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Background: Theta burst stimulation (TBS) belongs to one of the biological
antidepressant treatment options. When applied bilaterally, excitatory intermittent TBS
(iTBS) is commonly targeted to the left and inhibitory continuous TBS (cTBS) to the right
dorsolateral prefrontal cortex. TBS was shown to influence neurotransmitter systems,
while iTBS is thought to interfere with glutamatergic circuits and cTBS to mediate
GABAergic neurotransmission.

Objectives: We aimed to expand insights into the therapeutic effects of TBS on
the GABAergic and glutamatergic system utilizing 3D-multivoxel magnetic resonance
spectroscopy imaging (MRSI) in combination with a novel surface-based MRSI analysis
approach to investigate changes of cortical neurotransmitter levels in patients with
treatment-resistant depression (TRD).

Methods: Twelve TRD patients (five females, mean age ± SD = 35 ± 11 years)
completed paired MRSI measurements, using a GABA-edited 3D-multivoxel
MEGA-LASER sequence, before and after 3 weeks of bilateral TBS treatment. Changes
in cortical distributions of GABA+/tNAA (GABA+macromolecules relative to total N-
acetylaspartate) and Glx/tNAA (Glx = mixed signal of glutamate and glutamine), were
investigated in a surface-based region-of-interest (ROI) analysis approach.

Results: ANCOVAs revealed a significant increase in Glx/tNAA ratios in the left caudal
middle frontal area (pcorr. = 0.046, F = 13.292), an area targeted by iTBS treatment.
Whereas, contralateral treatment with cTBS evoked no alterations in glutamate or GABA
concentrations.
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Conclusion: This study demonstrates surface-based adaptions in the stimulation area
to the glutamate metabolism after excitatory iTBS but not after cTBS, using a novel
surface-based analysis of 3D-MRSI data. The reported impact of facilitatory iTBS on
glutamatergic neurotransmission provides further insight into the neurobiological effects
of TBS in TRD.

Keywords: TBS, MRS, GABA, glutamate, depression, TMS, TRD

INTRODUCTION

Major depressive disorder (MDD) represents a severe psychiatric
disease affecting up to 3.8% of the population worldwide and
has risen further during the last years (COVID-19 Mental
Disorders Collaborators, 2021). Several treatment options of
pharmacological [e.g., selective serotonin reuptake inhibitors
(SSRIs) or ketamine] or non-pharmacological, biological
interventions [i.e., transcranial magnetic stimulation (TMS)
or electroconvulsive therapy (ECT)] are currently available.
Modifications of neurotransmitter systems are key aspects of
the antidepressant actions of different interventions in order
to restore GABAergic or glutamatergic function (Kalueff and
Nutt, 2007; Sanacora et al., 2012). Several studies have shown
SSRIs or ketamine to affect a variety of neurotransmitter systems
including the serotonergic (Spindelegger et al., 2009; Hahn
et al., 2010; Lanzenberger et al., 2012), GABAergic (Sanacora
et al., 2002; Brennan et al., 2017; Silberbauer et al., 2020) or the
glutamatergic system (Rowland et al., 2005; Taylor et al., 2008;
Spurny et al., 2021). Moreover, certain antidepressants directly
interfere with the glutamatergic or GABAergic system. The
N-methyl-D-aspartate (NMDA) receptor antagonist ketamine
is a treatment option for use in TRD patients, leading to rapid
symptom reductions (Kasper et al., 2021; McIntyre et al.,
2021). Although ketamine is targeting the glutamatergic system,
adaptions in GABA levels could be reported (Silberbauer
et al., 2020). According to a recent study, the clinical efficacy
in treatment resistant depression (TRD) of rTMS does not
differ from ketamine (Mikellides et al., 2021). Hence, both the
glutamatergic and GABAergic systems are promising targets for
the treatment of TRD.

While the biological binding sites and downstream effects
of pharmacological interventions are abundantly studied, this
is oftentimes less clear for non-pharmacological, biological
treatments. Since TMS constitutes a biological treatment
approach with few side effects, it finds broad acceptance in
patients, especially suffering from treatment resistant depression
(TRD). When two different pharmacological treatment trials
fail to significantly improve clinical symptoms, MDD is
commonly classified as TRD, although this definition varies
between studies (Gaynes et al., 2020). In a meta-analysis of
29 randomized, double-blind and sham-controlled trials, Berlim
et al. (2014) demonstrated response and remission rates of 29%
and 19% of subjects with major depression receiving excitatory
high-frequency (≥ 5 Hz) TMS.

