 7.7e-
4; log2fc OEG = −0.18) displayed significant enrichment in
microglia.

Aβ associated acetylation differences in
oligodendrocyte enriched glia

To characterize the cell type-specific H3K27ac changes
associated with Aβ pathology, we performed a series of
differential analyses using DESeq2 (Love et al., 2014). Aβ vs.
no-Aβ contrasts were performed for each brain region, sex,
and cell type. All contrasts performed, results of contrasts, and
number of samples included in each contrast, are described
in Supplementary Table 7. When combining all Aβ-associated
DARs from these contrasts, we identified a total of 3,598
Aβ-associated differentially acetylated regions (DARs) (FDR
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TABLE 1 Cell type specificity of peaks closest to sentinel SNPs at previously identified genome-wide significant loci from two different GWAS.

Gene locus CHR Lead
SNP

BP P-value
(overall)

GWAS
study

Closest peak
distance

Peak
start

Peak end log2FC (Neuron
vs. other two)

log2FC (microglia
vs. other two)

log2FC (OEG vs.
other two)

APOE chr19 rs41289512 45351516 5.79E-276 Jansen 0 45347500 45352552 −0.599051558 0.702466985 −0.103402899

BIN1 chr2 rs6733839 127892810 2.10E-44 Kunkle 0 127824833 127857093 −0.744462694 0.211415139 0.533064808

BIN1 chr2 rs4663105 127891427 3.38E-44 Jansen 0 127824833 127857093 −0.744462694 0.211415139 0.533064808

PICALM chr11 rs3851179 85868640 6.00E-25 Kunkle 0 85865576 85869702 −2.003772477 1.175357699 0.828425616

CR1 chr1 rs4844610 207802552 3.60E-24 Kunkle 0 207800766 207803241 −1.496538907 0.411639699 1.084907206

CLU/PTK2B chr8 rs9331896 27467686 4.60E-24 Kunkle 0 27464855 27473351 −0.146423136 −0.342092698 0.488530519

CLU/PTK2B chr8 rs4236673 27464929 2.61E-19 Jansen 0 27464855 27473351 −0.146423136 −0.342092698 0.488530519

PICALM chr11 rs867611 85776544 2.19E-18 Jansen 0 85773701 85782052 −0.878318768 0.59296884 0.285364043

TREM2 chr6 rs75932628 41129252 2.70E-15 Kunkle 0 41123195 41131918 −1.3555633 2.011559515 −0.655985632

CLU/PTK2B chr8 rs73223431 27219987 6.30E-14 Kunkle 0 27216401 27226944 0.804019973 0.334689571 −1.138697236

SPI1 chr11 rs3740688 47380340 5.40E-13 Kunkle 0 47379638 47380774 0.036871997 0.607042966 −0.643907383

SORL1 chr11 rs11218343 121435587 2.90E-12 Kunkle 0 121434568 121439029 −0.360132993 0.8441546 −0.484011059

SORL1 chr11 rs11218343 121435587 1.09E-11 Jansen 0 121434568 121439029 −0.360132993 0.8441546 −0.484011059

HLA-DRB1 chr6 rs9271058 32575406 1.40E-11 Kunkle 0 32575148 32577842 −1.386968687 2.093033774 −0.706057504

EPHA1 chr7 rs7810606 143108158 3.59E-11 Jansen 0 143106905 143108283 −0.303851955 0.835592345 −0.531732978

ABCA7 chr19 rs111278892 1039323 7.93E-11 Jansen 0 1038908 1043234 −0.296373211 0.332547828 −0.036162888

HLA-DRB1 chr6 rs6931277 32583357 8.41E-11 Jansen 0 32582269 32584446 −1.301789562 1.992085151 −0.690289688

ADAMTS4 chr1 rs4575098 161155392 2.05E-10 Jansen 0 161148711 161156367 −0.549341105 0.511794299 0.037559007

CASS4 chr20 rs6014724 54998544 6.56E-10 Jansen 0 54994953 54999360 −0.82514278 1.586379997 −0.761227739

NYAP1 chr7 rs12539172 100091795 9.30E-10 Kunkle 0 100085037 100088295 0.016179468 −0.325104173 0.308936027

ADAM10 chr15 rs442495 59022615 1.31E-09 Jansen 0 59020947 59024537 −0.854287247 0.363816841 0.49048051

ECHDC3 chr10 rs7920721 11720308 2.30E-09 Kunkle 0 11714504 11720725 −0.443367527 1.535382419 −1.092004912

INPP5D chr2 rs10933431 233981912 3.40E-09 Kunkle 0 233976966 233984034 −0.751579648 1.610757377 −0.859166938

CD33 chr19 rs3865444 51727962 6.34E-09 Jansen 0 51727712 51728032 0.09666484 1.050643064 −1.147304253

ACE chr17 rs138190086 61538148 7.50E-09 Kunkle 0 61538112 61538580 −0.090757218 0.725122365 −0.634360388

ECHDC3 chr10 rs11257238 11717397 1.26E-08 Jansen 0 11714504 11720725 −0.443367527 1.535382419 −1.092004912

ALPK2 chr18 rs76726049 56189459 3.30E-08 Jansen 0 56193436 56194075 −0.772160797 1.372526359 −0.600361544

APH1B chr15 rs117618017 63569902 3.35E-08 Jansen 0 63567370 63571899 −0.182293607 0.063658874 0.118647308

CASS4 chr20 rs6024870 54997568 3.50E-08 Kunkle 0 54994953 54999360 −0.82514278 1.586379997 −0.761227739

KAT8 chr16 rs59735493 31133100 3.98E-08 Jansen 0 31132717 31133297 0.769923745 −0.192635059 −0.577283985

BZRAP-AS1 chr17 rs2632516 56409089 9.66E-07 Jansen 0 56409045 56411269 −0.534067259 1.685675299 −1.151598432

INPP5D chr2 rs10933431 233981912 8.92E+10 Jansen 0 233976966 233984034 −0.751579648 1.610757377 −0.859166938
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TABLE 1 (Continued)

Gene locus CHR Lead
SNP

BP P-value
(overall)

GWAS
study

Closest peak
distance

Peak
start

Peak end log2FC (Neuron
vs. other two)

log2FC (microglia
vs. other two)

log2FC (OEG vs.
other two)

ZCWPW1 chr7 rs1859788 99971834 2.22E-15 Jansen 74 99971908 99972977 −0.587916605 1.520171864 −0.932247137

MS4A2 chr11 rs7933202 59936926 1.90E-19 Kunkle -121 59936521 59936805 0.349562941 0.908767826 −1.258327617

SLC24A4 chr14 rs12590654 92938855 1.65E-10 Jansen 222 92939077 92940753 0.076299566 1.166870187 −1.243161989

APOE chr19 rs429358 45411941 Kunkle 276 45412217 45412618 −0.685919297 0.70439705 −0.018472744

FERMT2 chr14 rs17125924 53391680 1.40E-09 Kunkle -434 53390146 53391246 −0.835642458 0.288762577 0.546886874

SCIMP chr17 rs113260531 5138980 9.16E-10 Jansen -482 5135305 5138498 −0.82789803 1.691000283 −0.863092835

ABI3 chr17 rs28394864 47450775 1.87E-08 Jansen -516 47449704 47450259 −1.416013571 0.750716835 0.665301832

SLC24A4 chr14 rs12881735 92932828 7.40E-09 Kunkle 886 92933714 92934206 −0.230512734 1.371875261 −1.141358708

EPHA1 chr7 rs10808026 143099133 1.30E-10 Kunkle 3136 143102269 143103054 −0.214105144 0.150370138 0.063740851

HESX1 chr3 rs184384746 57226150 1.24E+08 Jansen 4299 57230449 57230985 0.803339853 0.102926026 −0.906261534

ABCA7 chr19 rs3752246 1056492 3.10E-16 Kunkle 7116 1063608 1065445 −0.661452848 1.248270475 −0.586810045

CR1 chr1 rs2093760 207786828 1.10E-18 Jansen -1966 207784517 207784862 −1.415642369 0.445194153 0.970451535

CD2AP chr6 rs9473117 47431284 1.20E-10 Kunkle -1984 47428686 47429300 −1.493938259 1.868936054 −0.37499374

MS4A6A chr11 rs2081545 59958380 1.55E-15 Jansen -2258 59955591 59956122 −1.745958809 2.242252117 −0.496290856

CD2AP chr6 rs9381563 47432637 2.52E-10 Jansen -3337 47428686 47429300 −1.493938259 1.868936054 −0.37499374

CNTNAP2 chr7 rs114360492 145950029 2.10E-09 Jansen -17047 145931797 145932982 1.397706583 −0.880179139 −0.517521709

HS3ST1 chr4 rs7657553 11723235 0.051 Jansen -18278 11704552 11704957 0.998279239 −0.566853392 −0.431422538

TREM2 chr6 rs187370608 40942196 1.45E-16 Jansen 21690 40963886 40965725 0.626190634 −0.352810161 −0.273372262

