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Background: This review aims to present a comprehensive bibliometric 

analysis related to Schwann cells (SCs) in neurosciences from 2012 to 2021.

Methods: We used the Web of Science core collection database to obtain 

publications on SCs in the field of neurosciences from 2012 to 2021. The 

obtained data were further visually analyzed by using CiteSpace, VOSviewer, 

and an online bibliometric platform.

Results: We retrieved a total of 1,923 publications related to SCs in 

neurosciences. The number of publications in this field fluctuates steadily 

each year, and the number of citations is increasing year by year. The 

United  States is leading the field, with LERU and the University OF London 

as influential institutions, Jessen KR and Feltri ML as the most representative 

authors, and GLIA and JOURNAL OF NEUROSCIENCE as authoritative journals 

in the field. Meanwhile, we predict that a more in-depth study of autophagy 

and phagocytosis functions of SCs and the key regulator c-Jun will probably 

be a hot spot for future research.

Conclusion: This study summarizes the current research results and predicts 

research trends for further research, which will facilitate researchers in quickly 

understanding the current state of research in the field while referring to new 

research directions.
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1. Introduction

Schwann cells (SCs), which originate from the neural crest, are the most abundant glial 
cells in the peripheral nervous system (PNS) with both myelinated and non-myelinated 
types (Harty and Monk, 2017; Zhang et al., 2020; Saiki et al., 2021). Myelin SCs wrap 
around the axons of motor and sensory neurons to form myelin sheaths. Non-myelinated 
SCs, Remak cells, wrap around small diameter axons of 0.5–1.5 μm to form Remak bundles 
(Feltri et al., 2016; Sapkota and Dougherty, 2020). These cells ensure normal development 
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of the PNS and play an essential role in regeneration after injury 
(Maugeri et al., 2020). After peripheral nerve injury, myelinated 
and non-myelinated SCs are reprogrammed with specialized 
repair promoting phenotypes, called repair SCs, which can 
provide biochemical signals and spatial cues to promote survival 
and axonal regeneration of damaged neurons. Importantly, SCs 
have become an important subject of intensive research in 
neurosciences due to their key role in nerve injury repair (Xia 
et al., 2020).

In contrast to systematic and scoping reviews, bibliometric 
analysis allows for quantitative analysis of published literature 
in specific scientific fields through the use of mathematical 
and statistical methods, which will help us to better understand 
the structure of knowledge and significant advances in certain 
areas of research. To date, bibliometric analysis has been 
widely used in public health and clinical researches (Patil 
et al., 2020; Wilson et al., 2021; Zhang et al., 2022). However, 
the bibliometric analysis of SCs in neurosciences is very 
scarce, and to our knowledge, only in Zhang et  al. (2012) 
based on Web of Science conducted a brief bibliometric 
analysis of the annual publication output, distribution by 
journal, distribution by the institution and top-cited articles 
of SCs from 2002 to 2011. Therefore, a comprehensive high-
quality bibliometric analysis, especially from 2012 to the 
present, is necessary to quickly understand the hot research 
topics and explore the frontier trends related to SCs in the 
field of neurosciences in recent years. In this study, 
we conducted a comprehensive bibliometric analysis of SCs 
research in neurosciences from 2012 to 2021, focusing on the 
annual number of publications and cited times, countries, 
funds, institutions, authors, journals, references, and 
keywords. Our study aims to summarize and sort out the 
mainstream research themes and, more importantly, highlight 
emerging themes to help researchers with new ideas for 
future research.

2. Materials and methods

2.1. Data collection

We conducted a comprehensive online search of the literature 
related to SCs using the Web of Science Core Collection database1, 
and the search strategy is shown in Figure 1. The index, category, 
document type, language type, and time span of the search were 
refined and a total of 1,923 documents were retrieved, which were 
exported as “full record and cited references” or UTF-8 for 
further analysis.