Previous imaging studies reported diverse effects of TMS
on different morphological and physiological parameters.
Stimulation of the dorsolateral prefrontal cortex (DLPFC) was

reported to affect functional connectivity between the PFC
and cingulate regions (Baeken et al., 2014; Salomons et al.,
2014). Similar to pharmacological treatments, TMS was shown
to evoke changes in neurotransmitter systems in both animal
and human studies. Two 1H-MRS studies found correlations
between glutamate levels in the motor cortex and excitability
with TMS (Stagg et al., 2009; Tremblay et al., 2013). In disease,
a study by Pogarell et al. (2006) revealed adaptions in the
dopaminergic system in MDD patients following repetitive
TMS (rTMS) treatment. Furthermore, an investigation by
Lewis et al. (2016) reported changes in cortical excitability in
patients suffering from MDD in the primary motor cortex
and the ACC (Lewis et al., 2016). Dubin et al. (2016) were
one of the first to investigate the therapeutic effect of TMS
on neurotransmitter distribution using MRS, showing elevated
GABA levels. However, effects on the glutamatergic system
in MDD are less conclusive and similar to GABA limited to
a handful of studies. While Dubin and colleagues reported
no effects on glutamate in the PFC, a different approach
revealed elevations in the glutamate/glutamine (Glu/Gln) ratio
after TMS treatment in MDD patients (Croarkin et al., 2016;
Dubin et al., 2016).

In addition to rTMS, the high frequency form theta
burst stimulation (TBS), utilizing frequencies of 50 Hz,
showed promising results in MDD. For the treatment of
depression, bihemispheric TBS is typically applied using
excitatory intermittent (iTBS) or inhibitory continuous TBS
(cTBS) to the DLPFC, since the DLPFC was shown to provide
a suitable target for TBS to treat TRD (George et al., 1995).
However, especially TBS impacts on neurotransmitter levels
are understudied. Both the GABAergic and glutamatergic
system seems to be involved in underlying neurobiological
mechanisms of iTBS and cTBS, respectively. Thereby, it is
speculated that iTBS produces long-term potentiation (LTP)
effects by affecting NMDA receptor related Ca2+ influx. On
the other hand, cTBS seems to activate interneural inhibitory
pathways leading to long-term depression (LTD)-like effects
(Huang et al., 2011). Moreover, the involvement of glutamatergic
neurotransmission was demonstrated when ketamine drastically
reduced iTBS effects in rats (Labedi et al., 2014). Nevertheless,
both TBS-induced LTP and LTD are thought to be accompanied
by presynaptic changes in GABA release (Larson and Munkacsy,
2015; Li et al., 2019).

Previous MRS studies have reported inconclusive results,
trying to replicate these preclinical findings in humans. Iwabuchi
et al. (2017) showed reduced GABA/Glx levels in the DLPFC
and ACC after iTBS to the left DLPFC (Iwabuchi et al.,
2017). Moreover, increased GABA concentrations in the PCC
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after iTBS to the left inferior parietal lobe could be revealed
(Vidal-Pineiro et al., 2015). In addition, iTBS was described
to increase the N100 amplitude (a marker for GABA-mediated
inhibition), while cTBS reduced this amplitude in the cerebellum
of healthy individuals (Harrington andHammond-Tooke, 2015).
On the other hand, cTBS, applied to the motor cortex, was
reported to increase GABA concentrations while no effects
were shown on glutamate (Stagg et al., 2009) suggesting an
enhancement of interneural circuits. Based on the evidence of
preclinical and clinical studies in animals and humans, Li et al.
(2019) proposed a model to explain differential aftermaths of
intermittent and continuous TBS on GABA and glutamate. This
model suggests iTBS inhibits GABAergic interneurons, which
in consequence leads to reduced inhibition of glutamatergic
pyramidal cells, while continuous bursts of cTBS might increase
the inhibitory activities of interneurons resulting in higher
GABA concentrations.

