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The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, 

brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian 

species, ranging from renal, cardiac, endocrine, neural, and vascular 

hemodynamics to metabolic regulations, immune responsiveness, and energy 

distributions. Over the last four decades, new data has transpired regarding 

the biochemical and molecular compositions, signaling mechanisms, and 

physiological and pathophysiological functions of NPs and their receptors. NPs 

are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, 

and neurological activities, along with antiproliferative, antimitogenic, 

antiinflammatory, and antifibrotic responses. The main locus responsible in 

the biological and physiological regulatory actions of NPs (ANP and BNP) is 

the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-

A/NPRA), a member of the growing multi-limbed GC family of receptors. 

Advances in this field have provided tremendous insights into the critical role 

of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood 

pressure homeostasis, protection against renal and cardiac remodeling, and 

moderation and mediation of neurological disorders. The generation and use 

of genetically engineered animals, including gene-targeted (gene-knockout 

and gene-duplication) and transgenic mutant mouse models has revealed 

and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo 

in intact animals. This review provides a chronological development of the 

biochemical, molecular, physiological, and pathophysiological functions of 

GC-A/NPRA, including signaling pathways, genomics, and gene regulation in 

both normal and disease states.
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Introduction

A pioneering and innovative discovery by de Bold and 
colleagues four decades ago, found natriuretic and diuretic activity 
in the heart atrium extract, leading to the purification and 
characterization of atrial natriuretic factor/peptide (ANF/ANP) 
(de Bold et al., 1981). This discovery revealed a new natriuretic 
peptide (NP) hormone family and established that the heart is an 
endocrine organ (de Bold et al., 1981; de Bold, 1985; Pandey, 2005; 
Goetze et  al., 2020). ANF/ANP exhibits diuretic, natriuretic, 
vasorelaxant, neurotransmission, antimitogenic, and anti-
inflammatory responses directed largely toward the reduction of 
blood pressure (BP) and protection against renal and 
cardiovascular disorders (Brenner et al., 1990; Levin et al., 1998; 
Pandey, 2005; Ellmers et  al., 2007; Pandey, 2008). After the 
discovery of ANP, other members of this family were isolated and 
characterized, including brain natriuretic peptide (BNP), C-type 
natriuretic peptide (CNP), Dendroaspis natriuretic peptide or 
D-type NP (DNP), and urodilatin (URO) (Goetz, 1990; Stingo 
et  al., 1992; Suga et  al., 1992; Lisy et  al., 1999). All NPs show 
similar biochemical, structural, and pharmacological 
characteristics, with a common 17-amino acid disulfide-bonded 
ring. Interestingly, each member of the NP hormone family seems 
to be derived from a separate gene (Rosenzweig and Seidman, 
1991). These peptides bind to different cognate receptors, exhibit 
distinct biological functions, and have varying sites of synthesis 
(Koller et al., 1992; Levin et al., 1998; Venugopal, 2001; Sharma, 
2002; Pandey, 2005; Lee and Burnett Jr., 2007). ANP and BNP are 
predominantly produced in the cardiac atrium and ventricle, 
released in the plasma, and exhibit a high variation in sequence 
structure, whereas CNP is mainly synthesized in the brain and 
endothelial cells and is highly preserved across the species. DNP 
is predominantly synthesized in the venom of the green mamba 
(Dendroaspis angusticeps), and URO is produced in the kidney 
and secreted in the urine (Goetz, 1990; Lisy et al., 1999).

ANP plays a much wider and more significant role, 
particularly in hypertension and cardiovascular diseases. Both 
pro-ANP and pro-BNP genes (Nppa and Nppb) are also expressed 
in extra-cardiac tissues and cells, which seem to act in endocrine, 
autocrine, paracrine, and/or neurocrine manners (Vollmer and 
Schulz, 1990; Pandey and Orgebin-Crist, 1991; Huang et al., 1992; 
Gutkowska et al., 1993; Pandey, 2005). ANP targets the inhibition 
of aldosterone secretion from the adrenal glands (Atarashi et al., 
1984; DeLean et al., 1984; Goodfriend et al., 1984), release of renin 
from the kidney (Burnett et  al., 1984; Shi et  al., 2001), and 
vasopressin release from the posterior pituitary (Obana et  al., 
1985). ANP also stimulates the release of testosterone from 
normal Leydig cells (Mukhopadhyay et al., 1986; Pandey et al., 
1986), luteinizing hormone from the anterior pituitary gland 
(Obana et  al., 1985; Horvath et  al., 1986; Samson, 2004), and 
progesterone from granulosa-luteal cells (Pandey et al., 1987). 
BNP displays functions similar to ANP, but BNP also acts as a 
neurohormone and is preserved in the transient receptor potential 
vanilloid-1 (TRPV-1) in response to itch-inducing factors (Mishra 

and Hoon, 2013). DNP consists of 38 amino acid residues, 
however, its function has not yet been clearly established (Schweitz 
et  al., 1992; Lisy et  al., 1999). URO is a 32-residues peptide 
hormone similar to the carboxyl-terminal sequence of pro-ANP, 
which was isolated and characterized from urine (Schulz-Knappe 
et al., 1988; Feller et al., 1990). It is believed that URO is largely 
synthesized in the kidneys but mostly absent in the circulation 
(Saxenhofer et al., 1990; Goetz, 1991). Interestingly, URO is very 
resistant to proteolysis by endopeptidases and has an important 
role in the regulation of kidney function; more specifically, it 
controls the excretion of sodium and water, much like ANP and 
BNP (Goetz, 1990; Emmeluth et al., 1992).