CLNK chr4 rs6448453 11026028 1.93E-09 Jansen -39655 10984912 10986373 −0.7967249 1.351333931 −0.554603351
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q < 0.05) (Supplementary Table 7 and Figure 3A). Due
to the strong enrichment of microglial H3K27ac near AD
risk loci, we expected this set to be dominated by peaks
with robust acetylation differences between the Aβ vs. non-
Aβ microglia samples. Unexpectedly, however, Aβ-associated
DARs in microglia formed a minority of all DARs (85 peaks
total, 2.4%). In contrast, OEG were associated with the majority
of DARs (2,991 peaks total, 80.3%). This included a set
of 1,962 hypoacetylated DARs identified from the female-
specific hippocampus OEG contrast, and another set of 1,029
hyperacetylated DARs identified from the dlPFC OEG contrast
including both sexes. Both of these DAR sets displayed
progressive trends in acetylation when treating Aβ load as
a continuous variable (Supplementary Figures 12B, 13B).
Furthermore, in a post hoc analysis, we tested for correlations
with other variables such as age at death, postmortem interval,
years of education, and RSC (Supplementary Figures 12, 13).
None of the DARs were correlated with age, years of education,
or pmi (FDR q < 0.05). 469 of 1,962 (23.9%) OEG female-
specific hippocampus DARs were correlated with RSC (FDR
q < 0.05), and 975 out of 1,029 (94.3%) OEG dlPFC DARs
were correlated with RSC (FDR q < 0.05). However, log2fc
effect sizes for Aβ when covarying RSC and Aβ (RSC + Aβ)
remained correlated with log2fc values from the original model
(Aβ only) [Supplementary Table 8; Pearson’s r for 1,962 OEG
female hippocampus DARs = 0.73, p = 1.5e-323; Pearson’s r for
1,029 OEG dlPFC DARs = 0.77, p = 1.5e-207)]. Additionally,
this differential analysis was performed on a curated peak set
that had already passed NSC and RSC quality control thresholds,
ensuring the exclusion of low-quality reads (Methods). In the
next sections, we describe these two DAR sets in more detail.

Hypoacetylation in hippocampal
oligodendrocyte enriched glia and
corresponding gene expression
changes in positively sorted
oligodendrocytes

We identified 1,962 hypoacetylated DARs in female Aβ

hippocampus OEG samples, 81.7% of which were peaks
proximal to TSS (< 5 kb) (hypergeometric test p-value = 0,
Figure 3D), suggesting strong links with promoter activity
and gene transcription. To identify the biological pathways
associated with this DAR set, we performed gene ontology
enrichment analysis using Genomic Region Enrichment
and Annotation Tool (GREAT) (McLean et al., 2010). This
analysis revealed an enrichment for central nervous system
myelination (region fold enrichment = 3.95, FDR q = 8.8e-3),
oligodendrocyte development (region fold enrichment = 2.88,
FDR q = 1.7e-2), and oligodendrocyte differentiation (region
fold enrichment = 2.22, FDR q = 2.4e-2) (Supplementary
Table 9 and Figure 3E). We also observed hypoacetylation near

genes in the KEGG Alzheimer’s Disease pathway, including
those encoding the five mitochondrial complexes that regulate
oxidative phosphorylation (Supplementary Figure 14). To
confirm that we were not simply enriching for oligodendrocyte
signal in this analysis, we conducted secondary gene
ontology enrichment analysis with oligodendrocyte-specific
backgrounds. The two new backgrounds we used were peaks
that were specifically enriched in hippocampal OEG relative
to the other 2 populations, and separately, peaks that were
specifically enriched in OEG relative to the other 2 populations
across both profiled brain regions (Methods). Enrichment
for central nervous system myelination (hippocampus
background p = 2.3e-4, region fold enrichment = 2.55;
both background p = 5.89e-5, region fold enrichment = 2.84),
oligodendrocyte development (hippocampus background
p = 6.13e-3, region fold enrichment = 1.72; both background
p = 1.83e-3, region fold enrichment = 1.89), and oligodendrocyte
differentiation (hippocampus background p = 2.5e-2, region
fold enrichment = 1.4; both background p = 5.99e-3, region fold
enrichment = 1.54) were still detectable.

We found the strongest hypoacetylation in this DAR set
at a peak annotated to the STMN4 gene (log2FC = −1.12,
FDR q = 1e-6) which is preferentially expressed in brain tissue
(Fagerberg et al., 2014) and has known functions in neuron
projection development and microtubule polymerization
(Gaudet et al., 2011). Notably, multiple other peaks near
the STMN4 gene, including a peak at the STMN4 promoter,
displayed significant hypoacetylation (log2fc = −0.57, FDR
q = 0.019). MYRF, a transcription factor which directly activates
myelination (Bujalka et al., 2013) and has been previously
linked to LOAD risk (Vardarajan et al., 2018), also displayed
strong promoter hypoacetylation (log2FC = −0.48, FDR
q = 0.03). Aβ is known to be toxic to oligodendrocytes,
affecting basic processes such as myelination (Desai et al.,
2010). Neuroinflammation associated with neurodegeneration
is also known to disrupt myelin (Peferoen et al., 2014). Thus,
these hypoacetylated peaks may reflect myelinating processes
dysregulated in AD.

This hypoacetylated DAR set also included peaks at the
promoters of APP (log2fc = −0.38, FDR q = 0.045), PSEN1
(log2fc = −0.41, FDR q = 0.046), and PSEN2 (log2fc = −0.42,
FDR q = 0.049). Additionally, the promoters of genes
involved in all three secretase complexes including α-secretase
(ADAM10), (log2fc = −0.44, FDR q = 0.037), β-secretase
(BACE1), (log2fc = −0.49, FDR q = 0.032), and γ-secretase
(PSEN1, PSEN2) were hypoacetylated. Further, the protein-
protein interaction (PPI) networks (Szklarczyk et al., 2021)
generated from genes annotated to this DAR set revealed
clusters associated with amyloid processing (Supplementary
Figure 15).

While the majority of Aβ species are produced by
neurons, oligodendrocytes have also previously been shown to
produce Aβ (Skaper et al., 2009). Interestingly, BACE1 is also
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FIGURE 3

OEG display the strongest acetylation differences associated with Aβ pathology, including peaks annotated to genes associated with EOAD and
LOAD risk (A). Heatmap displaying number of significantly hyperacetylated (log2fc > 0, FDR q < 0.05) and significantly hypoacetylated peaks
(log2fc < 0, FDR q < 0.05) from each brain region, sex, and cell type-specific contrast (B) left: Heatmap of normalized acetylation levels at 1962
H3K27ac peaks that were significantly hypoacetylated in AD female hippocampus OEG samples. Rows represent the 1,962 DARs and columns
represent hippocampal OEG samples. Aβ load for each sample is indicated at the top of the heatmap. Right: A heatmap of the 1,962 peaks in
male hippocampal OEG samples is included for comparison. DARs annotated to EOAD and LOAD risk genes are labeled in red and black,
respectively. Peaks near STMN4 and MYRF are annotated in green (C). Heatmap of the 1,029 H3K27ac peaks that were significantly
hyperacetylated in AD dlPFC OEG samples. Peaks annotated to EOAD and LOAD risk genes are labeled in red and black, respectively. The
ADAMTS18 promoter-proximal peak is annotated in green (D). Distance to TSS distribution of (i) 1,962 OEG female hippocampus
hypoacetylated DARs, (ii) 1,029 OEG dlPFC hyperacetylated DARs and (iii) the full consensus set of peaks (E). Enrichment heatmap of top gene
ontology terms for 6 peak sets (1) 1,962 OEG female hippocampus hypoacetylated DARs (2) 1,029 OEG dlPFC hyperacetylated DARs (3) all other
Aβ associated DARs (4) neuron, (5) microglia, and (6) OEG cell type-specific hyperacetylated peaks. Color intensity represents hypergeometric
fold enrichment in number of peaks over background (full consensus peak set), ∗ indicates FDR q < 0.05, ∗∗ indicates FDR q < 0.01.

known to regulate myelination (Hu et al., 2006), suggesting
hypoacetylation of these EOAD risk genes may be tied to
the dysregulated oligodendrocyte processes which were also
observed in hippocampal OEG. The oligodendrocyte-specific
function of these risk genes must be further interrogated to
interpret these results further.

In addition to EOAD risk genes, the promoters of several
LOAD risk genes were also hypoacetylated. This included BIN1
(log2fc = −0.46, FDR q = 0.026), PICALM (log2fc = −0.40,
FDR q = 0.034), ADAMTS4 (log2fc = −0.46, FDR q = 0.038),
ADAM10, and FERMT2 (log2fc = −0.47, FDR q = 0.03)
(Supplementary Table 8, Supplementary Figure 16, and
Figures 3B, 4A–I). Notably, the sentinel SNPs associated with
many of these genes (BIN1, PICALM, ADAMTS4, FERMT2)
were located in H3K27ac peaks significantly enriched in OEGs
relative to other cell types (Figure 2B). This raises the possibility
that these SNPs could alter oligodendrocyte Aβ production
or the oligodendroglial response to Aβ, which as previously
mentioned is toxic to oligodendrocytes.

Previous bulk epigenomic profiling has shown H3K27ac
deregulation at both EOAD and LOAD risk loci, suggesting
shared pathogenic mechanisms between the two forms of
AD (Marzi et al., 2018). Deregulation of H3K27ac at EOAD
and LOAD risk genes in our OEG data suggests that
oligodendrocytes are implicated in these shared mechanisms.
However, we note that the sample size used for this analysis was

limited (female-specific, Aβ n = 5, no- Aβ n = 3). Therefore,
additional experimentation supporting these findings are
required before they can be interpreted further. Additionally,
we did not observe significant colocalization of this DAR
set with GWAS signal relative to the full consensus set of
peaks in an S-LDSC analysis (Jansen coefficient = 3.9e-08,
p = 0.198, observed scale heritability = 9.51e-4, s.e. = 0.0009;
Kunkle coefficient = 1.11e-07, p = 0.29, observed scale
heritability = 0.0051, s.e. = 0.0036).