1 https://wcs.webofknowledge.com

2.2. Data analysis

We extracted the annual number of articles issued, citations, 
H-index, and the average number of citations per item (ACI) from 
the analysis of the results, and obtained the impact factor (IF) and 
quartile categories from the 2020 Journal Citation Report of the 
Web of Science database. The UTF-8 format data were imported 
into the bibliometric online analysis platform2 for collaborative 
relationship analysis between countries/regions. For co-authorship 
as well as co-citation, co-occurrence, cluster, and burst analysis, 
we applied CiteSpace3 (Version 5.8.R3) and VOSviewer4 (Version 
1.6.17) software to visualize bibliometric data, which were 
imported in “full record and cited reference” format. CiteSpace 
developed by Chen, as one of the most commonly used visual 
analysis software in bibliometrics, is used to observe research 
hotspots and trends in a specific field and visually present them in 
the form of a graph (Synnestvedt et  al., 2005). VOSviewer, 
developed by Prof. van Eck and Waltman in 2009, can visualize 
scientific landscapes via network, coverage, or density maps (van 
Eck and Waltman, 2010).

2 http://bibliometric.com

3 https://citespace.podia.com

4 http://www.vosviewer.com

FIGURE 1

Flowchart steps of the search strategy.
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3. Results

3.1. Publication and cited times

After filtering by the above search process, 1,923 papers 
were included, including 1,548 articles and 375 reviews. The 
annual number of publications and citations from 2012 to 
2021 is clearly shown in Figure 2. We can discover that from 
2012 to 2020, the annual number of publications shows a 
small fluctuation, and the number of publications in 2021 
decreases more. From the perspective of citations, the total 
citations were 42,625, and the remaining 36,542 after 
removing self-citations. From 2012 to 2021, the annual 
citations increased year by year, with the highest in 2021, 
reaching 8,512.

3.2. Countries and funds

In Figure 3A, the number of papers published by different 
countries was shown, with the larger circles indicating more 
publications. We can observe from this that the United States 
(651), China (445), and Germany (227) are the top three countries 
with the highest number of publications. The cooperation between 
different countries/regions was presented in Figure 3B. Since the 
thicker the line between two countries means more cooperation 
between them, we can see that the United States cooperates most 
with other countries, and among them, Germany and China have 
a thicker line with the United  States, which proves that the 
United States communicates more closely with them. In addition, 
according to Table 1, we conducted an analysis of funding agencies 
and found that the top three most prolific funding agencies were, 
the National Institutes Of Health (459), the United  States 
Department Of Health Human Services (459), and the National 
Institute Of Neurological Disorders Stroke Ninds (311), notably, 
they are all from the United States, which emphasizes the influence 
of the United States in the field.

3.3. Institutions

The publication counts, H-indexes, and ACIs of the top 10 
most prolific institutions were displayed in Figure 4A. The top 5 
institutions in terms of publication counts were League of 
European Research Universities (LERU) (150), Nantong 
University (117), the University of California system (61), and 
the University of London (59). H-index can be used to reflect 
the quantity and level of academic outputs (Miao et al., 2022). 
LERU ranked first in the H Index (41), followed by the 

FIGURE 2

The annual publications and citations.

A B

FIGURE 3

(A) Visualization map of countries co-occurrence. (B) Collaboration analysis among different countries.
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University of London (26) and Washington University in St. 
Louis (WUSTL) in the United States (26). ACI is another tool 
for assessing the value of a paper (Wu et al., 2021). University 
College London (61.44), University of London (51.88), and 
WUSTL (36.6) were the top three institutions with the highest 
ACI, and LERU ranked fourth at 32.13. We can recognize from 
this that LERU and the University of London have stronger 
integrated competencies and have shown their influence in the 
field. It is worth thinking that Nantong University had a low 
H-index and ACI ranking despite the high number of 
publications. We  suggested that Nantong University should 
strengthen cooperation with other countries and improve the 
quality of articles to increase its influence in this field. In 
addition, we  quantified in Figure  4B the number of papers 
published per year by the top 10 prolific institutions. LERU had 
the highest number of publications in 2014 with a more stable 
overall fluctuation in publications per year, and the University 
of London had the highest number of 12  in 2012, but the 
number of publications started to decline in the following years, 
and importantly, in the last 5 years, both institutions showed a 
significant increase in publications in 2019, indicating SCs were 
more popular in 2019.