The pharmacological and physiological functions of NPs is 
elicited through the binding of cognate plasma membrane 
receptor proteins. Three distinct subtypes of NPs receptor proteins 
have been identified and characterized: guanylyl cyclase (GC)/NP 
receptor-A (GC-A/NPRA), GC/NP receptor-B (GC-B/NPRB), 
and NP receptor-C (NPRC), encoded by specific genes, including 
Npr1, Npr2, and Npr3, respectively (Pandey, 2008). Both ANP and 
BNP activate GC-A/NPRA, also known as GC-A receptor, which 
responds to hormone binding by producing intracellular second 
messenger cGMP to this receptor molecule. CNP specifically 
activates GC-B/NPRB, known as GC-B receptor, and also 
produces a second messenger, cGMP. All three NPs (ANP, BNP, 
and CNP) invariably bind to NPRC, which lacks an intracellular 
GC region (Koller et al., 1992; Pandey, 1992; Pandey, 1996; Levin 
et al., 1998; Pandey, 2005). The prevalence of structurally related 
NPs and their three distinct receptors suggests that their role in 
physiological and pathophysiological control of BP, body fluid 
homeostasis, and metabolic regulation is complex. At the 
minimum, three distinct subtypes of effector molecules are 
prevalent: cGMP-dependent protein kinases (PKGs), cGMP-
dependent phosphodiesterases (PDs), and cyclic-nucleotide gated 
ion channels (CNGs), which catalyze and amplify the signaling 
cascade of NP-specific cognate receptors (Pandey, 2005; Sharma, 
2010; Kishimoto et al., 2011; Pandey, 2011).

In essence, GC-A/NPRA acts as the main functional receptor 
protein for both ANP and BNP; and in a large part, the biological 
and physiological functions of hormones are discharged by the 
production of intracellular generation cGMP (Lucas et al., 2000; 
Sharma, 2002; Pandey, 2005; Pandey, 2008; Sharma, 2010; Pandey, 
2011). In mice, the gene-targeting strategy of Npr1 revealed the 
hallmark significance of GC-A/NPRA in the regulation of BP and 
protection against renal and cardiovascular dysfunction (Oliver 
et al., 1997, 1998; Shi et al., 2003; Vellaichamy et al., 2005; Ellmers 
et al., 2007; Kishimoto et al., 2011; Pandey, 2011; Das et al., 2012; 
Vellaichamy et  al., 2014; Subramanian et  al., 2022). CNP is 
produced in the endothelial cells, activates NPRB in the 
neighboring vascular smooth muscle cells (VSMCs), and has a 
pivotal function in the clinical hypotension of septic shock by 
decreasing venous return (Suga et al., 1992, 1993; Hama et al., 
1994). The current review briefly summarizes previous studies and 
salient discoveries in the NPs hormone family and their receptors 
with a major emphasis on GC-A/NPRA, including signaling 
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mechanisms, structure–function composition, and roles in the 
physiology and pathology of health and disease.

Identification, characterization, and 
biochemical properties of NP 
receptors

Initially, to identify NP receptors, specific 125I-ANP binding 
was performed using plasma membrane preparations of different 
tissues and intact cells (Misono et al., 1985; Pandey et al., 1986, 
1988; Leitman et al., 1988). Initial cross-linking and photoaffinity 
studies showed that the molecular weight (Mr) of ANP receptors 
varies widely, ranging from 60-to 180-kDa. They were classified 
and characterized by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) and autoradiography using various 
tissues and cells (Misono et al., 1985; Schenk et al., 1985; Vandlen 
et al., 1985; Yip et al., 1985; Meloche et al., 1986; Pandey et al., 
1986, 1987, 1988). Later, photoaffinity and cross-linking methods 
showed a single protein band of ANP receptor with an apparent 
Mr of 135-to 140-kDa in plasma membrane preparations of 
various tissue and cell types (Pandey et al., 1987; Takayanagi et al., 
1987; Leitman et al., 1988; Pandey et al., 1988; Pandey, 1993). An 
additional protein band of 70-kDa was also identified using 
affinity cross-linking and photoaffinity labeling techniques in the 
isolated plasma membranes and intact cells (Hirose et al., 1985; 
Schenk et al., 1985; Vandlen et al., 1985; Meloche et al., 1986; 
Leitman et al., 1988; Pandey et al., 1988). Concurrently, 125I-ANP 
high-affinity binding sites of 130-to 180-kDa of ANP receptors 
were co-purified with GC activity (Paul et al., 1987; Takayanagi 
et al., 1987; Marala and Sharma, 1988; Meloche et al., 1988). A 
70-kDa ANP receptor which did not display GC activity was also 
isolated and characterized (Schenk et al., 1987; Takayanagi et al., 
1987; Pandey et al., 1988). Based on the biological activity of the 
different lengths of ANP molecules, NPs receptor are classified 
into 130-to 180-kDa proteins (biologically active) and 60 to 
68-kDa protein molecule (clearance) receptor, which was unable 
to produce cGMP (Pandey, 2005).

Later, three distinct subtypes of ANP receptors were identified 
and characterized by using the criteria, including binding 
characteristics, cross-linking and photoaffinity labeling 
techniques, and capacity to generate intracellular cGMP, which 
were found to be specific to different cell and tissue types (Leitman 
et  al., 1988; Pandey et  al., 1988). Three distinct NP receptor 
subtypes were identified, characterized, and classified in multiple 
cells and tissues, including non-reducible 135-kDa, reducible 
140-kDa, and non-reducible 70-kDa protein bands (Pandey et al., 
1988). In VSMCs, two specific binding sites of the 70-kDa and 
140-kDa bands were identified, while under reducing conditions, 
the 70-kDa receptor band persisted; however, the 140-kDa protein 
band was disappeared and reduced to 70-kDa. Non-iodinated or 
unlabeled 28-amino-acid full-length ANP abolished both 70-kDa 
and 140-kDa bands; however, truncated ANF (c-ANF or AP I) 
inhibited only the 70-kDa receptor band. The renal extracts and 

established Maiden-Darby canine kidney (MDCK) cells showed 
70-kDa and 120-kDa receptor bands, but Leydig tumor (MA-10) 
cells and neuroblastoma glial cells yielded just a 135-kDa receptor 
band, which was eliminated with full-length ANP but not with 
truncated AP-1 (Pandey et al., 1986; Pandey and Inagami, 1988). 
VSMCs contained approximately 90% low Mr 66–70-kDa protein 
bands (Pandey et al., 1987; Leitman et al., 1988; Pandey et al., 
1988). Interestingly, adrenal glomerulosa cells, MDCK, and 
MA-10 cells contained the non-reducible 125-to 180-kDa ANP 
receptor bands and showed similar characteristics both 
biochemically and pharmacologically. Biochemical, cellular, 
molecular, and immunohistochemical studies suggested that ANP 
receptors seem to be widely distributed in different cells and tissue 
types, with pleiotropic functional characteristics in the renal, 
cardiac, vascular, and neural systems (Brenner et al., 1990; Levin 
et al., 1998; Pandey, 2005; Pandey, 2018).