However, due to the inconclusive evidence of the potential
of TBS to restore disrupted GABAergic and glutamatergic
neurotransmission in TRD subjects, further research is needed.
Since previous findings of MRS studies were restricted to
a limited number of locations by the use of single-voxel
sequences, we aimed to extend our understanding by applying
a 3D-multivoxel MRSI approach to cover a range of cortical
regions, involved in the pathophysiology of MDD. Due to
the cortical stimulation method of TBS, changes within these
regions are of high interest. Hence, we applied a novel surface-
based analysis approach to multi-voxel MRS data, based on a
similar method used in PET imaging (Greve et al., 2014). We
investigated adaptions in cortical GABA+/tNAA (GABA+ = a
combination of GABA and macromolecules; tNAA = total
N-acetylaspartate) and Glx/tNAA (Glx = combined signal of
glutamate and glutamine) after 3 weeks of iTBS to left and cTBS
treatment to the right DLPFC in a cohort of TRD patients.

METHODS

Study Design
All study patients underwent 3 weeks of TBS treatment
at the Department of Psychiatry and Psychotherapy at the
Medical University of Vienna, Austria. MRSI measurements
were conducted within 2 weeks prior to and after the TBS
treatment period (see Figure 1). This study was approved by
the Ethics Committee of the Medical University of Vienna (EK
1761/2015) and is part of a larger clinical trial with multimodal
neuroimaging (ClinicalTrials.gov Identifier: NCT02810717).

Participants
Twelve TRD patients (five females, mean
age ± SD = 35 ± 11 years) with a DSM-4 diagnosis of single or
recurrent MDD were included in our analysis. TRD was defined
as an insufficient response to two treatment trials in adequate
dosage and time (>4 weeks) according to the criteria set by the
GSRD group (Group for the studies of Resistant Depression;
Bartova et al., 2019). Moreover, participants were included if
they had a HAMD-17 total score of ≥18, a Clinical Global
Impression Scale score of ≥4 and a stable treatment regime of

4 weeks prior to the study inclusion, which remained unchanged
during the study participation. Exclusion criteria included
psychotic symptoms, severe internal illnesses within the last
5 years, neurological diseases or brain injuries, substance abuse
left handedness, or any contraindications to TMS treatment and
MRI.

Transcranial Magnetic Stimulation
Over the course of three weeks, patients received intermittent
(stimulating) TBS (iTBS) to the left DLPFC and continuous
(inhibiting) TBS (cTBS) to the right DLPFC. iTBS consisted of
2-s trains (30 pulses; 10 bursts) repeated 20 times (600 pulses
per session). cTBS comprised uninterrupted bursts of 600 pulses
per session (see Figure 1). The TBS protocol was performed
similar to Huang et al. (2005) (3-pulse 50-Hz bursts delivered
at 5 Hz) by using a MagPro magnetic stimulator (MagVenture,
Denmark K) and a figure-of-eight shaped cool coil (Cool-B70).
Daily treatment (5 days per week) included two TBS sessions,
separated by 1 h. Within each session, bilateral treatment with
iTBS and cTBS was conducted, starting in randomized order,
which reversed for consecutive sessions (Li et al., 2014). The
stimulation area (DLPFC) was defined in Montreal Neurological
Institute (MNI) space [coordinates: (−38, +44, +26)—left
DLPFC; (+38, +44, +26)—right DLPFC], using neuro-navigation
(LOCALITEr TMS Navigator Germany), based on individual
structural MRIs of each participant (Hecht, 2010). Stimulation
intensity was based on 120% of the individual resting motor
threshold (Ge et al., 2017).