To determine if these acetylation changes were associated
with altered transcription, we performed quantitative RT-PCR
(RT-qPCR) on RNA isolated from positively sorted human
hippocampal Olig2+ oligodendrocyte nuclei (Supplementary
Figures 17, 18). These hippocampal samples (12 with Aβ load,
12 without Aβ load) were from the same ROSMAP cohort as
those used for H3K27ac ChIP sequencing, and were matched
for Aβ load between male and female subjects (female Aβ

load mean = 10.2, s.d. = 4.21, male Aβ load mean = 9.87,
s.d. = 4.41) (Methods, Figure 4J and Supplementary Figure 19).
To isolate oligodendrocyte nuclei, we used our FANS protocol
(Methods). We chose 9 genes to measure with qRT-PCR. Of
these genes, ADAMTS4 (Hedge’s g = 1.346, q = 0.027), and
PICALM (g = 1.235, q = 0.027) displayed significant decreases
in transcript levels when comparing low (Aβ load mean = 0.04,
s.d. = 0.09) and mid-Aβ load subjects (Aβ load mean = 6.98,
s.d. = 1.27) against high Aβ load subjects (Aβ load mean = 13.09,
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FIGURE 4

EOAD and LOAD risk genes exhibit epigenomic and transcriptomic perturbations in oligodendrocytes (A–I). Genome browser tracks displaying
average H3K27ac signal in OEG samples from subjects with and without Aβ load (yellow and blue tracks, respectively). Regions displayed
include EOAD and LOAD risk loci, as well as differentially acetylated regions near ADAMTS18 and MYRF (J) RT-qPCR of select genes annotated
to DARs identified in AD OEG female hippocampus. Panel shows violin plots of gene expression measured by RT-qPCR in hippocampal Olig2+
nuclei collected from an independent cohort of AD and non-AD subjects. q-values for differential expression between high Aβ and low+mid Aβ

subjects are indicated on top for each gene. Correction was applied across the 9 tests (K) left panel: comparison with existing snRNA-seq from
AD dlPFC (Mathys et al., 2019) reveals an average increase in gene expression near hyperacetylated regions in OEG dlPFC. Violin plots depict
log2fc values from differential expression analysis between AD and non-AD subjects in oligodendrocytes (Mathys et al., 2019). These log2fc
values are derived from 500 genes annotated to the OEG dlPFC hyperacetylated DARs that reside in putative promoters (<5kb from TSS).
Log2fc violin plots are shown for two different contrasts performed in Mathys, Valderrain et al.: no pathology vs. pathology and no pathology vs.
early pathology. Q-values from t-tests (null hypothesis: mean log2fc = 0, alternate hypothesis: mean log2fc > 0) are reported for the two violin
plots. Correction was applied across the two tests. Right panel: Specific genes associated with OEG dlPFC hyperacetylated DARs display
increased transcription in AD. Individual log2fc values are shown. TSS distance cutoffs were not used for this right panel. FDR q-values from the
differential expression analysis for each gene are also provided for both contrasts.

s.d. = 3.29), in agreement with the direction of acetylation
differences. STMN4 and MYRF also displayed significantly
reduced transcription (g = 1.228, q = 0.027; g = 1.567, q = 0.018).
However, the other genes tested were no longer significant
when corrected for multiple testing, indicating future additional
validation is needed.

These DARs were not significantly hypoacetylated in male
Aβ hippocampal OEG H3K27ac samples. However, we note
that Aβ load differed between male and female hippocampal
H3K27ac samples, with females having higher Aβ load than
males (female Aβ load mean = 8.45, s.d. = 4.91, male Aβ

load mean = 4.31, s.d. = 1.83). This, along with the modest
sample size, may account for the lack of coherence across
sexes in detected acetylation changes. However, differences in
transcription were detectable across both male and female
samples in RT-qPCR analysis. Additionally, modeling of OEG
hippocampus H3K27ac in DESeq2 using an interaction term
between sex and Aβ load retrieved very few differential peaks
for the interaction term (number of DARs = 3), of which, only
one was part of the set of 1962 originally identified DARs.
In total, this suggests that the acetylation and transcriptional
differences are unlikely to be sex-specific, although this must be
interrogated further in a larger cohort.

We also found that these DARs are enriched for a large
number transcription factor binding motifs. Most interestingly,
multiple members of the Sox family of transcription factors
which are involved in central nervous system myelination
(Wittstatt et al., 2019) are enriched. Sox factors share lot of
similarity in their binding motifs so it is unclear which factor
may be the master regulator that leads to these observed
differences. Strikingly, we found that peaks annotated to SOX2,
SOX4, and SOX5 genes are part of this DAR set suggesting that
one or more of these three genes may serve as master regulators
which lead to these hippocampus OEG changes. A full set of
motif enrichments is available in our data upload.

Hyperacetylation in dorsolateral
prefrontal cortex oligodendrocyte
enriched glia and corresponding gene
expression changes in single nucleus
gene expression profiled
oligodendrocytes

We identified an additional DAR set in dlPFC Aβ OEG
samples of both sexes. 49.1% of these DARs were distal to
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TSS, suggesting they may play a role in enhancer-mediated
gene regulation. Gene ontology enrichment analysis of this
DAR set revealed a similar enrichment for central nervous
system myelination (region fold enrichment = 5.15, FDR
q = 1.03e-2), and oligodendrocyte differentiation (region
fold enrichment = 2.61, FDR q = 2.4e-2) (Figure 3E and
Supplementary Table 9). In addition, we detected enrichment
for negative regulation of mitochondrion organization (region
fold enrichment = 3.32, FDR q = 6.9e-3), macroautophagy
(region fold enrichment = 2.4, FDR q = 1.01e-2) and viral
transcription (region fold enrichment = 2.89, FDR q = 9.27e-
3). To confirm that we were not enriching for oligodendrocyte
signal, we conducted a secondary analysis with an OEG-
specific background derived from both brain regions and an
OEG-specific background derived from dlPFC. Enrichment
for central nervous system myelination (dlPFC background
p = 4.46e-5, region fold enrichment = 3.86; both background
p = 6.86e-5, region fold enrichment = 3.7), and oligodendrocyte
differentiation (dlPFC background p = 2.75e-3, region fold
enrichment = 1.89; both background p = 4.6e-3, region fold
enrichment = 1.81) was still detectable (Gurses et al., 2016).
Interestingly, the protein-protein interaction (PPI) networks
(Szklarczyk et al., 2021) generated from genes annotated to
this DAR set also revealed clusters associated with central
nervous system myelination and oligodendrocyte differentiation
(Supplementary Figure 20).

Interestingly, while this DAR set was distinct from the DARs
identified in female hippocampus OEG samples, we observed
acetylation changes at similar loci (Supplementary Table 8,
Figures 3C, 4A–I, and Supplementary Figure 15). This again
included significant hyperacetylation at both EOAD and LOAD
risk loci, such as four distal intergenic peaks (>5 kb distance
from any annotated TSS and not in a gene body) annotated
to PSEN2 (log2fc = 0.54, FDR q = 0.037; log2fc = 0.60, FDR
q = 0.025; log2fc = 0.47, FDR q = 0.044; log2fc = 0.51, FDR
q = 0.044), one distal peak annotated to BIN1 (log2fc = 0.44, FDR
q = 0.049), and putative promoter peaks overlapping the TSS of
CLU (log2fc = 0.49, FDR q = 0.04), ADAMTS4 (log2fc = 0.48,
FDR q = 0.047), and SORL1 (log2fc = 0.52, FDR q = 0.048).
Furthermore, we observed significant hyperacetylation at three
distal peaks (>5 kb from TSS) annotated to the MAPT gene
(log2fc = 0.67, FDR q = 0.02; log2fc = 0.39, FDR q = 0.048;
log2fc = 0.52, FDR q = 0.044), which encodes for the tau
protein involved in formation of NFTs. We also observed PPI
clusters associated with amyloid processing in our analysis
(Supplementary Figure 20). Combined with our findings
from hippocampal OEG, these results support the hypothesis
that oligodendrocytes are implicated in shared EOAD and
LOAD pathogenic mechanisms. However, we reiterate that
the modest sample size of our cohort requires our findings
to be supported by additional independent experimentation.
Similar to the hippocampus OEG DAR set, we did not observe
significant colocalization with GWAS derived AD-associated

SNPs in S-LDSC analysis (Jansen GWAS coefficient = −2.57e-
08, p = 0.70, observed scale heritability =−7.64e-4, s.e. = 0.0006;
Kunkle GWAS coefficient = −1.26e-07, p = 0.74, observed scale
heritability =−0.0027, s.e. = 0.0026). Therefore, SNPs associated
with AD are unlikely to alter the regulatory function of these
DARs directly.