Molecular cloning and 
determination of primary structure 
of NP receptors

Molecular cloning of cDNAs from mouse, rat, and humans 
deduced the primary structure of three subtypes of NP receptors 
(NPRs), including: GC-A/NPRA, GC-B/NPRB, and NPRC, which 
constitute the NP receptor family (Fuller et al., 1988; Chang et al., 
1989; Chinkers et al., 1989; Lowe et al., 1989; Pandey and Singh, 
1990; Marala et al., 1992). The primary structural topology of the 
extracellular ligand-binding domain (LBD) of NPRA and NPRB 
exhibit almost 45% sequence homology. The protein kinase-like 
homology domain (protein-KHD) contains 280 amino acid 
residues that follow the transmembrane domain (TD) region of 
the receptors; however, the intracellular carboxyl-terminus 
portion of GC-A/NPRA and GC-B/NPRB contains 250 amino 
acids, constituting GC catalytic domain (GCCD) (Pandey and 
Singh, 1990; Drewett and Garbers, 1994; Zhang et al., 1997). The 
GCCD enzymatic region showed the greatest homology, with 
GC-A/NPRA and GC-B/NPRB sharing almost 80% sequence 
identify while protein-KHD had only 60% sequence identify 
among both GC-A/NPRA and GC-B/NPRB. Over 80% of the 
conserved amino acid residues present in all protein kinases seem 
to be  found in the protein-KHD of GC-A/NPRA and GC-B/
NPRB receptors (Hanks et al., 1988; Koller et al., 1992). But the 
functional significance of protein-KHD remains unclear. Based on 
amino acid sequence comparisons, there seems to be over 60% 
sequence identity among GC-A/NPRA and GC-B/NPRB receptor 
proteins. Sequence homology data have revealed that the 
intracellular regions of these two GC receptors appear to be highly 
conserved, reaching almost 80% sequence identity. However, the 
extracellular LBD of these two GC receptors seem to have only 
43% sequence similarity.

Five of the six cysteine residues of both GC receptors (NPRA 
and NPRB), are found in extracellular domains in the same 
relative positions (Pandey and Singh, 1990). The intracellular 
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region of GC-B/NPRB does not contain any putative glycosylation 
sites, and out of the all seven N-like glycosylation sites present in 
the extracellular domain of both receptors, only two are conserved 
across species (Schulz et  al., 1989; Pandey and Singh, 1990; 
Drewett and Garbers, 1994). The nucleotide sequence in the 
GCCD of GC-A/NPRA and GC-B/NPRB is more highly 
conserved than in the protein-KHD region, whereas NPRC 
comprises a large extracellular LBD region of 496-amino acid 
residues, a single TD region, and a short 37-amino acid 
intracellular cytoplasmic tail, which does not exhibit any sequence 
homology with other known membrane receptor proteins. 
Extracellular LBD of NPRC contains only 30% sequence 
homology to GC-A/NPRA and GC-B/NPRB. Characteristically, 
NPRC possesses a very low specificity for different lengths of ANP 
peptides compared to GC-A/NPRA and GC-B/NPRB receptors 
(Fuller et al., 1988; Bovy, 1990; Khurana and Pandey, 1993). The 
clearance nomenclature of NPRC was given only by the default 
hypothesis; however, NPRC is also thought to display some 
biological functions (Pandey, 1992; Matsukawa et  al., 1999; 
Palaparti and Anand-Srivastava, 2000; Zhou and Murthy, 2003).

Topology and domain structure of 
GC-A/NPRA and other GC 
receptors

Among the members of GC family of membrane receptors, 
GC-A/NPRA represents a biologically active NP receptor 
molecule, largely prevalent in peripheral tissues and cells which 
elicits most of ANP and BNP’s known actions (Drewett and 
Garbers, 1994; Levin et al., 1998; Sharma, 2002; Pandey, 2005). In 
contrast, GC-B/NPRB is largely localized in vascular tissues and 
in the central nervous system (CNS) and it mediates the action 
of CNP, which also generates the production of second messenger, 
cGMP (Schulz et al., 1989; Duda and Sharma, 1995; Lowe, 1997; 
Lucas et  al., 2000). Both GC-A/NPRA and GC-B/NPRB 
constitute an overall domain organization and topology structure 
much like that of other GC receptors. Both GC-A/NPRA and 
GC-B/NPRB consist of generally five separate domains, including 
LBD, a single membrane spanning TD, intracellular cytoplasmic 
protein-KHD, dimerization domain (DD), and enzymatic GCCD 
(Schulz et  al., 1989; Pandey and Singh, 1990; Drewett and 
Garbers, 1994; Sharma, 2002; Pandey, 2005). One polypeptide 
molecule of transmembrane GC receptors contains a single GC 
catalytic active site, while the structural predicted data indicated 
that two-polypeptide chains are required to functionally activate 
GC-A/NPRA (Wilson and Chinkers, 1995; Yang and Garbers, 
1997; Labrecque et  al., 1999; van den Akker et  al., 2000). 
Modeling data also predicted that the dimerization domain of 
GC-A/NPRA is embedded between the GCCD and protein-KHD 
catalytic regions and forms an amphipathic alpha helix structure 
of the receptor molecule (Garbers and Lowe, 1994). The 
sequences of different domains of GC-A/NPRA are conserved 
among mammalian species, including mouse, rat, and human 