3.4. Authors

As shown in Figure 5A, the highest number of publications 
was Wang Y (38), followed by Feltri ML (29) and Gu XS (27). 
Feltri ML had the highest H-index of 17, followed by Gu XS and 
Wang Y. Also, the top three ACI were Feltri ML, Wrabetz L and 
Gu XS. We can conclude that Feltri ML was leading in terms of the 
number of publications, H-index, and ACI, which proved that 
he is an author of high authority in the field. His articles represent 
hot topics in a part of the field. For example, Feltri ML et  al. 
recently found that CC2D1B, a member of the Lgd/CC2D1 
protein family, plays a role in developmental myelination in the 
central nervous system and suggested that CC2D1B may 
be  involved in gene regulation during myelination in optic 
oligodendrocytes (Acheta et al., 2022). The citation frequency is 
another important indicator to measure the influence, as Figure 5B 
shows, the larger the circle means the more citations. Jessen KR 
was cited much more frequently than other authors, ranked first, 
and cooperated closely with other authors, which also represented 
the great influence of Jessen KR in the field. Furthermore, in the 
coverage visualization map in Figure 5C, nodes are marked by 
different colors according to the average year of appearance, with 

TABLE 1 Top 5 prolific funders.

Rank Funders Publications % of 1,923

1 National Institutes of Health 459 23.87

2 United States Department of Health Human Services 459 23.87

3 National Institute of Neurological Disorders Stroke Ninds 311 16.17

4 National Natural Science Foundation of China 289 15.03

5 European Commission 193 10.04

A B

FIGURE 4

(A) The publications, H-indexes, and ACIs of the top 10 most prolific institutions. (B)The publications of the top 10 most prolific institutions each 
year.
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authors appearing relatively early in the field closer to purple, and 
nodes marked in yellow are likely to represent authors with 
younger research in the field. We can observe that the author Min 
Qing, as well as Pan Deng, Snyder-Warwick, Alison k are new 
players in this field in recent years.

3.5. Journals

Papers related to SCs in neurosciences were published in 162 
journals from 2012 to 2021. We listed the top ten journals in this 
field based on the number of publications, as demonstrated in 
Table 2. NEURAL REGENERATION RESEARCH was in the first 
place with 176 published articles, GLIA was in the second place 
with 163 articles, followed by JOURNAL OF NEUROSCIENCE 
with 124 articles. Besides, the JIF of a journal is another important 
parameter to evaluate the value of the journal itself and the 
publications included in it. Among the top 10 academic journals, 
GLIA had the highest JIF at 7.452, followed by JOURNAL OF 
NEUROSCIENCE at 6.167, and both were classified as Q1. Also, 

the top three cited journals were JOURNAL OF NEUROSCIENCE 
(4688), GLIA (3767), and EXPERIMENTAL NEUROLOGY 
(2821). Based on the above, we believe that GLIA and JOURNAL 
OF NEUROSCIENCE are the more authoritative journals in 
this field.