We tested whether these acetylation differences are
associated with differences in transcription by comparing
them with a previously published AD dlPFC snRNA-seq
dataset (Mathys et al., 2019). On average, genes annotated
to these DARs (n = 500 genes that were detectable in the
snRNA-seq study) displayed higher transcription levels in
oligodendrocytes of subjects with AD compared to subjects
without AD, in agreement with the direction of acetylation
differences (no pathology vs. pathology mean log2fc = 0.036,
t-test FDR q = 0.016; no pathology vs. early pathology mean
log2fc = 0.032, t-test FDR q = 0.033) (Figure 4K). Also, we
observed an enrichment in overlap between the genes annotated
to these DARs and the genes that were differentially expressed
(FDR q < 0.05) in oligodendrocytes of subjects with AD
in the snRNA-seq dataset (no pathology vs. early pathology
hypergeometric p = 2.8e-4, no pathology vs. pathology p = 2.1e-
4). Individual genes associated with LOAD risk including CLU
(log2fc no vs. path = 0.18, FDR q = 4.2e-3; log2fc no vs. early
path. = 0.1, q = 0.76) and BIN1 (log2fc no vs. path. = 0.1,
q = 0.015, log2fc no vs. early path. = 0.13, q = 0.03) displayed
statistically significant upregulation. SORL1 (log2fc no vs.
path. = 0.15, q = 0.26; log2fc no vs. early path. = 0.17, q = 0.70)
displayed upregulation but it was not statistically significant.
We note that PSEN2 (log2fc no vs. path. = −0.92, q = 0.18;
log2fc no vs. early path. = −0.915, FDR q = 0.21) and MAPT
(log2fc no vs. path. = −0.13, q = 0.1; log2fc no vs. early
path. = −0.116, q = 0.09) displayed reduced transcription with
AD pathology, although this was not statistically significant.
ADAMTS18 also displayed a statistically significant increase in
transcription in dlPFC oligodendrocytes of AD subjects (log2fc
no vs. path. = 0.113, q = 0.008; log2fc no vs. early path. = 0.48,
q = 1.22e-9) suggesting the acetylation differences are correlated
with transcriptional differences.

Again, we found that these DARs are enriched for a large
number transcription factor binding motifs including multiple
members of the Sox family of transcription factors. In this case,
however, we found that peaks annotated to SOX8 and SOX10
genes are part of this DAR set suggesting that one of these three
genes may serve as master regulators which lead to these dlPFC
OEG changes. A full set of motif enrichments is available on
our data upload.

Overall, we reveal that pathways associated with both
early and late onset AD are perturbed at the epigenomic
level in OEG. We show that amyloid processing, central
nervous system myelination and oligodendrocyte processes
are altered in hippocampus and dlPFC of subjects with
amyloid pathology. Furthermore, we find that transcription
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differences correlated with acetylation differences near AD
risk loci, although in the case of the hippocampal gene set,
they were not statistically significant for some genes. Together,
these DARs indicate oligodendrocyte gene regulation may
play a significant role in AD progression. Furthermore, while
microglia are considered the primary targets of AD GWAS
SNPs, our data highlight the possibility that a subset of loci
may also exert their function through oligodendrocytes. Future
experiments employing reporter assays or CRISPR Cas9 (Ran
et al., 2013) genome editing in oligodendrocytes could explore
this possibility.

Age associated acetylation differences
are enriched in the microglial
population and correlated with gene
expression differences

While microglial H3K27ac displayed strong colocalization
with GWAS derived AD-associated SNPs, very few acetylation
differences associated with Aβ load were detected. Instead,
we found that compared to neuronal and OEG populations,
the microglial population (combining all 26 samples from
both dlPFC and hippocampus) displayed age-associated
acetylation changes. We detected 444 age-associated DARs in
microglia (FDR q < 0.05). In contrast, only 9 age-associated
DARs were found in OEG, and none were found in neurons
(Supplementary Figure 21). This analysis controlled for
Aβ load, sex, and brain region differences. Of the 444
microglia DARs, 391 were hypoacetylated with increasing
age, and 53 were hyperacetylated with increasing age (FDR
q < 0.05) (Supplementary Table 10). We mapped these
444 DARs to nearby genes using GREAT (McLean et al.,
2010) and identified 2 hypoacetylated peaks annotated to the
amyloid precursor protein (APP) gene, and 6 hypoacetylated
peaks near the LRRTM3 gene, which is involved in positive
regulation of Aβ formation (Supplementary Table 11). We
also observed hyperacetylation at 3 distal peaks annotated
to the FKBP4 gene, which is involved in tau protein
binding and influences neurofibrillary tangle formation.
Age-associated microglia DARs did not display significant
colocalization with AD SNP heritability in S-LDSC analysis
(Jansen GWAS coefficient = −2.17e-08, p = 0.71, observed
scale heritability = −4.43e-05, s.e. = 9.86e-05, Kunkle
GWAS coefficient = −3.86e-7, p = 0.98, observed scale
heritability =−8.84e-4, s.e. = 0.0004).

Notably, these age-associated acetylation changes are
correlated with age-associated transcriptional changes in human
microglia profiled in a previous study (Olah et al., 2018).
Genes annotated near age-associated hypoacetylated peaks
(n = 307) in microglia displayed lower transcription in aged
individuals (mean age = 94.07, s.d. = 0.95) compared to middle
aged individuals (mean age = 53, s.d. = 5.29) (avg. log2fc

transcription = −0.69, p = 1.2e-10). Similarly, genes annotated
near age-associated hyperacetylated peaks (n = 50) displayed
higher transcription in aged individuals compared to middle
age subjects, but this was not statistically significant (avg. log2fc
transcription = 0.25, p = 0.43). While the age range of our
H3K27ac samples are limited (74.77–101.94), we note that
microglia alone showed significant age-associated acetylation
changes. Compared to other cell types, this may indicate
microglia undergo gene regulatory adaptations sensitive to even
advanced age. Future studies will have to probe a wider range
of ages in order to fully dissect cell type-specific epigenetic
responses to age.

Discussion

We report the first H3K27ac profiles of sorted neurons,
microglia, and OEG from both the hippocampus and dlPFC
of postmortem human AD brain tissue. We find microglial
H3K27ac peaks colocalize with common SNPs associated with
LOAD risk, supporting previous findings (Gjoneska et al.,
2015; Gosselin et al., 2017; Lake et al., 2017; Nott et al.,
2019). While this suggests LOAD risk loci influence AD
predisposition and progression through microglial processes,
perhaps unexpectedly, comparison of H3K27ac peaks by Aβ

load in microglia revealed few differences. Instead, we report
H3K27ac is altered significantly with age in microglia, leading
us to conclude that amongst the individuals analyzed, microglial
H3K27ac is more responsive to advances in age than to
Aβ load. Age-associated H3K27ac differences in microglia
also correlated with age-associated transcriptional differences
identified from a previous study (Olah et al., 2018). We note
that heterogeneity within the microglial population in disease
has been previously reported (Keren-Shaul et al., 2017; Mathys
et al., 2017) and therefore, the possibility of Aβ-associated
gene regulatory differences in microglia cannot be excluded
based on our study. However, a recent manuscript utilizing
both single cell and bulk RNA-seq techniques did not detect
any transcriptional differences between microglia from AD and
healthy aged individuals (Alsema et al., 2020). Combined, this
suggests that the study of age-associated changes in microglia
may provide a more promising avenue toward understanding
the role of microglia in AD progression.

Interestingly, we find a subset of AD risk loci have
significant H3K27ac signal in OEG relative to other cell types.
These include risk loci associated with genes CLU, BIN1, and
PICALM. Previous multi-scale network analyses have found
oligodendrocyte transcript and protein modules are enriched
for genes associated with AD risk loci, particularly BIN1 and
PICALM (McKenzie et al., 2017; Seyfried et al., 2017). Indeed,
BIN1 is highly expressed in oligodendrocytes, and is associated
with white matter tracts in the human brain (De Rossi et al.,
2016). Combined, these data suggest oligodendrocytes may play
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a significant role in the functionality of certain AD risk loci and
their associated risk genes, and should be further investigated
(Bartzokis, 2011).

We also find that OEGs harbor the largest H3K27ac
differences associated with Aβ load, albeit in a region and
sex-specific manner. dlPFC and hippocampus oligodendrocyte-
enriched populations seem to mount distinct epigenomic
signatures in response to AD but converge on similar biological
processes. In the hippocampus (restricted to female subjects
only, Aβ n = 5, no-Aβ n = 3), the promoters of genes associated
with early and late-onset AD risk displayed hypoacetylation.
This included EOAD risk genes APP, PSEN1, and PSEN2,
and LOAD risk genes BIN1, PICALM, ADAM10, ADAMTS4,
FERMT2, and SORL1 (Lambert et al., 2013; Jansen et al.,
2019; Kunkle et al., 2019). In addition, core oligodendrocyte
processes such as myelination were also found to be significantly
hypoacetylated. Sorted hippocampal oligodendrocyte nuclei
from an independent cohort of ROSMAP individuals revealed
a corresponding trend toward downregulation of the associated
transcripts (de Leeuw et al., 2004; Lee et al., 2016). Importantly,
previous AD studies demonstrate similar pathways are
deregulated at the transcriptomic and proteomic levels in
oligodendrocyte-enriched modules, as does a recent single-
cell gene expression study (McKenzie et al., 2017; Seyfried
et al., 2017; Mathys et al., 2019). Combined with our current
findings, this suggests that the oligodendrocyte response to Aβ

is an important feature of AD progression and merits further
attention. However, the limited size of our dataset poses a caveat
to data interpretation, especially because our analysis of the
hippocampus is limited to female AD patients. The acetylation
differences identified should be confirmed in a larger sex-
matched cohort of individuals. In addition, positive selection
of astrocytes will be necessary in future studies looking at cell
type-specific epigenomic changes in AD since the NeuN-/Pu.1-
population is likely a heterogenous mixture of cells.