Magnetic Resonance Spectroscopy
MRI measurements were performed on a 3 Tesla MAGNETOM
Prisma Siemens MR Scanner using a 64-channel head coil. For
an accurate volume of interest (VOI)-placement and surface
extraction, 3D T1-weighted anatomical images were acquired
via an MPRAGE sequence (208 slices, 288 × 288 matrix size,
voxel size 1.15 × 1.15 × 0.85 mm3) with GRAPPA acceleration.
ForMRS, a constant-density, spiral-encoded, 3D-MRSI sequence
with MEGA-LASER editing (Bogner et al., 2014) was used
with a VOI = 110 × 120 × 45 mm3 and field of view
(FOV) = 160 × 160 × 160 mm3. The acquired matrix size
of 10 × 10 × 10 (approx. 4 cm3 voxel size) was interpolated
to a 16 × 16 × 16 matrix (approx. 1 cm3 voxel size) during
spectral processing steps. Since the VOI was placed close to the
skull to cover cortical regions, tissue saturation slabs (25 mm
thickness, sat. delta frequency: −3.5 ppm) were used to suppress
signals from subcutaneous lipids (see Figure 2). Siemens
advanced shimming procedure with manual adjustments was
used. During the EDIT-ON acquisition, MEGA-editing pulses
(60 Hz Gaussian pulses of 14.8 ms duration) were set to
1.9 ppm, editing the coupled 4CH2 triplet of GABA resonating
at 3.02 ppm. Twenty-four acquisition-weighted averages and
two-step phase cycling were employed for 3D-MRSI, resulting in
a total scan time of 17:23 min.

An in-house software tool using MATLAB (R2013a,
MathWorks, Natick, MA, USA), Bash (4.2.25, Free Software
Foundation, Boston, MA, USA), MINC (2.0, MINC Tools,
McConnell Brain Imaging Center, Montreal, QC, Canada) and
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FIGURE 1 | Study design and treatment regime. Study subjects received theta burst stimulation (TBS) over 3 weeks including two stimulations a day for 5 days per
week. TBS sessions comprised intermittent TBS (iTBS) to the left and continuous TBS (cTBS) to the right dorsolateral prefrontal cortex. Magnetic resonance
spectroscopy imaging (MRSI) measurements were conducted within 2 weeks before and after the treatment period.

FIGURE 2 | Placement of the field of view (yellow), volume of interest (white), and tissue separation slaps in sagittal (A), horizontal (B), and coronal (C) views.

LCModel software (6.3-1, S. Provencher, LCModel, Oakville,
ON, Canada) was used for the quantification of all spectra
within the VOI (Spurny et al., 2019). A simulated basis set
was created using the GAMMA library for the difference
spectrum [containing GABA+, Glx, and tNAA among others
(Hnilicova et al., 2016)]. An exemplary spectrum is shown in
Supplementary Figure 1. Cramér–Rao lower bounds (CRLB)
thresholds were set at 30% and spectra were visually inspected.

Surface-Based MRSI Analysis
For surface-based quantification, metabolic maps of GABA+,
Glx, and tNAA were interpolated to the resolution of anatomical

images and ratio maps of GABA+/tNAA and Glx/tNAA
were calculated. Ratios to tNAA were favored over total
creatine (tCr), since changes in tCr after rTMS treatment
were previously reported (Grohn et al., 2019). FreeSurfer 6.01

was used for the surface-based analysis approach of MRSI
data. Previous investigations have successfully shown cortical
analysis approaches of metabolic maps in FreeSurfer using
positron emission tomography (PET) data (Greve et al., 2014).
Hence, this analysis was based on previous reports. Individual
ratio maps of single subjects were spatially normalized by

1https://surfer.nmr.mgh.harvard.edu/
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FIGURE 3 | Boxplots showing elevations in Glx/tNAA ratio in the right caudal
middle frontal area before (M1) and after the treatment period (M2). Glx,
combined measure of glutamate and glutamine; tNAA, total
N-acetylaspartate.

projecting onto the standard surface (fsaverage) using the
tkregister2 command. All vertices of individual surfaces were
assigned to the corresponding region-of-interest (ROI) using
the Desikan atlas (Desikan et al., 2006). The following ROIs
were included in the analysis: superiorfrontal, rostral middle
frontal, caudal middle frontal, pars opercularis, and precentral
for both Glx/tNAA and GABA+/tNAA and additionally pars
triangularis, postcentral, paracentral, posterior cingulate, and
caudal anterior cingulate for Glx/tNAA ratios only, due to
insufficient data quality in GABA+ maps. Furthermore, each
surface was filtered by removing vertices that did not pass
the CRLB threshold or laid above twice the standard variation
within its respective brain region. After filtering steps, all
remaining vertices were averaged within each ROI. Group-wise
comparisons between measurements were done with calculated
mean cortical neurotransmitter ratios within ROIs of each
subject.