3.6. Citations

Citation analysis is an important indicator in bibliometric 
studies. Table 3 showed the top 10 most cited literatures, including 
5 mechanistic studies (Gaudet et  al., 2011; Jessen et  al., 2015; 
Monk et al., 2015; Salzer, 2015; Jessen and Mirsky, 2016) and 5 
experimental studies (Arthur-Farraj et  al., 2012; Napoli et  al., 
2012; Stassart et  al., 2013; Cattin et  al., 2015; Gomez-Sanchez 
et al., 2015), which focused on the development and function of 
SCs. Interestingly, the top four most-cited papers were all written 
or directed by Jessen KR, who works at the University of London, 
reflecting Jessen KR’s great influence in the field. Citation bursts 
refer to references that caught the attention of scholars in a specific 
field at a specific time interval, and whose analysis can be used to 
observe the evolution of a field of knowledge and to predict 
frontier trends. In Figure 6, the timeline was shown in blue and 
the interval at the time of the burst was shown in red, indicating 
the start year, the end year, and the duration of the burst. Of these 
burst citations, the shortest burst duration for SCs-related 
publications in neurosciences was 1 year and the longest was 
4 years. Notably, the 40% citation burst ended in 2021 or later, 
which focused on new advances in SCs in myelin clearance and 
remyelination (Cattin et al., 2015; Gomez-Sanchez et al., 2015; 
Jessen et al., 2015; Salzer, 2015; Brosius Lutz et al., 2017; Clements 
et al., 2017; Gomez-Sanchez et al., 2017) as well as transcription 
factors, epigenetic mechanisms and signaling cascades that 
regulate the repair SCs (Jessen and Mirsky, 2016; Arthur-Farraj 
et al., 2017; Jessen and Arthur-Farraj, 2019), suggesting that these 
research topics have been receiving attention in recent years and 
are expected to be a focus for researchers in the future.

3.7. Keywords

The modularity value (Q value) and the average silhouette 
value (S value) are two important parameters to evaluate the 
importance of cluster structure, and when Q > 0.3 and S > 0.7, 
it indicates that the clusters are significant. In this study, it can 
be evidenced from Figure 7A that the Q value was 0.8235 and 
the mean S value was 0.9702, indicating that these clusters are 
effective. The top five clusters were displayed in the figure 
which were, “polysialic acid” (#0), “Guillain-barre syndrome 
(GBS)” (#1), “Wallerian degeneration” (#2), “Charcot–Marie–
tooth disease (CMT)” (#3), and “neuromuscular junction” (#4). 
For further study, the timeline view was shown in Figure 7B, 
with the bold timeline indicating that the clustering topic was 
a hot spot during this period. In particular, polysialic acid, 

A

B

C

FIGURE 5

(A) The publications, H-index, and ACI of the top 5 most prolific 
authors. (B) Network visualization map of authors co-citation 
analysis. (C) Coverage visualization map of authors co-authorship 
analysis.

https://doi.org/10.3389/fnmol.2022.1087550
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2022.1087550

Frontiers in Molecular Neuroscience 06 frontiersin.org

TABLE 3 Top 10 most cited references.

Rank Title Author Year Citation

1 The repair Schwann cell and its function in regenerating nerves Jessen KR 2016 111

2 C-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for 

Regeneration

Arthur-Farraj PJ 2012 87

3 Schwann Cells: Development and Role in Nerve Repair Jessen KR 2015 59

4 Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves Gomez-Sanchez JA 2015 54

5 A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and 

Peripheral Nerve Regeneration In Vivo

Napoli I 2012 52

6 New Insights on Schwann Cell Development Monk KR 2015 50

7 A role for Schwann cell-derived neuregulin-1 in remyelination Stassart RM 2013 48

8 Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve 

injury

Gaudet AD 2011 44

9 Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of 

Peripheral Nerves

Cattin AL 2015 44

10 Schwann Cell Myelination Salzer JL 2015 42

GBS, and CMT were hot until 2021 and will probably last until 
today. GBS and CMT as demyelinating diseases are greatly 
associated with SCs, and SCs are being investigated as 
therapeutic agents for demyelinating diseases, and further 
sorting out the function of SCs will help in the development of 
treatment (Bhatheja and Field, 2006; Moss et  al., 2021). 
We again performed the analysis of keyword co-occurrence by 
using VOSviewer’s coverage visualization map. As shown, 
trigeminal nerve, transcriptome, and immune response are the 
emerging hot keywords in recent years in Figure 7C. Reported 
that the immune response plays an important role in the early 

stages after nerve injury, transcriptome analysis is now often 
used to further investigate the molecular mechanisms of the 
immune response after peripheral nerve injuries to provide a 
scientific basis for more effective treatment of peripheral nerve 
injuries (He et al., 2021).