We also observed an Aβ-associated dysregulation of
promoters and enhancers of myelin-processing genes in dlPFC
OEG (both sexes, Aβ n = 5, no-Aβ n = 5). However,
these dlPFC DARs were hyperacetylated in AD individuals,
including peaks annotated to PSEN2, CLU, ADAMTS4, BIN1,
and SORL1. The DARs in the hippocampus are largely distinct
from the DARs in the dlPFC. This disparity between brain
regions may reflect oligodendrocyte heterogeneity in response
to pathological insults, as well as region-specific differences in
cell composition and pathologic severity. Alternatively, it may
be associated with compensatory signaling in the prefrontal
cortex that has been previously reported in neurodegenerative
disorders (Grady et al., 2003). However, it cannot be ruled out
that the differences we observe are due to an under-powered
dataset. Despite this, it is apparent OEG H3K27ac represents a
core feature of epigenetic dysregulation in both hippocampus
and dlPFC. Whether these changes are primary drivers of
AD pathology or secondary effects however is unclear. For

example, numerous studies have shown that Aβ is toxic to
oligodendrocytes (Xu et al., 2001; Lee et al., 2004; Nasrabady
et al., 2018). As AD progresses, the gradual accumulation of
Aβ could account for the deregulation of myelinating genes.
Inflammatory microglia could also hinder myelination through
the release of proinflammatory factors such as nitrogen species
and cytokines, or the through the impaired phagocytosis of
myelin debris (Peferoen et al., 2014). Alternatively, the altered
acetylation of Aβ processing genes, AD risk genes and basic
oligodendrocyte processes could play a role in the initiation
of AD pathology. Future research could explore whether these
gene regulatory changes are primary or secondary events in
disease progression, or a mixture of both. In summary, our
data demonstrates cell type-specific epigenomic deregulation
occurs in AD, and we specifically highlight oligodendrocyte gene
regulation as a target for future AD research.

Materials and methods

Source of brain tissue and pathologic
data

Biospecimens and data came from autopsied participants
in one of two prospective clinical-pathologic cohort studies,
the Religious Orders Study or Rush Memory and Aging
Project (ROSMAP). Both studies were approved by an
Institutional Review Board of Rush University Medical Center.
All participants signed an informed consent, an Anatomical Gift
Act, and a repository consent to all their data and biospecimens
to be repurposed. Details of the studies have been previously
reported (Bennett et al., 2018). We collected 26 samples from
19 subjects enrolled in ROSMAP. 7 subjects were sequenced for
both hippocampus and dlPFC, 3 subjects were unique to the
dlPFC dataset and 9 subjects were unique to the hippocampus
dataset. We provide (Supplementary Figures 2, 3, 18) with
jitter plots summarizing overall amyloid load (averaged across 8
brain regions), tangles, global cognition score (cogn_global_lv),
consensus cognitive diagnosis (cogdx), Braak stage, CERAD
score, age at death, years of education and postmortem interval
(pmi) for these samples. For more details about these variables,
please refer to Supplementary Table 1 or the Rush Alzheimer’s
Disease Center (RADC) variables list: https://www.radc.rush.
edu/docs/var/variables.htm.

Fluorescence-activated nuclei sorting

Fresh frozen dlPFC and hippocampus samples were
retrieved from -80◦C storage and thawed on ice, then disrupted
with a handheld homogenizer. Samples were fixed with 1%
paraformaldehyde for 10 min at room temperature. Fixation
was quenched with glycine for 5 min. Nuclei were isolated
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by dounce-homogenization followed by filtration through a
70 µM cell strainer (cat no. 21008-952, VWR, Radnor PA).
To immunotag cell type specific nuclei, anti-NeuN antibody
conjugated to Alexa Fluor 488 (cat no. MAB377X, EMD
Millipore, Burlington MA), and anti-PU.1 antibody conjugated
to Alexa 647 (cat no. 2240S, Cell Signaling Technology,
Danvers MA) were incubated with nuclei at 4◦C for 1 h and
overnight, respectively. Samples were strained through a 40
µm filter (21008-949, VWR) and stained with the nuclear
marker DAPI (D9542, Sigma Aldrich, St. Louis MO) before
flow cytometry. First, single nuclei were gated from debris
and doublets using DAPI staining. Second, NeuN+ nuclei were
gated from NeuN- nuclei. Lastly, NeuN- nuclei were gated as
either PU.1+ or PU.1- negative based on average PU.1-647
fluorescence distribution. Fluorescence activated nuclei sorting
was performed until 400,000 nuclei were collected for each cell
type (NeuN+, Pu.1+, and NeuN-/Pu.1-) using the FACSAria
(BD Biosciences, US).

Chromatin immunoprecipitation

Following sorting, chromatin was fragmented into 200–
600 bp fragments using the Diagenode bioruptor. Fragmented
samples were split equally into two tubes such that each
tube contained an equivalent of chromatin from 200,000
nuclei. All ChIPs were carried out in duplicate. Samples
were pre-cleared with BSA-blocked Protein A sepharose beads
(cat no. GE17-0780-01, Sigma Aldrich) for 4 h at 4◦C. At
this point, 1% input was collected and stored at -20◦C.
Chromatin was incubated with 2 µg of Histone H3 (acetyl
K27) antibody (cat no. ab4729, abcam, Cambridge UK)
overnight at 4◦C. Chromatin fragments bound to the antibody
were pulled down with BSA-blocked Protein A sepharose
beads for 4 h at 4◦C. To reduce non-specific binding, the
bead-chromatin complex was washed four times with ice-
cold RIPA buffer. Immunotagged chromatin was eluted from
beads through shaking at 65◦C for 15 min. Both 1% input
and ChIP were de-crosslinked overnight in T50E10S1 buffer
at 65◦C. Reverse crosslinked chromatin was treated with
RNase A and Proteinase K. DNA was purified using phenol-
chloroform extraction. Following ethanol precipitation, samples
were resuspended in 10 mM Tris-HCl buffer and stored
at−20◦C.

Chromatin immunoprecipitation
followed by sequencing
high-throughput sequencing

A portion of the sample was used to assess enrichment
for cell-type specific H3K27ac peaks via qPCR. If the sample
passed qPCR quality control, libraries were generated from

the remaining sample. Library generation was performed
using the KAPA Hyper Prep Kit (KK8504, Kapa Biosystems).
After amplification and quantification, a portion of the
library was used for a second qPCR to ensure enrichment
of cell-type specific H3K27ac peaks. If the sample passed
the second qPCR quality control, it was submitted to the
MIT BioMicro Center for fragment analysis, followed by
sequencing. The 40-bp single-end sequencing was performed
using the Illumina HiSeq2000 platform according to standard
operating procedures.

Quality control, consensus peak set
generation, and read counting

For peak calling, the AQUAS ChIP-Seq workflow1 was
used. To perform quality control, the two technical replicates
for each sample were individually input to the AQUAS
workflow to compute standard ENCODE quality metrics
(Landt et al., 2012) such as NSC, RSC, NRF, PBC1, PBC2,
FRiP, replicate consistency etc. All samples that did not meet
quality standards of (NSC > 1.01, RSC > 0.4, PBC1 > 0.5)
were discarded at this point. A full table of quality metrics
and retained/filtered samples is provided in Supplementary
Table 2. The workflow uses Burrows-Wheeler alignment
(Li and Durbin, 2009), Samtools (Li et al., 2009) for
processing alignments, MACS2 (Zhang et al., 2008) for peak
calling, and PICARD2 for removing PCR duplicates. Peak
reproducibility is assessed by overlapping peaks across groups
of sample replicates and pseudoreplicates using a method
similar to irreproducible discovery rate (IDR) (Li et al., 2011)
analysis. All analysis was performed on the hg19 reference
genome.