(Chinkers et al., 1989; Lowe et al., 1989; Pandey and Singh, 1990; 
Marala et  al., 1992; Garg et  al., 2002). Based on sequence 
comparison analysis data, the protein-KHD of GC-A/NPRA is 
related more closely to the receptor tyrosine kinases (RTKs) than 
the serine/threonine kinases. The protein-KHDs of GC-A/NPRA 
and GC-B/NPRA have been suspected of exhibiting an important 
role in transmitting the ligand-induced signals of these receptor 
proteins (Chinkers and Garbers, 1989; Duda et  al., 1993a; 
Sharma, 2002, 2010; Pandey, 2008). An intervening step may 
be necessary to activate the catalytic process of GCCD involving 
protein-KHD of GC-A/NPRA (Goraczniak et al., 1992; Koller 
et al., 1993; Sharma, 2002); however, the activation of GC-A/
NPRA and GC-B/NPRB receptors probably requires ATP, which 
serves as an intracellular allosteric regulator to protein-KHD 
(Kurose et al., 1987; Chinkers et al., 1991; Larose et al., 1991; 
Duda et al., 1993a; Wong et al., 1995). The deletion of C-terminal 
sequences of GC-A/NPRA resulted in a truncated protein 
product that showed binding specificity to ANP but did not 
exhibit the GC activity of the receptor molecule (Thorp and 
Morkin, 1990; Koller et al., 1992; Pandey and Kanungo, 1993; 
Pandey et  al., 2000). Crystal structure modeling analysis of 
adenylyl cyclase II C2 (ACII C2) domain indicated that the 
catalytic enzymatic active sites of GC receptors and ACs seem to 
be  poorly related to the structural topology of GC-coupled 
receptors (Liu et al., 1997; Zhang et al., 1997; Sunahara et al., 
1998; Tucker et al., 1998). The GCCD enzymatic active site of 
GC-A/NPRA seems to include a region of 31-amino acid residue 
sequence at the carboxyl-terminus end (974–1,004 residues) of 
the receptor. In fact, the members of the GC family of receptor 
protein constitute a single GCCD enzymatic business end for 
each polypeptide chain and exhibit catalytic activity as 
homodimers, which generates the second messenger cGMP and 
activates physiological signaling cascades (Figure 1).

Guanylyl cyclase C (GC-C) is also a member of the GC 
receptor family, which contains topology of domain structure, 
including extracellular LBD, TD, protein-KHD, and GCCD 
similar to GC-NPRs. However, GC-C is predominantly expressed 
and largely found on the apical surface of intestinal cells and 
activated by gastrointestinal peptides guanylin and uroguanylin 
and by heat-stable enterotoxin (ST) produced by Escherichia coli 
(Schulz et al., 1990; Currie et al., 1992; Hamra et al., 1993; Arshad 
and Visweswariah, 2012; Cappelli et al., 2019; Bose et al., 2020). 
GC-C is also expressed in the kidney and enhances the excretion 
of Na+ and water. Paradoxically GC-C KO mice seem to exhibit 
normal gastrointestinal function but were found to be defiant to 
ST-activated diarrhea (Schulz et al., 1997; Sindice et al., 2002). 
Both guanylin and uroguanylin are thought to function in an 
endocrine manner (Forte et  al., 2000; Carrithers et  al., 2002). 
Among the GC family of receptors, besides NPRs and GC-C, 
several other members have been identified, including GC-D, 
GC-E, GC-F, GC-G, and Ret-GC or ROS-GC. However, the details 
of these receptors will not be discussed in this review; nevertheless, 
all members of GC-family of receptors transmit the signal by 
generating the second messenger cGMP.
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Signal transduction mechanisms 
and intracellular signaling of 
GC-A/NPRA

ANP greatly increases the accumulation of intracellular cGMP 
levels and decreases the concentration of cAMP by stimulating the 
specific PDEs in target tissues and cells in a dose-and time-
dependent manner (Waldman et al., 1984; Pandey et al., 1985; 
Tremblay et  al., 1985; Pandey et  al., 1986; Levin et  al., 1998; 
Pandey, 2005). However, the inhibitory effects of ANP on cAMP 
levels seem to act indirectly, probably by involving cGMP-
dependent PDEs (Pandey, 2005; Sharma, 2010). Earlier studies 
suggested that ANP binding to GC-A/NPRA alone might not 
be sufficient to stimulate the maximum levels of GC activity, but 
it may also require ATP (Kurose et al., 1987; Chinkers et al., 1991; 
Goraczniak et al., 1992). The nonhydrolyzable analogs of ATP 
mimics the effects of ANP, and ATP might act by allosteric 
regulation of GC activity of GC-A/NPRA. The deletion and/or 

point mutations in GC receptors lacking a protein-KHD region 
did not show responsiveness of either ANP or ATP to activate GC 
activity of these receptors (Chinkers and Garbers, 1989; Koller 
et al., 1992; Duda and Sharma, 1995; Sharma, 2002). The mutant 
receptor was thought to be independent of any ANP requirement; 
however, it showed the ability to bind the ligand and exhibited 
100-fold excess GC activity compared with wild-type (WT) 
receptor protein (Chinkers and Garbers, 1989; Koller et al., 1992). 
ATP binding, possibly to protein-KHD, causes a structural 
conformational change to ease the protein-KHD autoinhibition of 
GC enzymatic catalytic region during the ligand-induced 
signaling cascade of GC-A/NPRA (Lowe, 1997; Foster and 
Garbers, 1998; Garbers, 1999). This model has been challenged by 
other investigators, who proposed that the deletion of the 
protein-KHD of GC-A/NPRA was unable to enhance the basal 
GC activity of the receptor (Goraczniak et al., 1992; Duda et al., 
1993b; Sharma, 2002, 2010); however, those previous studies 
agreed that ATP is likely necessary for the hormone-dependent 
maximum activation of GC-coupled receptors. The authors 