4. Discussion

A more in-depth keyword and citation analysis will help 
us to understand the current research priorities and trends in 

TABLE 2 Top 10 most productive journals.

Rank Journal Count IF (2020) Quartile in 
category (2020)

Citation

1 NEURAL REGENERATION 

RESEARCH

176 5.135 Q2 2,384

2 GLIA 163 7.452 Q1 3,767

3 JOURNAL OF 

NEUROSCIENCE

124 6.167 Q1 4,688

4 EXPERIMENTAL 

NEUROLOGY

85 5.33 Q2 2,821

5 FRONTIERS IN CELLULAR 

NEUROSCIENCE

70 5.505 Q1 1,318

6 NEUROSCIENCE LETTERS 66 3.046 Q3 1,088

7 NEUROSCIENCE 50 3.59 Q3 984

8 MOLECULAR 

NEUROBIOLOGY

47 5.59 Q1 1,052

9 MUSCLE NERVE 38 3.217 Q3 495

10 FRONTIERS IN MOLECULAR 

NEUROSCIENCE

37 5.639 Q1 699
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a particular field. Therefore, we  identified the research 
hotspots and frontiers of schwann cells related research in the 
field of neuroscience, as described below. SCs are the major 
glial cells in the PNS and play a key role in the development, 
maintenance, and regeneration of peripheral nerves (Gomez-
Sanchez et al., 2022). SCs possess an autocrine survival circuit. 
After nerve injuries, these SCs lost contact with axons, are 
transformed into cells that specifically support regeneration, 
which is a key step in the regenerative role of repair SCs in the 
PNS (Gomez-Sanchez et al., 2017; Sardella-Silva et al., 2021). 
The distal nerve of the injured site occurs disintegration after 
nerve injuries, called Wallerian degeneration, which was first 
studied by Waller (1851). Wallerian degeneration often occurs 
between 36 h and 7–14 days after injury. Myelin degradation 
occurs after axon degeneration, and the mechanism of the role 
of SCs in it is not fully understood to date (Huang et al., 2022). 
Since degraded myelin was found in autophagic vesicles in 
cells after injury, Gomez-Sanchez et al. found that Schwann 
cell autophagy was the main mechanism for myelin clearance 
after nerve transection injury (Gomez-Sanchez et al., 2015). 
Subsequently, Lutz et al. validated this conclusion in a crush 
model and demonstrated that autophagy alone was not 
sufficient to exhibit the full myelin clearance of SCs after 
nerve crush injury. Subsequently, it was found that Schwann 
cell phagocytosis, mediated by the TAM (Axl, Mer) receptor 
and via macrophage assist, could increase the possibility that 

SCs could reach their full myelin clearance potential (Brosius 
Lutz et al., 2017). The autophagy and phagocytosis of SCs are 
critical for the clearance of myelin, axons, and cellular debris 
after injury. Remarkably, when myelin is excessively degraded 
or myelin clearance is abnormal, nerve regeneration and 
remyelination will be traumatized, which in turn may lead to 
the development of various neural diseases (Martini et  al., 
2013). Gomez-Sanchez et al. observed evidence of enhanced 
autophagic activation in the uninjured state of the nerve in a 
mouse model of the most common inherited demyelinating 
neurological disease in humans (Gomez-Sanchez et al., 2015). 
The study to determine the cellular and molecular mechanisms 
behind the autophagy and phagocytosis of SCs is of great 
importance to future researchers, and the identification of this 
mechanism may provide new ideas for the treatment of 
demyelinating diseases.