To call a consensus peak set, we aimed to filter out
noisy peaks associated with individual samples while still
retaining peaks associated with individual brain regions, cell
types and Aβ pathology. To achieve this, we called 12 sets of
reproducible peaks on different subsets of samples defined by
these variables. More explicitly, reproducible peaks were called
for each of the following subsets of samples using the AQUAS
workflow:

a. Hippocampus, no Aβ, neuron
b. Hippocampus, no Aβ, microglia
c. Hippocampus, no Aβ, OEG
d. Hippocampus, w/Aβ, neuron
e. Hippocampus, w/Aβ, microglia
f. Hippocampus, w/Aβ, OEG
g. dlPFC, no Aβ, neuron

1 https://github.com/kundajelab/chipseq_pipeline

2 http://broadinstitute.github.io/picard/
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h. dlPFC, no Aβ, microglia
i. dlPFC, no Aβ, OEG
j. dlPFC, w/Aβ, neuron

k. dlPFC, w/Aβ, microglia
l. dlPFC, w/Aβ, OEG

Then, these 12 sets of peaks were merged using the bedtools
merge (Quinlan and Hall, 2010) utility to construct a single
consensus peak set. To account for local depletions in chromatin
intensity profiles (“dips”) (Ernst et al., 2011), peaks that were
less than 200 bp apart were merged during this step. We
propose this merged consensus peak set comprising 352,012
peaks as a reference set of peaks active in the three profiled
brain cell types of the dlPFC and hippocampus of AD and non-
AD subjects and use it in downstream analyses. To confirm
brain enrichment, we downloaded all 98 H3K27ac profiles in
Roadmap Epigenomics and computed intersections with our
consensus peak set using bedtools jaccard (Quinlan and Hall,
2010). We then ranked the 98 intersections based on the
resulting jaccard index to see if brain tissues/cell types ranked
highest. The featureCounts (Liao et al., 2014) package was
used to count the read signal at these peaks for every ChIP-
Seq experiment that passed quality control. This read count
matrix was then used in downstream analysis for validation
of sorting, for PCA analysis, and for identifying differentially
acetylated regions using DESeq2 (Love et al., 2014). We also
used this count matrix for variance partition analysis using
the variancePartition R package (Hoffman and Schadt, 2016;
Hoffman and Roussos, 2021) using a mixed effects model
design that included brain region, cell type, age, amyloid
pathology indication as fixed effects and subject ID as a random
effect.

Cell type-specific hyperacetylated
peak sets

For each of the three cell type populations, we used the
negative binomial model of DESeq2 (Love et al., 2014) inputting
the full consensus peak set and contrasting the focal cell type
against the other two cell types to identify 3 subsets of cell type-
specific differentially hyperacetylated peaks. Peaks were defined
as differentially hyperacetylated if they displayed a positive
log2 fold change and passed FDR control (q < 0.05) across
each of the 352,012 peaks that passed independent filtering
criteria in DESeq2. This set of peaks was used in heritability
enrichment analyses using permutation testing (Consortium
et al., 2015; Gjoneska et al., 2015) and stratified LD-score
regression (Bulik-Sullivan et al., 2015; Finucane et al., 2015,
2018). For these analyses, a background peak set was constructed
by creating a union of these peaks. Further, the log2-fold change
values from DESeq2 were used to assess cell type-specificity
of individual peaks at AD GWAS loci. A full set of fold

changes representing cell type-specificity is also reported in
Supplementary Table 3.

Sorting validation and identification of
cell types by comparison to single
nucleus ribonucleic acid-sequencing
clusters

The consensus set of merged peaks were annotated to
their nearest genes using the annotatePeaks tool in HOMER
(Heinz et al., 2010). Marker gene sets for 15 cell type clusters
were downloaded from the Habib et al. (2017) study which
profiled frozen human hippocampus and PFC samples from
five recently deceased, non-diseased male donors aged 40–65
(three samples from PFC and four samples from hippocampus).
According to the study, the average post-mortem ischemic
interval for tissues was 12.4 h. For each single nucleus RNA-
seq cluster, H3K27ac peaks annotated to the marker gene
set were obtained. The cell type-specificity log2fc values (see
Cell type-specific hyperacetylated peak sets) for these 15
marker gene annotated peak sets were then extracted and
a one-sided t-test was used to test whether the mean of
these log2fc values was significantly greater than 0.5 (∼1.4
fold change). A significant result from this test indicated
the enrichment of a cell type identified in Habib et al.
(2017) in our ChIP-Seq profiled population. The test was
conducted for every pair of focal ChIP-Seq population and
single nucleus RNA-Seq cluster. P-values were adjusted for
multiple hypothesis testing using Benjamini Hochberg FDR
correction across all 45 tests (15 snRNA-seq cell types ∗ 3 ChIP-
seq populations). Adjusted p-values are reported in the results
section.

To test whether TSS distal peaks confound these
results, the above analyses were also conducted on
peaks that are near promoters of the marker genes by
only selecting the peaks that are less than 5 kilobases
away from transcription start sites (TSS) of the 15
gene sets. Multiple hypothesis correction was done
similarly using Benjamini Hochberg FDR correction
across all 45 tests.

In addition, we verified sorting efficacy in each of the 26
tissue samples individually. First, we input the full count matrix
to DESeq2, collapsed technical replicates, and then computed
variance stabilized (vst) counts. Then, we extracted the vst
counts at each peak annotated to marker genes for the 15
cell type clusters defined in Habib et al. (2017) At each peak,
we computed cell type-specificity log2fc values for individual
tissue samples by dividing the vst count for the focal cell
type by the mean vst count of the two non-focal cell types.
Then, we computed the mean of these cell type-specificity
log2fc values for all 15 peak sets. These values were z-score
normalized and plotted in the form of a heatmap. Further, to
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check whether sorting efficacy is different between Aβ and no Aβ

samples, male and female samples, or dlPFC and hippocampus
samples, we averaged these log2fc values across samples in these
individual groups, z-score normalized them, and plotted them
in a separate heatmap. To test whether distal peaks confound
these results, we also repeated this entire analysis by restricting
to only TSS proximal putative promoter peaks (<5 kb from
TSS).

Sorting validation using single nucleus
ATAC-seq

We download narrowPeak files for all 24 snATAC-seq
cell type clusters profiled in Corces et al. (2020). Then
we intersected all 24 peak sets to our 3 cell type-specific
hyperacetylated peak sets using the bedtools jaccard (Quinlan
and Hall, 2010) utility. For each of the 3 cell types, we
then sorted the resulting intersections based on the computed
jaccard index to identify cell types enriched in our H3K27ac
dataset.

Stratified LD-score regression analysis

GWAS summary statistics from two studies, Kunkle
et al. (2019) and Jansen et al. (2019) were downloaded
and stratified LD-score regression (S-LDSC) (Bulik-Sullivan
et al., 2015; Finucane et al., 2015, 2018) was used to
compute AD SNP heritability enrichment in cell type-specific
differential peaks against the merged background set. The
standard workflow described by the authors was used and
LD scores were computed based on custom annotations
derived from hyperacetylated peaks called on each cell type
and compared against custom annotations derived from the
merged background set constructed from the three cell type-
specific peak sets. A baseline model representing annotations
from 53 different tissues was also included to compute the
enrichment coefficients as recommended by the LDSC authors.
The regression coefficients for each population were extracted
and plotted. A significant result from this test indicates an
enrichment of genetic risk for LOAD in regions that are
actively regulating gene expression in the cell type, suggesting
a role for that cell type in influencing predisposition toward
LOAD. Benjamini Hochberg FDR correction was applied
across the three tests. To estimate heritability, we conducted
a separate analysis using a different baseline model based on
82 annotations as recommended by the S-LDSC authors. We
report observed scale heritability estimates from this analysis.
Similar analyses were conducted with Schizophrenia GWAS
study. S-LDSC analysis was also conducted for cell type
reproducible peaks (see Cell type reproducible peak sets) in
similar fashion.

Enrichment test for colocalization of
Alzheimer’s disease-associated variants
with cell type-specific peaks

To test whether choice of computational method may
alter conclusions of the S-LDSC analysis, we used another
approach that utilizes a permutation test. LD-pruning was
applied (LD > 0.5) on both GWAS datasets based on the
1,000 genomes reference (Gibbs et al., 2015). SNPs overlapping
protein coding sequence (Zerbino et al., 2018) were filtered out
along with SNPs in tight linkage disequilibrium (LD > 0.5).
SNPs with p-values less than 1e-3 were selected and overlap
annotations were created for each set of differential cell type-
specific peaks (see Cell type-specific hyperacetylated peak
sets). A permutation test was used to compute heritability
enrichment of AD-associated SNPs in a focal foreground set of
differential peaks for a cell type against the merged background
set. SNPs were permuted 1,000,000 times preserving distance to
gene, minor allele frequency and the number of variants that are
in LD. Benjamini Hochberg FDR correction was applied across
the three tests.

Cell type reproducible peak sets

To robustly identify all peaks active in a cell type (not just
differentially hyperacetylated cell type-specific peaks), we also
generated reproducible peak sets for each cell type. For each
cell type, pooled alignments of all dlPFC and all hippocampus
samples from subjects without Aβ load were input to the
AQUAS workflow. Only subjects without Aβ load were used
so as not to include peaks that may be associated with AD.
This peak set was used to generate the browser visualization
tracks at the loci containing the INPP5D, BIN1 and PICALM
genes (Figures 2D–F). Browser tracks for INPP5D, BIN1, and
PICALM were generated using the integrative genomics viewer
(IGV) (Robinson et al., 2011) and pygenometracks (Ramírez
et al., 2018), and edited later. Using these three cell type
reproducible peak sets, we also did S-LDSC analysis. For this
S-LDSC analysis, a new background peak set was used, which
was created by merging the 3 cell type reproducible peak sets.
Peaks less than 200 bp apart were merged to account for
H3K27ac dips. Benjamini Hochberg FDR correction was applied
across the three tests.