FIGURE 1

Schematic representation of ligand-dependent activation and physiological functions of GC-A/NPRA, GC-B/NPRB, and NPRC. ANP and BNP 
binding to amino-terminal domain activates GC-A/NPRA, which leads to enhanced production of intracellular second messenger cGMP with 
stimulation of PKG, PDFs, and CNG that activate ANP-dependent cellular and physiological responsiveness. CNP binds and activates GC-A/NPRB 
and also produces cGMP and physiological responsiveness. All three NPs activate NPRC that lead to some biological actions. ANP, atrial natriuretic 
peptide; BNP, brain natriuretic peptide; CNP, C-type natriuretic peptide; GC-A/NPRA, guanylyl cyclase-A/natriuretic peptide receptor-A; GC-B/
NPRB, guanylyl cyclase-B/natriuretic peptide receptor-B; NPRC, natriuretic peptide clearance receptor; LBD, ligand binding domain; TM, 
transmembrane domain; KHD, protein-kinase like homology domain; DD, dimerization domain; GCCD, guanylyl cyclase catalytic domain; IP3, 
inositol trisphosphate. Adopted with modification from reference Pandey, K. N. 2015, Membranes 5, 253–287.
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further suggested that the interactive action of ATP with 
protein-KHD enhances the effectiveness of the ligand-induced 
signaling mechanisms of GC-A/NPRA with enhanced 
accumulation of intracellular second messenger cGMP.

Earlier, it was predicted that after ligand binding, ATP 
interacts with protein-KHD, which increases the production of 
intracellular cGMP without affecting the affinity of the substrate 
to the receptor (Kurose et al., 1987; Chang et al., 1990; Duda et al., 
1991; Gazzano et al., 1991; Wong et al., 1995; Sharma, 2002). Later 
studies suggested that ATP binding to protein-KHD seems to 
be  critical for the effector-coupling of GC-coupled receptor 
proteins (Goraczniak et al., 1992; Duda et al., 1993a; Sharma, 
2002, 2010). Those studies further indicated that the glycine-rich 
motif G-R-G-S-N-Y-G in the protein-KHD was important for 
ATP binding and activation of the ANP/NPRA signaling cascade 
(Duda et al., 1991, 1993a; Goraczniak et al., 1992). The consensus 
sequence of the glycine-rich motif was named the ATP-regulatory 
module (ARM) of the GC receptors (Goraczniak et  al., 1992; 
Duda et  al., 1993a; Sharma, 2002). Site-directed mutagenesis 
experiments suggested that the middle Gly residue in the glycine-
rich consensus motif was crucial for the ATP-binding site and for 
the signal transduction cascade of GC-coupled receptors (Duda 
et  al., 1993a; Sharma, 2002). Tight regulatory control of the 
receptor signal seems to be essential for the intracellular formation 
of the second messenger cGMP (Sharma et al., 1994; Sharma, 
2002). ATP-binding to the protein-KHD has also been proposed 
to cause GC activation and induces a low-affinity shift that might 
release the bound ligand from the receptor molecule; however, 
this remains to be experimentally tested to whether modulates the 
signaling cascade of GC-coupled receptors (Jewett et al., 1993).

Crystallographic modeling data have shown that in the 
absence of ligand, LBD of GC-A/NPRA is self-associated to form 
a homodimer molecule (van den Akker et al., 2000). The binding 
of ligand to the receptor induces molecular conformational 
alterations and/or coordinated structural changes in the 
protein-KHD, which likely leads to ATP binding to enhance the 
signaling cascade (Huo et al., 1999; Misono et al., 2005). However, 
it is unclear whether native target cells also exhibit the dimeric 
nature of the receptor molecules. Evidence suggests two possible 
dimer pairs exist in the crystal packaging of the extracellular LBD 
of GC-A/NPRA; the tail-to-tail and head-to-head dimers seem to 
be associated with the membrane-distal and proximal subdomains 
of the receptor (Qiu et  al., 2004), respectively. The tail-to-tail 
dimer of GC-A/NPRA may be  required for ligand-induced 
signaling of this receptor protein (van den Akker et  al., 2000; 
Misono et al., 2005). Moreover, the crystallographic structure of 
NPRC has also indicated that a dimerized form of this receptor 
seems to be essential in head-to-head configuration with bound 
ligand-receptor complex (He et al., 2001, 2005). The head-to-head 
dimer of NPRC seems to represent the inactive state of the 
receptor, whereas the tail-to-tail dimer may represent its hormone-
activated state (He et al., 2001, 2005; van den Akker, 2001; Misono 
et al., 2005). The ligand-mediated activation of GC-A/NPRA may 
stabilize the membrane-distal dimer interface, indicating that 

ligand binding confers the GC-A/NPRA dimer interface 
interactive site of the receptor (DeLean et al., 2003). Chemical 
modifications and site-directed mutagenesis experiments have 
indicated that the head-to-head dimer structure confers with the 
physiological dimer of GC-A/NPRA (Qiu et  al., 2004). The 
disruption of disulfide cysteine bonds in the juxtamembrane hinge 
region (JMHR) results in constitutive activation of the receptor, 
indicating that the JMHR might play a crucial role in the signal 
transduction and receptor activation mechanisms of GC receptors 
(Huo et al., 1999; Misono et al., 2005, 2011).

The heterogeneity and diverse cellular distribution of NP 
receptors indicates that different mechanisms might govern the 
activation of signaling and function of GC receptors in target cells 
(Pandey et al., 2000; Sharma, 2002; Pandey, 2005; Sharma, 2010; 
Kishimoto et  al., 2011; Pandey, 2011). ANP stimulates the 
generation of inositol triphosphates (IP3) at very low 
concentrations in cultured MA-10 cells and VSMCs (Resink et al., 
1988; Hirata et al., 1989; Khurana and Pandey, 1994; Khurana and 
Pandey, 1995; Pandey, 2014); however, ANP stimulated the 
generation of IP3 in the renal inner medullary collecting duct cells 
(RIMCDs) and MA-10 Leydig tumor cells at lower concentrations, 
while at higher hormone concentrations, it inhibited the formation 
of these metabolites, simultaneously increasing the accumulation 
of intracellular cGMP levels (Teitelbaum et al., 1990; Berl et al., 
1991; Khurana and Pandey, 1995; Khurana and Pandey, 1996; 
Pandey, 2005; Pandey, 2014). Depending on cell type, ANP 
inhibits both the enzymatic activity and autophosphorylation of 
protein kinase C (PKC) (Pandey, 1989; Pandey, 1994; Kumar et al., 
1997; Pandey, 2008). Furthermore, ANP stimulated potassium 
channels through the activation of PKGs, which requires ATP 
(White et  al., 1993). Our studies have shown that GTPγS 
synergistically enhanced ANP’s effect on the GC catalytic activity 
of GC-A/NPRA (Khurana and Pandey, 1995), but the antibodies 
against the subunits of G-proteins (Gsα and Giα) did not affect 
GC activity, although Goα antibodies blocked the agonist-
stimulated GC catalytic activation of GC-A/NPRA (Khurana and 
Pandey, 1994; Pandey, 2005).

