AUTHOR=Xu Fang , Wu Hui , Xie Linghua , Chen Qing , Xu Qi , Sun Lihong , Li Hua , Xie Jiaqian , Chen Xinzhong TITLE=Epigallocatechin-3-gallate alleviates gestational stress-induced postpartum anxiety and depression-like behaviors in mice by downregulating semaphorin3A and promoting GSK3β phosphorylation in the hippocampus JOURNAL=Frontiers in Molecular Neuroscience VOLUME=15 YEAR=2023 URL=https://www.frontiersin.org/journals/molecular-neuroscience/articles/10.3389/fnmol.2022.1109458 DOI=10.3389/fnmol.2022.1109458 ISSN=1662-5099 ABSTRACT=Introduction

Postpartum depression (PPD) is a common neuropsychiatric disorder characterized by depression and comorbid anxiety during the postpartum period. PPD is difficult to treat because of its elusive mechanisms. Epigallocatechin-3-gallate (EGCG), a component of tea polyphenols, is reported to exert neuroprotective effects in emotional disorders by reducing inflammation and apoptosis. However, the effect of EGCG on PPD and the underlying mechanism are unknown.

Methods

We used a mouse model of PPD established by exposing pregnant mice to gestational stress. Open field, forced swimming and tail suspension tests were performed to investigate the anxiety and depression-like behaviors. Immunohistochemical staining was used to measure the c-fos positive cells. The transcriptional levels of hippocampal semaphorin3A(sema3A), (glycogen synthase kinase 3-beta)GSK3β and collapsin response mediator protein 2(CRMP2) were assessed by RT-PCR. Alterations in protein expression of Sema3A, GSK3β, p-GSK3β, CRMP2 and p-CRMP2 were quantified by western blotting. EGCG was administrated to analyze its effect on PPD mice.

Results

Gestational stress induced anxiety and depression-like behaviors during the postpartum period, increasing Sema3A expression while decreasing that of phosphorylated GSK3β as well as c-Fos in the hippocampus. These effects were reversed by systemic administration of EGCG.

Conclusions

Thus, EGCG may alleviate anxiety and depression-like behaviors in mice by downregulating Sema3A and increasing GSK3β phosphorylation in the hippocampus, and has potential application in the treatment of PPD.