Differentially acetylated regions
associated with Aβ load

Differentially acetylated regions were identified using the
negative binomial model of DESeq2. For each differential
acetylation model setting (see Supplementary Table 7
for details), a subsetted count matrix was generated that
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includes only the subset of samples corresponding to the
brain region, sex, or cell type included. This matrix was
input to DESeq2 and DARs were identified by contrasting
high Aβ samples against no Aβ samples. For each contrasts,
DARs were called at a FDR q-value cutoff of 0.05, correcting
for multiple hypothesis across each of the 352,012 peaks
that passed independent filtering criteria in DESeq2. No
covariates were included in the initial linear models. However,
post hoc analysis was conducted for the two OEG DAR
sets described in detail in the results, by fitting individual
models to the OEG female hippocampus samples and the
OEG dlPFC samples for age at death, years of education,
pmi, and RSC. Additionally, we covaried Aβ and RSC
(design Aβ + RSC) and tested whether effect sizes for
Aβ remained correlated with the original models used to
identify the DARs. Log2fc values from this analysis are
provided in Supplementary Table 8. We tested whether
the identified DARs were robust to a larger multiple
hypothesis correction conducted across all 13,394,888
tests from each contrast. 6 of the 1,962 hippocampus
female OEG hypoacetylated peaks and 5 of the 1,029
dlPFC OEG hyperacetylated peaks were robust to this
correction (q < 0.05). Further, for the two OEG DAR
sets, we conducted replication analysis in the other brain
region to test whether the changes were directionally
consistent (Supplementary Figure 22). For the OEG
hippocampus female analysis, we compared the log2fc
values for all peaks with those from the analysis of OEG
dlPFC female samples. We found that the log2fc values
displayed low Pearson correlation (r = 0.06), although
the correlation was significant (p = 7.55e-25). For the
1,962 OEG female hippocampus hypoacetylated peaks,
directionality of acetylation change was not consistent
between the two brain regions. 1,804 of 1,962 peaks
displayed increased acetylation in dlPFC female OEG
Aβ samples (log2fc > 0) and the remaining 158 were
directionally consistent (log2fc < 0). For the analysis in
OEG dlPFC samples, we compared the log2fc values with
the analysis of OEG hippocampus samples of both sexes.
We observed similar results, the log2fc values displayed
low Pearson correlation (r = 0.06), although the correlation
was significant (8.08e-14). Direction of acetylation change
was again not consistent across the two brain regions.
815 of 1029 dlPFC OEG hyperacetylated peaks displayed
decreased acetylation in OEG hippocampus Aβ samples
(log2fc < 0) samples and the remaining 214 were directionally
consistent (log2fc > 0).

We also provide plots of normalized read counts at DARs
against these variables to look for increasing or decreasing
trends. For this, variance stabilized (vst) read counts (Love et al.,
2014) were computed and z-score normalized for each peak,
and box plots were plotted against age, years of education,

pmi, and RSC to look for relationships (Supplementary
Figures 12, 13). Vst transformed read counts across all
peaks were used for heatmap visualizations. DAR sets were
annotated to their nearest genes using the annotatePeaks
tool in HOMER (Heinz et al., 2010) and the distribution of
distance to TSS output from HOMER was plotted for the
two OEG Aβ associated DAR sets as well as the remaining
DARs. A hypergeometric test was used to test for promoter
enrichment in the OEG DAR sets by treating peaks < 5 kb
TSS as successes and peaks > 5 kb from TSS as failures. The
background for the hypergeometric test was the full set of
352,012 peaks.

For OEG hippocampus samples of both sexes, we
conducted an additional DESeq2 analysis with the following
design: sex + binary Aβ load status (high or none) +
sex:binary Aβ load status interaction. Peaks significant
for the interaction term of sex:binary Aβ load status
were then extracted to assess sex-specificity of OEG
DARs detected in female hippocampus samples. An FDR
q < 0.05 was used as the cutoff to correct for multiple
hypothesis across all 352,012 tests that passed independent
filtering criteria in DESeq2. Only 3 peaks were called
differential (FDR q < 0.05) for the interaction term.
Furthermore, only 1 of the 3 peaks were members of the
set of 1962 DARs detected in OEG female hippocampus
samples, suggesting that the differential acetylation at
almost all (1961/1962) of these peaks is unlikely to
be sex-specific.

Genome browser visualizations were created for
the two OEG DAR sets at EOAD and LOAD risk
loci, as well as highly differentially acetylated loci
using pygenometracks (Ramírez et al., 2018). Custom
UNIX commands and the UCSC bigWigMerge (Kent
et al., 2010) tool were used to create average H3K27ac
signal tracks in OEG samples from subjects with
and without Aβ load. Tracks for DESeq2 log2fc
and UCSC gene annotations (Karolchik et al., 2004)
were included. A UCSC genome browser track hub
containing bigwig signal tracks and peak annotations
is made available at: https://genome.ucsc.edu/cgi-bin/
hgHubConnect.

S-LDSC was used to test for AD SNP heritability
enrichment from both AD GWAS studies in the two
OEG specific DAR sets. The full consensus peak set
of 352,012 peaks was used as background and the 53-
annotation baseline was used to estimate enrichment
coefficients and p-values. Since these were independent
and individual tests, nominal p-values from the analysis
were reported. Heritability estimates were computed in a
similar way, but with the 82-annotation baseline according
to author recommendations (see Stratified LD-score
regression analysis).

Frontiers in Molecular Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnmol.2022.948456
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-948456 January 3, 2023 Time: 12:20 # 20

Ramamurthy et al. 10.3389/fnmol.2022.948456

Gene ontology enrichment analysis for
oligodendrocyte-enriched glial
differentially acetylated regions sets

The GREAT (McLean et al., 2010) web tool was used
for computing enrichments for ontological annotations
associated with genes proximal to DAR sets. GREAT analysis
was performed separately on the two biggest OEG DAR
sets as well as the remaining DARs not in those sets. In
addition, we used GREAT to compute pathway enrichments
for neuron, microglia and OEG cell type-specific peaks.
The consensus brain peak set of 352,012 peaks (see Quality
Control, consensus peak set generation, and Read Counting)
was used as the background for each of the aforementioned
GREAT analyses. A heatmap of the fold enrichment returned
by GREAT was plotted for any GO Biological Process that
passed a q-value cutoff of 0.05 and was associated with
a minimum of 5 genes in any of the GREAT analyses.
In addition, fold enrichment for the KEGG Alzheimer’s
Disease Pathway was plotted in the heatmap. To confirm
that we were not enriching for oligodendrocyte signal in
GREAT analysis for the OEG DARs, we re-ran GREAT
using a custom background created from cell type-specific
hyperacetylated peaks for OEG (see Cell type-specific
hyperacetylated peaks) and extracted only the enrichment
p-values for processes of interest such as central nervous system
myelination, oligodendrocyte differentiation etc. We report
nominal p-values since we only test two or three individual
processes. Since GREAT requires every foreground peak
to be part of the background set, foreground peaks were
added into the background set for this analysis. Furthermore,
an additional GREAT analysis was run on an OEG cell
type-specific background peak set that was specific to the
brain region in which the foreground DAR set was detected.
More specifically, for the hippocampus hypoacetylated
OEG DARs, this analysis included a background that was
derived from cell type-specific hyperacetylated peaks only
in the hippocampus. To generate this background, DESeq2
was run on the full consensus peak set but inputting only
the subsetted matrix containing the hippocampus samples,
contrasting OEG against the other two cell types to identify
hippocampus OEG-specific peaks (log2fc > 0, FDR q < 0.05).
For the hippocampus hypoacetylated DAR set, enrichment
for central nervous system myelination (hippocampus
background p = 2.3e-4, region fold enrichment = 2.55;
both background p = 5.89e-5, region fold enrichment = 2.84),
oligodendrocyte development (hippocampus background
p = 6.13e-3, region fold enrichment = 1.72; both background
p = 1.83e-3, region fold enrichment = 1.89), and oligodendrocyte
differentiation (hippocampus background p = 2.5e-2, region
fold enrichment = 1.4; both background p = 5.99e-3, region
fold enrichment = 1.54) were still detectable. For the OEG

dlPFC hyperacetylated DAR set, a similar OEG cell type-specific
background was created, this time by inputting only the
subsetted matrix containing the dlPFC samples to DESeq2.
For the OEG dlPFC DAR set, enrichments for central nervous
system myelination (dlPFC background p = 4.46e-5, region fold
enrichment = 3.86; both background p = 6.86e-5, region fold
enrichment = 3.7), and oligodendrocyte differentiation (dlPFC
background p = 2.75e-3, region fold enrichment = 1.89; both
background p = 4.6e-3, region fold enrichment = 1.81) was still
detectable.

Protein-protein interaction network
analysis for oligodendrocyte-enriched
glial differentially acetylated regions
sets

We used the STRING (Szklarczyk et al., 2021) plugin
in the Cytoscape (Shannon et al., 2003; Cline et al., 2007;
Saito et al., 2012) application to construct PPI networks
for genes annotated to the two OEG DAR sets. Since the
output network contained a lot of edges, it was largely
not interpretable. Therefore, we clustered the nodes in the
network using the in-built Markov chain (MCL) clustering
algorithm (Enright et al., 2002). We found that setting
the MCL granularity parameter to 2.5 for both gene sets
led to well separated and interpretable clusters. Most
genes/proteins clustered into small groups (1–9 genes per
cluster) and there were only a few clusters with > 10 genes
which could be interpreted in further analysis. Therefore,
we only visualized and focused downstream analyses on
these top clusters based on the number of genes present
in them. For visualization, we set the size of the nodes
and their labels using a continuous mapping on the
"betweenness centrality” of the nodes which we obtained
by running Tools - > Analyze Network within Cytoscape.
We then conducted Gene Ontology enrichment analysis
using GREAT for genes in each of these top clusters using
DAVID (Sherman et al., 2022) and annotated the network
visualization with selected GO BP terms passing FDR
q < 0.05. Our full cytoscape session file is available in our
data upload and can be directly imported into Cytoscape:
http://daphne.compbio.cs.cmu.edu/files/eramamur/ad_h3k27a
c_3ct_data_resource/oeg_dars_cytoscape_session.cys.