GC-A/NPRA seems to be present in the phosphorylated state. 
ANP causes a decrease in the phosphate content and thus 
dephosphorylation, in turn reducing ANP-dependent GC activity 
and desensitizing the receptor protein (Potter and Garbers, 1992; 
Potter and Garbers, 1994). Earlier findings have indicated that 
ANP seems to stimulate the phosphorylation of GC-A/NPRA 
(Ballerman et al., 1988; Pandey, 1989; Duda and Sharma, 1990; 
Larose et al., 1992). It was later suggested that ANP stimulates the 
phosphorylation of NPRA at serine and threonine residues in the 
protein-KHD region of the receptor that was considered essential 
for receptor activation (Foster and Garbers, 1998; Potter and 
Hunter, 1998). Those studies indicated that phosphorylation at 
serine and threonine sites induces the desensitization of 
GC-coupled receptors. In fact, the activation of GC-A/NPRA 
could also be attenuated by agents such as certain growth factor, 
including epidermal growth factor (EGF) and platelet-derived 
growth factor (PDGF) and pressure hormones, such as endothelin, 
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vasopressin, and ANG II, which decrease the responsiveness of 
GC-A/NPRA (Haneda et al., 1991; Yasunari et al., 1992; Potter and 
Garbers, 1994; Kumar et al., 1997; Pandey et al., 2000; Sharma 
et al., 2002; Garg and Pandey, 2003; Tripathi and Pandey, 2012; 
Alicic et  al., 2018; Arise et  al., 2020). The agonist-dependent 
activation of PKC by phorbol ester decreased GC catalytic activity 
of NPRA (Haneda et al., 1991; Yasunari et al., 1992; Potter and 
Garbers, 1994; Kumar et al., 1997; Pandey, 2005; Kumar et al., 
2017). On the other hand, the desensitization of GC-A/NPRA 
may be  correlated with mechanisms involving receptor 
phosphorylation (Duda and Sharma, 1990). The mechanism of 
desensitization of NPRA involving dephosphorylation does not 
seem to be consistent with G-protein-coupled receptor molecules, 
which also appear to be desensitized by protein phosphorylation 
(Zhang et al., 1997; Lefkowitz et al., 1998). Both protein kinases 
and protein phosphatases seem to be  involved in the 
desensitization mechanisms of GC-A/NPRA, which remain 
poorly understood. But one study has suggested that PKG seems 
to phosphorylate the GC-A/NPRA in vitro system (Airhart et al., 
2003). Previous studies further indicated that after ANP treatment, 
PKG is recruited to the plasma membrane and enhances the GC 
catalytic activity of the receptor. Interestingly, PKG seems to 
translocate in an ANP-mediated manner; however, not in the 
nitric oxide-mediated system. An ANP-mediated NPRA/PKG 
mechanism might initiate the cGMP-dependent signaling in the 
functional regulation of GC-A/NPRA in target cells.

Endocytosis, intracellular 
trafficking, and downregulation of 
GC-A/NPRA

Receptor internalization is a prominent mechanism 
underlying the concentrated uptake of ligand-receptor complexes 
for receptor-mediated intracellular signal transduction, 
neurotransmission, cellular activities, and physiological and 
pathophysiological functions. We have previously suggested that 
receptor endocytosis and intracellular signaling of GC-A/NPRA 
occur concurrently during internalization and subcellular 
trafficking. During endocytotic process the second-messenger 
cGMP signals are generated in intact cells (Mani et al., 2015, 2016; 
Mani and Pandey, 2019). Stoichiometric analyses of the 
endocytosed ANP/NPRA complexes and metabolic processing 
showed that the bound hormone-receptor complexes were 
endocytosed and intracellularly processed, and the metabolized 
degraded products were ultimately exocytosed and released into 
culture medium (Pandey et al., 1986; Rathinavelu and Isom, 1991; 
Pandey, 1993; Pandey et al., 2002; Mani et al., 2015). However, a 
small population of bound ligand-receptor complexes may escape 
the degradative lysosomal pathway and recycle back to the plasma 
membrane, leaving some intact ligands to be released in the cell 
exterior (Pandey et al., 2002, 2005; Saftig and Klumperman, 2009; 
Mani and Pandey, 2019). Using MA-10 cells (harboring the native 
receptor population) and HEK-293 cells (expressing the 

recombinant receptor molecules), we  have shown that after 
ligand-binding, the bound hormone-receptor complexes of 
ANP-BNP/GC-A/NPRA are endocytosed, intracellularly 
processed, and metabolized inside the cell (Pandey et al., 1986, 
2000, 2002; Pandey, 1993, 2001; Somanna et al., 2013; Mani et al., 
2016). On the other hand, one study indicated that in 
renomedullary epithelial cells (RMECs), GC-A/NPRA with 
bound-ligand receptor complex was not processed intracellularly 
and rapid dissociation of ligand-receptor complexes occurred after 
ANP binding to GC-A/NPRA, and intact ligand was released into 
culture medium (Koh et  al., 1992). However, since the ligand 
dissociation was performed using very high amount of cold 
(unlabeled) ANP, rebinding of the dissociated ligand to the 
receptor protein can be excluded, making these findings difficult 
to interpret (Koh et al., 1992). These findings also indicated that 
RMECs contained multiple receptor populations including GC-A/
NPRA and NPRC (Koh et al., 1992). Studies of ligand binding and 
metabolic processing of ANP involving NPRCs have been 
reported using VSMCs, which predominantly contain 70-kDa 
NPRCs and only a small population of GC-A/NPRAs (Hirata 
et al., 1985; Napier et al., 1986; Pandey et al., 1988; Murthy et al., 
1989; Cahill et al., 1990; Nussenzveig et al., 1990; Pandey, 1992, 
2005; Cohen et al., 1996).