Statistical Analyses
Statistical analyses were performed using SPSS Statistics (v26.0,
2010, SPSS, Inc., an IBM Company, Chicago, United States
of America). Two-tailed paired t-tests were conducted to
test for differences in HAM-D measures before and after
the treatment period (p < 0.025). Univariate analyses of
covariance (ANCOVAs) including sex and age as covariates
were performed for each ROI and neurotransmitter ratio
independently, to test for differences between measurements.
Sidak correction was applied to correct for multiple comparisons
(ROIs * neurotransmitter ratios, Table 1). Residuals were tested
for normal distribution using the Kolmogorov-Smirnoff test.
Moreover, post hoc Spearman correlation analyses between
changes in neurotransmitter ratios and changes in HAM-D
scores were performed in ROIs showing significant adaptions

TABLE 1 | ROIs of each hemisphere included in the analysis of Glx/tNAA and
GABA+/tNAA ratios.

Glx/tNAA GABA+/tNAA

ROI left right left right
superiorfrontal x x x
rostralmiddlefrontal x x x x
caudalmiddlefrontal x x x x
parsopercularis x x x x
parstriangularis x x
precentral x x x x
postcentral x x
paracentral x x
posterior cingulate x x
caudalanteriorcingulate x x

Glx: combined measure of glutamate and glutamine; tNAA: total N-acetylaspartate;
GABA+: a combination of GABA and macromolecules.

in Glx/tNAA and GABA+/tNAA ratios. Again, Sidak correction
was applied to correct for multiple comparisons.

RESULTS

All 12 TRD patients (five female, mean age± SD = 35± 11 years)
completed both MRSI measurements. Detailed stable
pharmacological treatment of the patient cohort can be found in
Supplementary Table 1. HAM-D measures showed significant
reductions after the treatment period (19.9 ± 2.8 before
treatment to 12 ± 6.8 post treatment (mean ± SD), p = 0.002)
with a response rate of 33% (HAM-D reductions ≥ 50%) and
remission rate of 25% (HAM-D < 7) of the TRD patients.

Due to insufficient data quality of GABA+ maps in the right
superiofrontal area, this ROI had to be excluded resulting in a
total of 29 ROIs in the final analysis (see Table 1). Hence, results
from ANCOVAs were corrected for 29 comparisons using the
Sidak correction method.

ANCOVAs revealed a significant difference in Glx/tNAA
ratios in the left caudal middle frontal area (pcorr. = 0.046,
F = 13.292), an area targeted by (excitatory) iTBS treatment.
Boxplots illustrating mean Glx/tNAA ratios before and after the
treatment are shown in Figure 3. No changes in GABA+/tNAA
ratios could be detected in any ROI investigated. Although a
cluster of elevated GABA+/tNAA ratios can be seen in the right
caudal middle frontal area (see Figure 4D), an area targeted with
inhibitory cTBS, changes within this area did not reach statistical
significance.

Changes in cortical Glx/tNAA and GABA+/tNAA are
depicted in Figure 4. Moreover, distributions of Glx/tNAA and
GABA+/tNAA before and after the treatment are shown in
Figure 5 and Supplementary Figure 2.

No significant correlations could be found between changes
in HAM-D scores and changes in neurotransmitter ratios after
correction for multiple comparisons in any ROI investigated.

DISCUSSION

Here we report elevatedGlx/tNAA ratios in the left caudalmiddle
frontal area after 3 weeks of TBS treatment in TRD patients using
a surface-based MRSI analysis approach. Significant increases of
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FIGURE 4 | Mean changes of Glx/tNAA and GABA+/tNAA ratios of the left (A,C) and right (B,D) hemisphere across all study participants. The left caudal middle
frontal area in (A), showing significant changes, is marked with a *. Glx, combined measure of glutamate and glutamine; tNAA, total N-acetylaspartate; GABA+, a
combination of GABA and macromolecules.