Motif enrichment analysis on
oligodendrocyte-enriched glial
differentially acetylated regions sets

We used the findMotifsGenome package within HOMER
(Heinz et al., 2010) to identify motifs enriched in the OEG
DAR sets. We conducted this analysis in a differential motif
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discovery setting using a background set of peaks derived
from the full set of 352,012 peaks. Since the 1,962 DARs
identified in female hippocampus OEG samples displayed high
promoter enrichment, HOMER would enrich only promoter
motifs when using the full peak set as the background. To
overcome this bias associated with promoters, we ran the
analysis with a background peak set selected from the full
set of peaks that matches the distribution of distance to
TSS with the foreground DAR set. For each peak in the
foreground DAR set, we randomly selected a single peak that
had a distance to TSS which was within a 100 bp of the
distance to TSS value of the foreground peak. If the peak was
already present in the sampled background set, we repeated
the process until we found a peak which wasn’t already
present in the sample. We constructed 10 such background
peak sets and ran 10 motif enrichment analyses with these
different backgrounds. We visually compared the 10 different
motif enrichment analyses and identified motifs enriched
reproducibly across these analyses. For motif enrichment
analysis on the 1,029 OEG dlPFC DARs, we used the full set
of 352,012 peaks as the background set since there was no
specific enrichment for promoters in this DAR set. Results
of our motif enrichment analyses are provided in our data
upload: http://daphne.compbio.cs.cmu.edu/files/eramamur/ad_
h3k27ac_3ct_data_resource/motif_enrichment.

Ribonucleic acid extraction, reverse
transcription and quantitative
polymerase chain reaction in
postmortem hippocampus

An independent set of hippocampal samples from
the ROSMAP cohort were used for RT-qPCR validation.
Samples were prepared for FANS as described previously.
To isolate oligodendrocyte, microglia, astrocyte, and
neuronal nuclei, samples were stained overnight at 4◦C
with anti-Olig2 antibody conjugated to Alexa Fluor 488
(cat no. MABN50A4, EMD Millipore, Burlington MA),
anti-PU.1 antibody conjugated to Alexa Fluor 647 (cat
no. 2240S, Cell Signaling Technology, Danvers MA), anti-
GFAP conjugated to Alexa Fluor 555 (cat no. 3656, Cell
Signaling Technology, Danvers MA), and stained for 1 h with
anti-NeuN conjugated to biotin (cat no. MAB377B, EMD
Millipore, Burlington MA), and for 1 h with Brilliant Violet
711 Streptavadin (cat no. 405241, BioLegend, San Diego,
CA). Fluorescence activated nuclei was performed until at
least 100,000 Olig2-positive nuclei, NeuN-positive nuclei,
GFAP-positive nuclei, and PU.1-positive nuclei were collected
for each sample.

Following sorting, nuclei were treated for 15 min with
Proteinase K at 50◦C and then for 13 min at 80◦C. RNA
was extracted using Direct-zol RNA MicroPrep kit (Zymo

Research) according to manufacturer’s instructions. Reverse
transcription of RNA was carried out using Invitrogen
SuperScript IV First Strand Synthesis System (Oligo dT)
according to manufacturer’s protocol. qPCR was performed
using a Bio-Rad CFX-96 quantitative thermocycler and
SsoFast EvaGreen Supermix (Bio-Rad). Relative changes in
gene expression were determined using the 2−1 1 Ct

method. The geometric mean of cycle numbers from RPL13,
CYC1, and GADPH were used for housekeeping Ct values.
Fold change in gene expression for high-Aβ samples was
computed relative to the combined average gene expression
of low and mid-Aβ load samples. Mid-Aβ was defined
as Aβ load scores between 1 and 7.71. High-Aβ was
defined as Aβ load scores higher than 7.71. These cutoffs
were chosen based on the observation that the female
hippocampal OEG ChIP-seq samples with Aβ load equal
to or higher than 7.71 displayed normalized read counts
below the mean levels when Aβ was treated as a continuous
variable (Supplementary Figure 12B). Effect sizes for gene
expression changes were calculated using Hedge’s g. Primer
sequences used for RT-qPCR can be found in Supplementary
Table 12.

Comparison with single nucleus gene
expression from postmortem
dorsolateral prefrontal cortex

Hyperacetylated DARs in dlPFC OEG were assessed for
nearby transcriptional differences in the snRNA-seq study
from Mathys et al. (2019). The nearest genes of the
hyperacetylated DARs were obtained using annotatePeaks in
HOMER. Only genes where the closest peak was < 5 kb
from the TSS were retained to reduce false positives. This
resulted in a filtered list of 500 genes. Oligodendrocyte-
specific log2FC values were obtained from the snRNA-seq
study for two different contrasts (i). no pathology vs. early
pathology and (ii). no pathology vs. pathology). Then, a
one-sample one-sided t-test was used to test whether there
is an average increase in transcription at these genes in
AD (null hypothesis avg. log2fc = 0, alternative hypothesis
avg. log2fc > 0). Violin plots of these log2FC values
were plotted with p-values indicating the results of the
aforementioned t-test (p < 0.05). Benjamini Hochberg FDR
corrected q-values were reported for these tests. Transcription
log2fc of specific AD risk genes and genes near highly
hyperacetylated peaks were also plotted as bar plots (for
both contrasts). In these bar plots, the differential expression
FDR q-values from the snRNA-seq study were also reported.
We also computed general enrichment of genes annotated
to the dlPFC DARs in differentially expressed genes (FDR
q < 0.05) using separate hypergeometric tests for both
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oligodendrocyte specific contrasts. Since these are single tests,
raw p-values are reported.

Differentially acetylated regions
associated with age

Age-associated changes in H3K27ac levels were identified
using DESeq2 on the full consensus peak set (see Quality
Control, consensus peak set generation, and read counting).
For each cell type, a subsetted count matrix was created
that included all 26 samples (both cases and controls) for
that cell type from both brain regions. H3K27ac level was
modeled as a linear function of sex + binary Aβ load status
(high or none) + brain region (hippocampus or dlPFC) +
age at death in DESeq2, to control for the effects of sex,
AD pathology and brain region. Log2FC and FDR q values
were extracted for the age term. In addition, another analysis
(“total”) that included all samples from every cell type was
run to test for cell type agnostic effects of age on H3K27
acetylation. Histograms of the log2FC values were plotted
for each cell type to determine which cell types displayed
the strongest age-associated differential H3K27 acetylation.
Differential age-associated peaks were identified for each cell
type at FDR q < 0.05 correcting for multiple tests across
all of the 352,012 peaks passing independent filtering criteria
in DESeq2. Hypoacetylated and hyperacetylated peaks were
then defined based on the sign of log2fc (log2fc > 0 for
age-associated hyperacetylated peaks; log2fc < 0 for age-
associated hypoacetylated peaks). Microglia age-associated
peaks were then put into GREAT with default parameters
to associate nearby genes and assess biological functions.
For heatmap visualization, variance stabilizing transformation
(vst) was applied on the full matrix and only the differential
peaks were extracted.

Comparison with microglia RNA-seq
study

To test whether age-associated H3K27ac differences are
associated with differences in transcription, we compared our
dataset to an RNA-seq dataset of human dlPFC microglia
published in Olah et al. (2018). Microglia differential gene
expression log2fc values and p-values between middle aged
(mean age = 53, s.d. = 5.29) and aged (mean age = 94.07,
s.d. = 0.95) individuals were downloaded from Supplementary
Data. Age-associated hypoacetylated and age-associated
hyperacetylated peaks in microglia were then separately
annotated to nearby genes using the annotatePeaks tool
in HOMER. For the 391 hypoacetylated peaks, this was
able to retrieve 307 associated genes, and for the 53
hyperacetylated peaks, this was able to retrieve 50 associated

genes. The distribution of transcription log2fc values was
plotted for these genes. To look for agreement between the
direction of H3K27 acetylation differences and differences in
transcription of associated genes, we used one sided t-tests.
More specifically, for genes annotated to age-associated
hyperacetylated peaks, we tested whether they displayed
an increase in expression (null hypothesis: avg. log2fc = 0;
alternate hypothesis: avg. log2fc > 0). For genes annotated
to age-associated hypoacetylated peaks, we tested for the
opposite effect (null hypothesis: avg. log2fc = 0; alternate
hypothesis: avg. log2fc < 0). We also tested whether
mean log2fc values differed significantly between genes
associated with hyperacetylated peaks and genes associated
with hypoacetylated peaks using a t-test (null hypothesis:
avg. log2fc age-associated hypoacetylated = avg. log2fc age-
associated hyperacetylated; alternate hypothesis: avg. log2fc
age-associated hyperacetylated 6= avg. log2fc age-associated
hyperacetylated). Since these are individual tests, nominal
p-values were reported.
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synapse.org/DataAccess/Instructions). For access to the data
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