The antibody-tracking method has indicated that both GC-A/
NPRA and GC-B/NPRB were found to be internalized in a ligand-
independent manner (Dickey et al., 2011); however, this method 
only qualitatively determines the internalization kinetics of 
ligand-receptor complexes. Immunofluorescence confocal 
microscopy has revealed the visualization of the subcellular 
trafficking and ligand-dependent endocytosis of GC-A/NPRA 
tagged with eGFP- (eGFP-GC-A/NPRA) in HEK-293 and murine 
mesangial cells (MMCs) (Mani et  al., 2015, 2016). The 
internalization of GC-A/NPRB was also demonstrated in 
hippocampal neurons and glioma cells (Brackmann et al., 2005). 
Endocytosis, sequestration, and metabolic processing of 
internalized hormone receptor complexes may all play roles in the 
downregulation of receptors (Pandey et al., 2002; Pandey, 2010; 
Pandey, 2015). GC-A/NPRA downregulation has been reported 
in PC-12 cells that contain endogenous receptors (Rathinavelu 
and Isom, 1991) and COS-7 and HEK-293 cells transfected with 
recombinant receptors (Pandey et  al., 2000, 2002, 2005). The 
deletion of carboxyl-terminus regions of GC-A/NPRA suggested 
that the specific sequence in catalytic GCCD and protein-KHD 
played a pivotal role in the internalization, sequestration, and 
metabolic degradation of the receptor protein (Pandey et al., 2000; 
Pandey, 2015). Interestingly, several studies have indicated that 
micro-RNA (miR) plays critical roles in the regulatory 
mechanisms and function of ANP/NPRA system (Arora et al., 
2013; Somanna et al., 2013; Wu et al., 2016; Vandenwijngaert et al., 
2018; Khurana et al., 2022). Our recent findings have suggested 
that prolonged ANP treatments along with miR-128 and miR195 
of cultured cells expressing high density of GC-A/NPRA caused 
downregulation of the receptor in a time-and dose-dependent 
manner (Khurana et  al., 2022). Those findings showed that 
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miR-128 and miR-195 caused significant reduction in the protein 
levels of GC-A/NPRA. We  implicated that ligand-mediated 
mechanisms involving miR-128 and miR-195 might instigate a 
prominent regulatory role in the regulation and activity of 
GC-coupled receptor proteins.

Using the confocal microscopy and 125I-ANP binding assay, 
we  delineated the significance of dynamin molecule in the 
trafficking and internalization of GC-A/NPRA utilizing the 
recombinant HEK-293 cells (Somanna et  al., 2018). ANP 
treatment enhanced the internalization of NPRA in the cell 
interior, but the process was significantly impaired by the specific 
inhibitors of clathrin/dynamin, namely monodansylcadaverine 
(MDC) and chlorpromazine (CPZ) (Somanna et  al., 2018). 
Mutant dynamin also specifically blocked the endocytic vesicle 
formation and internalization of NPRA (Somanna et al., 2018). 
Immunofluorescence visualization of GFP-tagged GC-A/NPRA 
in HEK-293 cells has revealed that endocytic vesicles are formed 
within 5 min after ANP treatment; however, the process was 
blocked by the inhibitors of clathrin (MDC and CPZ) and mutant 
dynamin (Somanna et al., 2018). We further showed that GC-A/
NPRA undergoes internalization via clathrin-mediated 
endocytosis, including receptor internalization, signaling, and 
metabolic degradation. Our previous studies indicated that the 
internalization of GC-A/NPRA occurred via clathrin-dependent 
pathways following initial cluster formation of receptor-ligand 
cargo in clathrin-coated pits on the plasma membrane. The 
blockade of the endocytosis of ligand-receptor complexes by the 
clathrin inhibitors (MDC and CPZ), provided an efficient and 
valuable method to facilitate the mechanistic actions of the 
endocytosis of GCA/NPRA. Via confocal microscopy, the 
formation of endocytic vesicles during the internalization of 
receptor molecules was revealed. CPZ, MDC, and mutant 
dynamin all affected both the formation of clathrin-coated pits 
and the assembly of clathrin (Law et al., 2011; Schwartz et al., 
2012; Smani et al., 2012). The role of this receptor in the physiology 
and pathophysiology of hypertension and cardiovascular 
homeostasis may be clarified by the fact that the clathrin-mediated 
endocytic pathway is considered a major route for the 
internalization of GC-A/NPRA.

Short signal-sequence motifs appear to be essential to the 
internalization and intracellular trafficking of plasma membrane 
receptors, which are thought to send the ligand-receptor cargo 
into trafficking endocytic vesicles (Pandey, 2009; Kozik et  al., 
2010; Pandey, 2010; Davey et al., 2012; Pandey, 2015). These small 
motifs comprise a linear array of a short sequence of amino acids 
containing 2–6 amino acid residues, however, only 2–3 amino 
acids of which are essential to receptor internalization and 
intracellular trafficking processes (Bonifacino and Traub, 2003; 
Davey et al., 2012; Mardones et al., 2013). The sequence motif 
Gly920-Asp921-Ala922-Tyr923 (GDAY) in the C-terminal-region of 
GC-A/NPRA acts to promote the endocytosis and trafficking 
processes of NPRA (Pandey et al., 2005). Gly920 and Tyr923 residues 
in GDAY direct internalization of GC-A/NPRA, but Asp921 
provides an acidic environment for GDAY signaling in the 