Glx/tNAA were found in the left caudal middle frontal area after
iTBS, while Glx/tNAA in the corresponding right area remained
unchanged after cTBS. No changes in GABA+/tNAA ratios
were revealed across the investigated cortical regions. Similar to
previous surface-based PET analysis approaches (Greve et al.,
2014), the proposed surface-based investigations of MRSI data
provide a suitable tool when adaptions in neurotransmitter
levels of cortical regions are expected, i.e., by utilizing cortical
stimulation methods. Moreover, following the treatment, TRD
patients experienced a marked reduction of HAM-D scores, a
response rate of ∼33%, and a remission rate of ∼25%, which
seems promising when compared to the 13.7% remission rate of
the equivalent TRD patient collective in the third treatment step
of the STAR*D study (Rush et al., 2006). Hence, the impact of
the stimulation on neurotransmitters gives further insight into
the neurobiological effects of TBS.

A dysregulation of glutamate, glutamine, and GABA
metabolism in MDD could be previously shown (Croarkin et al.,
2011; Sanacora et al., 2012; Abdallah et al., 2014). Moreover,
rTMS was assumed to directly influence these neurotransmitter
systems. In line with Croarkin et al. (2016), showing elevated
glutamine/glutamate ratios in the anterior cingulate cortex
and DLPFC, we found an increase in Glx/tNAA levels in the
stimulation area of iTBS. Prior studies suggested modulation
of the glutamatergic system after rTMS demonstrating higher

glutamate levels in both preclinical (Yue et al., 2009) and clinical
studies (Michael et al., 2003). Moreover, Luborzewski et al.
(2007) were able to show a link between clinical effectiveness of
rTMS treatment to the DLPFC and glutamate elevations through
rTMS therapy. On a neurobiological level, rTMS is thought
to alter synaptic connections and thereby affect long-term
potentiation (Fitzgerald et al., 2006). Hence, cTBS is suggested
to lower synaptic strength, while iTBS leads to opposite effects
in both GABAergic and glutamatergic cells (Huang et al., 2005,
2007). These findings highlight the importance of glutamate and
its receptors to the physiological TBS response in the human
brain (Huang et al., 2007; Ishikawa et al., 2007; Li et al., 2019).
As proposed in the model by Li and colleagues, describing the
neurophysiological effects of TBS treatment, the stimulating or
facilitatory iTBS is thought to be accompanied by inhibition of
GABAergic interneurons via feedforward inhibition leading to
decreased suppression of glutamatergic cells (Li et al., 2019). In
consideration of this model, our results demonstrate increased
Glx/tNAA ratios in the stimulation area of iTBS. Hence,
the decreased suppression of glutamatergic cells seems to be
reflected in increased Glx/tNAA content, while the inhibition of
interneurons was not reflected in altered GABA+/tNAA ratios.

On the other hand, inhibitory cTBS is speculated to activate
the I-1 pathway as well as leading to long-term depression by
prolonged Ca2+ increases and thereby slowly increasing the
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FIGURE 5 | Mean distribution of Glx/tNAA ratios before (=M1) and after (=M2) the treatment period of the left (A,C) and right (B,D) hemispheres. Glx, combined
measure of glutamate and glutamine; Tnaa, total N-acetylaspartate.

activity of GABAergic interneurons (Li et al., 2019). This was
supported by increased GABA levels detected after cTBS to
the motor cortex, without changes in glutamate being observed
(Stagg et al., 2009). Moreover, several studies implicated a
contribution of GABAergic neurotransmission in TBS-evoked
plasticity (Larson and Munkacsy, 2015). Findings that cTBS
lead to decreased numbers in calbindin interneurons (Suppa
et al., 2016) or a report of a modulation of different classes
of interneurons after both cTBS and iTBS (Labedi et al., 2014)
adds to the importance of the interneural network in TBS
mechanisms. Interestingly, increases in GABA concentrations
could be shown after both iTBS and cTBS when some clinical
studies reported elevated GABA levels or an influence on the
marker for GABAergic inhibition after iTBS treatment in patients
(Harrington and Hammond-Tooke, 2015; Vidal-Pineiro et al.,
2015; Dubin et al., 2016), while cTBS was also shown to
increase GABA concentrations in the motor cortex of healthy
individuals (Stagg et al., 2009). However, the attribution of
GABAergic interneurons could not be reflected in alterations
in total GABA+ content in the scope of our study. Although,
there seems to be a cluster with GABA+/tNAA increases in
the stimulation area of cTBS, our data did not reach statistical
significance within this ROI. Hence, in contrast to previous
MRS studies of patient cohorts, we could not show GABA
alterations after iTBS (Harrington and Hammond-Tooke, 2015;
Dubin et al., 2016). Reasons for the absence of significant changes