After myelin debris has been removed, SCs and macrophages 
co-secrete trophic factors and other cytokines to promote axonal 
repair and regeneration (Balakrishnan et al., 2021). Macrophages 
secrete VEGF-A to promote vascularization to relieve hypoxia at 
the site of injury and facilitate the migration of SCs (Cattin et al., 
2015). The repair SCs are 7–10 times longer than immature SCs, 
and the increased length ensures the formation of continuous 
regenerative trajectory Bungner bands formed by overlapping 
SCs, allowing for better extension and reconnection of 
regenerated axons along these tubes (Gomez-Sanchez et  al., 

FIGURE 6

Top 25 references with the strongest citation bursts.
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FIGURE 7

(A) Visualization map of keywords cluster analysis. 
(B) Visualization map of the timeline view. (C) Coverage 
visualization map of keywords co-occurrence analysis.

2017). However, the repair cell phenotype is unstable, which may 
be related to the prolonged lack of axonal contact in distal SCs 
during human neural regeneration (Jessen and Mirsky, 2016). 
The regulation and maintenance of the repair cell phenotype have 
been a hot topic of interest in recent years. The most specific 
example is c-Jun, proven to be a key regulator for reprogramming 
of SCs to repair post-damage cells and maintain the repair 
phenotype (Arthur-Farraj et al., 2017; Jessen and Arthur-Farraj, 
2019; Jessen and Mirsky, 2019). In addition, a 28-fold elevation 
of c-Jun in SCs was found to lead to hypomyelination pathology 
in c-Jun-pure overexpressing mice, suggesting that c-Jun may 
be a potential target for demyelinating neurological diseases and 
deserves to be investigated in depth by other researchers (Jessen 
and Mirsky, 2021). Demyelinating diseases, such as GBS and 
CMT, are a group of diseases that pose a significant burden on the 
global economy and society. In general, the prognosis of these 
diseases is poor and there is no effective and reliable cure. In 
recent decades, several studies have revealed the neuroprotective 
role of SCs in the PNS (Palomo Irigoyen et  al., 2018). And 
through the above studies, we believe that a deeper understanding 
of the molecular mechanisms behind the autophagy and 
phagocytosis of SCs and the key regulator of repair SCs, c-Jun, 

will help to better understand these diseases and may lead to new 
therapeutic approaches.

5. Limitation

To our knowledge, the present study is the first attempt to 
conduct a comprehensive bibliometric analysis of papers related 
to SCs in neurosciences from 2012 to 2021. Although this paper 
has made some meaningful findings, there are some limitations at 
the same time. Due to the formatting requirements of the 
CiteSpace software, all data were retrieved and downloaded from 
the Web of Science database, excluding other medical databases 
such as PubMed and Scopus, and we have restricted the indexing, 
article type, and language type of the search, which may result in 
the omission of some high-quality articles. However, it is 
undeniable that we believe that the volume of data retrieved is 
large enough and can adequately reflect the current state 
of research.

6. Conclusion

We searched and analyzed 1,923 English publications in 
neurosciences related to SCs published from 2012 to 2021. Our 
findings show that the number of annual publications in this study 
fluctuates more steadily, with a greater decline in 2021 and an 
increase in the number of citations year by year, with a high 
number of 8,512 citations in 2021. The United States was leading 
the field, with LERU and the University OF London as influential 
institutions, Jessen KR and Feltri ML as the most influential 
authors in the field, and GLIA and JOURNAL OF 
NEUROSCIENCE as authoritative journals in the field. 
We  predict that a deeper understanding of autophagy and 
phagocytosis functions of SCs and the regulatory factor c-Jun may 
be  a hot spot for future research. In conclusion, this study 
summarized the data from published research papers and 
provided a reference for further research related to SCs in the field 
of neurosciences.
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