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Editorial on the Research Topic

Brain cells’ compensatory mechanisms in response to disease

risk factors

Our brain is highly plastic not only to sensory stimuli but also to environmental,

chemical, and biological stressors. Molecules in brain cells must be altered and adapted

in response to external challenges to maintain stability at the circuit and network levels

and to behaviorally cope with external stressors or challenges. Similar adaptations are

likely required in response to risk factors of brain disorders.

Brain plasticity or adaptation has been observed in response to stressful experiences

(McEwen and Gianaros, 2011). Behavioral experience such as motor experience

significantly affects the recovery of brain in either adaptive or maladaptive ways after

brain injury (Nudo, 2013). Mechanical stress, i.e., traumatic brain injury causes multiple

biochemical and cellular changes including intracellular trafficking, protein aggregation

and complement activation (Surgucheva et al., 2014; Ng and Lee, 2019). In case of

cancer therapy, intracellular adaptations of tumors or their adaptations to extracellular

environment may lead to resistance against cancer drugs, resulting in transient or partial

inhibition of tumor cell growth (Vaupel and Harrison, 2004; von Manstein et al., 2013).

Maladaptation of brain reward system is implicated in drug addiction or persistent

vulnerability to relapse (Koob and Le Moal, 2001; Ferland et al., 2019). Increased

neuronal activity or hypermetabolism has been thought as a compensatorymechanism of

neurodegeneration in Alzheimer’s disease or Parkinson’s disease (Ashraf et al., 2015; Blesa

et al., 2017). In this regard, individual differences in molecular and cellular adaptations

possibly drive susceptibility or resilience in response to stressors or risk factors of diseases

as well as subsequent disease progression and/or vulnerability to relapse. Thus, studies of

such compensatorymechanisms would provide a great opportunity of identifying disease

mechanisms, new biomarkers and therapeutic targets.

Bhatti et al. used a chronic social defeat stress (CSDS) paradigm and searched

critical cell types and molecular alterations involved in individual differences in

stress responses in mice. They found parvalbumin (PV)-expressing GABAergic

interneurons are altered in response to CSDS and their alterations are causally related
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to susceptibility or resilience to stress-induced social avoidance

or anhedonia-like behavior. PV neuron-selective translational

profiling indicates mitochondrial oxidative phosphorylation is

the most significantly altered pathway in stress-susceptible

versus resilient mice. Among differentially expressed genes

associated with stress-susceptibility and resilience, the authors

found alterations of Ahnak gene expression is causally related

to stress-induced divergent behavioral adaptations. Notably,

Ahnak was found as a major scaffolder of S100a10 and AnxA2

in the brain (Jin et al., 2020), and alterations of S100a10 is

highly implicated in the pathophysiology of major depressive

disorders and antidepressant actions (Svenningsson et al., 2013;

Chen et al., 2022). Ahnak was also found as an endogenous

regulator of L-type voltage-gated calcium channels (VGCCs) in

the brain (Jin et al., 2020) and human genetic studies implicate

altered function of L-type VGCCs in the pathophysiology

of multiple psychiatric disorders including major depressive

disorder, bipolar disorder, schizophrenia and autism spectrum

disorder (Green et al., 2010; Liu et al., 2011; Bhat et al., 2012;

Cross-Disorder Group of the Psychiatric Genomics [Corporate

Author], 2013; Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014; Pinggera et al., 2015). Thus,

their findings might be relevant to the pathophysiology of

neuropsychiatric disorders.

Autism spectrum disorder (ASD), as a neurodevelopmental

and neuropsychiatric disorder, is characterized by impaired

social communication, restricted interests and elevated

repetitive behaviors (Lord et al., 2018, 2020). Because ASD

is affected by multigenic traits, genetic polymorphism in

multiple genes in affected individuals may influence resilience

or susceptibility to ASD (Bourgeron, 2015). Lim, Yoon et al.

reviewed ASD-related genes and their distinctive signaling

pathways and dysfunction relevant to a variety of autism

spectrum-related phenotypes. In addition, systematic review

on existing animal models of ASD is also provided. ASD has

been linked to genes involved in synaptic transmission and

scaffolding, chromatin remodeling, protein synthesis and

degradation, and actin cytoskeletal dynamics, all of which are

highly important for neuronal adaptations or synaptic strength

or scaling (Bourgeron, 2015; Lee et al., 2017; Tatavarty et al.,

2020). Thus, this review article provides insight into potential

roles of adaptive mechanisms or synaptic plasticity in this

multifactorial brain disorder.

In a separate research article, Lim, Kim et al. investigated

potential interaction between lysophosphatidic acid (LPA)

receptor-mediated pathway and dendritic deficits in a cell model

of ASD. They have found that gintonin, a substance isolated

from ginseng, has an effect on the dendritic growth of cultured

striatal neurons. Gintonin is a lipoprotein composed of LPA

and ginseng protein, and its effect is mediated via the LPA

receptor. In their study, the loss-of-function of Slitrk5 or Shank3

genes-mediated reduction in dendritic complexity in primary

striatal neurons was restored by gintonin treatment in vitro.

Although further studies with an in vivo model should be

complemented, this study implicates ASD-relevant deficits in

neuronal development might be reversible or plastic in response

to extracellular signaling molecules such as LPA.

Small, non-coding RNAs called microRNAs (miRNAs)

inhibit the function of protein-coding transcripts, and thereby

regulates various aspects of brain function including synaptic

development and transmission as well as neuronal survival (Cho

et al., 2019; Brennan et al., 2020). Bai et al. investigated the

roles of miR-29a/b1 in aging and Parkinson’s disease (PD).

While miR-29a/b1 knockout mice display accelerated aging in

the periphery, deletion of miR-29a/b1 alleviates MPTP-induced

neuronal damages, glial activation and behavioral impairments.

Interestingly, they observed an increase of miR-29a levels in

the cerebrospinal fluid of PD patients compared to the levels

in healthy subjects as well as in cultured microglia, glia and

neurons treated with LPS orMPP+, a neurotoxin. It is intriguing

to imagine that miR-29a might be initially elevated as a part of

cellular compensatory mechanisms, but eventually aggravating

disease progression. Further exploration of downstream targets

and understanding the function of elevated miR-29a in specific

cell types are warranted.

In summary, the four articles contributed by Bhatti et al.,

Lim, Yoon et al., Bai et al., Lim, Kim et al. in this Research

Topic exemplify a great potential of studies of brain cells’

compensatory mechanisms for identifying disease mechanisms,

therapeutic targets or biomarkers. Because this Research Topic

can be broadly applicable to a variety of biological systems, many

new research avenues can be explored under the scope of this

Research Topic in the future.
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