in GABA+/tNAA content can be manifold. While the use of
GABA-edited MRSI provides the basis for the quantification
of both excitatory and inhibitory neurotransmitters, the GABA
signal is prone to artifacts. Both motion artifacts, due to the
long measurement time, as well as voxel blurring, resulting
from the rather big voxel sizes and spatial interpolations in the
post-processing steps, leading to confounding effects on spatial
specificity, have potentially attributed to the lack of significant
changes in GABA+ ratios. Moreover, considering the voxel sizes,
changes in GABA+/tNAAmay have been too subtle, in regard to
the derived SNR, to lead to significant results in this sample size.
In addition, it has to be considered that here a combined signal
of GABA and macromolecules, mainly containing lipids and
methyl and methylene resonances of proteins (Behar and Ogino,
1993; Povazan et al., 2015), (=GABA+) was quantified. Although
macromolecule content is thought to be stable (Cudalbu et al.,
2021), the influence of TBS treatment on macromolecule levels
cannot be excluded. Hence, further studies are needed to
clarify the influence of TBS treatment in TRD on GABAergic
neurotransmission.

While TRD patients showed significant reductions in
HAM-D scores, the correlation analyses conducted revealed
no significant relationships between changes in HAM-D scores
and neurotransmitter ratios in the stimulation area. However,
a correlation between clinical effectiveness and changes in
neurotransmitter levels, as reported in Luborzewski et al. (2007)
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may be more distinct in bigger sample sizes. Nevertheless, the
absence of the speculated relationship in this study suggests that
changes in Glx/tNAA levels in the stimulation area of iTBS may
attribute but are not solely responsible for reductions in HAM-D
scores.

This surface-based analysis approach for MRSI data provides
a suitable method when changes in cortical neurotransmitter
concentrations are of interest. Based on previous surface-based
PET analysis approaches (Greve et al., 2014), analysis of cortical
metabolites can be done using cortex-based atlases in individual
subjects (Desikan et al., 2006). However, an appropriate MRSI
sequence with reliable signal suppression in lipid-rich areas is
required. In the course of this study, tissue separation slabs were
used to cancel signals of lipid-rich regions (see Figure 2). An
effect of lipid suppression on spectral quality is demonstrated
in Supplementary Figure 3. Moreover, this method allows the
quantification of several cortical regions simultaneously, which
discriminates these investigations from previous MRS studies
focusing on the effects of rTMS treatment using single voxel
approaches in very selected brain regions.

Some limitations of this study need to be mentioned. Due to
the previously discussed reasons, available data of GABA+/tNAA
ratios was limited to a restricted number of cortical brain
regions compared to derived Glx maps. In line with most
MRSI studies conducted at 3T, we quantified the combined
signal of glutamate and glutamine (Glx), due to overlapping
peaks of both compounds. Hence, changes in the combined
Glx measures cannot be clearly attributed to either metabolite.
Therefore, future approaches may use higher field strengths
to allow a distinct quantification of glutamate and glutamine.
Moreover, MRSI does not allow distinguishing between intra-
and extracellular neurotransmitter content. All TRD patients
included in these analyses had stable treatment regimens of
at least 4 weeks prior to the study inclusion, which remained
unchanged in the course of this study. However, an attribution
of pharmacological interventions in the derived GABA+ and
Glx concentrations cannot be excluded. Moreover, we could not
include a group receiving sham treatment due to the limited
number of available TRD patients undergoing MRSI.

CONCLUSION

This study demonstrates a significant increase in Glx/tNAA
ratios in the stimulation area of excitatory iTBS treatment
of TRD patients. Our findings suggest changes in glutamate
metabolism, following excitatory iTBS, to be mediated by
reduced inhibition of pyramidal cell, while neurotransmitter
concentrations remained stable after inhibitory cTBS on the
contralateral hemisphere. These results may help to contribute
to a better understanding of the neurobiological implications of
TBS in TRD patients.
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