intracellular routing and subcellular trafficking processes. Site-
directed mutagenesis of Gly920 and Tyr923 residues to Ala blocked 
the endocytosis of GC-A/NPRA by 50%; however, no effect on the 
recycling process was found. The site-directed mutation of Asp921 
to Ala did not seem to affect receptor endocytosis, but it did 
potentially prevent the recycling of internalized receptors to the 
plasma membrane. We have demonstrated that FQQI short amino 
acid motif also plays a critical role in the endocytosis and 
subcellular trafficking of GC-A/NPRA (Mani et al., 2016; Mani 
and Pandey, 2019). Confocal immunofluorescence analyses 
showed that WT receptor (eGFP-GC-A/NPRA) was rapidly 
internalized and redistributed into cellular compartments, but the 
mutant FQQI/AAAA motif markedly inhibited endocytosis, 
signaling process, and subcellular trafficking of GC-A/NPRA 
(Mani et al., 2016; Mani and Pandey, 2019). FQQI short sequence 
motif plays a significant role in maintaining continuous receptor 
signaling. These findings expanded our knowledge of the cellular 
and molecular mechanisms of internalization, subcellular 
trafficking, and concurrent simultaneous signaling of GC-A/
NPRA in intact cell.

GC-A/NPRA regulates renal 
hemodynamics, blood pressure, 
and cardiovascular events

The use of gene-targeting methods in mice has yielded novel 
approaches to decipher the biological and pathophysiological 
functions of the ablated gene products in intact animals in vivo 
(Takahashi and Smithies, 1999; Kim et  al., 2002). Genetic 
strategies have generated mice carrying gene knockout (KO) or 
gene duplication, providing proof-of-concept for the physiological 
and pathophysiological roles of GC-A/NPRA in the regulation of 
renal and cardiovascular hemodynamic parameters (John et al., 
1995; Lopez et al., 1995; Kishimoto et al., 1996; Oliver et al., 1997, 
1998; Matsukawa et al., 1999; Pandey et al., 1999; Shi et al., 2003; 
Vellaichamy et  al., 2005; Ellmers et  al., 2007). Early studies 
demonstrated that the ablation of Npr1 (encoding GC-A/NPRA) 
led to an increase in BP in Npr1 KO mice (Oliver et al., 1997; Shi 
et al., 2001, 2003). Investigations in our laboratory have shown 
that at birth, loss of NPRA permitted increased synthesis and 
release of renin in KO mice compared with their WT counterparts; 
however, in adult mice, ANG II levels, along with circulating and 
kidney renin contents, were greatly reduced in Npr1 null mutant 
KO mice compared to Npr1 WT mice (Shi et al., 2001). Those 
studies showed that the reduced renin levels in the adult KO mice 
were largely due to a progressive increase in high BP, inhibiting 
renin synthesis and secretion from the juxtaglomerular (JG) cells 
of the kidneys (Shi et al., 2001; Pandey, 2008).

Studies from our laboratory further determined the 
quantitative contribution and mechanisms mediating the renal 
and cardiac hemodynamic responsiveness with decreasing or 
increasing numbers of Npr1 gene copies (Shi et  al., 2003; 
Vellaichamy et al., 2005, 2014; Das et al., 2010; Kumar et al., 2017; 
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Periyasamy et al., 2019). Pure blood volume expansion of Npr1 
KO and gene-duplicated mice was used to determine the effect on 
renal blood flow (RBF), urine flow, glomerular filtration rate 
(GFR), and release of Na+ and K+ Npr1 KO (0-copy), WT (2-copy), 
and gene-duplicated (4-copy) mice (Shi et al., 2003). Interestingly, 
hemodilution did not occur in whole blood, and plasma protein 
levels were not affected. Significant functional responses in RBF, 
Na+ excretion, and GFR were observed in Npr1 WT (2-copy) and 
gene-duplicated (4-copy) mice but not in KO (0-copy) mice. 
Those previous studies indicated that mediating renal 
hemodynamic mechanisms and Na+ excretion in genetically 
modified Npr1 mutant mice are heavily influenced by the ANP/
NPRA axis (Shi et al., 2003). Both RBF and GFR were significantly 
reduced in Npr1 0-copy KO mice but increased in 4-copy gene-
duplicated mice compared with 2-copy WT mice after pure blood 
volume expansion in these animals (Shi et al., 2003).

The ablation of Npr1 is known to increase BP of homozygous 
KO mice, which was not affected by either minimal or high-salt 
diets. This suggested that the major effect of GC-A/NPRA may 
occur at the level of the vasculature and is likely independent of 
salt concentrations (Lopez et al., 1995). In contrast, later studies 
showed chronic elevation of BP in mice fed with high-salt diets 
when Npr1 was disrupted (Oliver et al., 1998; Zhao et al., 2007, 
2013). Studies with Nppa KO mice have also shown that defects in 
ANP synthesis may cause salt-sensitive hypertension in these 
mutant animals (John et  al., 1995; Melo et  al., 1998). The 
physiological and pathophysiological roles of the ANP/NPRA 
system in the regulation of high BP and renal and cardiac 
dysfunction have been demonstrated in genetic mouse models of 
both Nppa and Npr1 (John et al., 1995; Lopez et al., 1995; Oliver 
et al., 1997, 1998; Pandey et al., 1999; Shi et al., 2003; Vellaichamy 
et al., 2005; Ellmers et al., 2007; Das et al., 2020; Subramanian 
et  al., 2022). Genetic defects that reduce the activity of GC 
receptors may contribute to hypertension, leading to renal and 
cardiac dysfunction and congestive heart failure (CHF) in mutant 
animals (Shi et al., 2003; Ellmers et al., 2007; Vellaichamy et al., 
2007; Pandey, 2008; Das et  al., 2012; Vellaichamy et  al., 2014; 
Subramanian et al., 2016; Das et al., 2020). The consequences of 
the ablation of NPs and NPRs in mice and the resultant specific 
phenotypes are presented in Table 1. The ablation of GC-A/NPRA 
greatly increases high BP, altered levels of renin, ANG II, other 
components of RAAS, and lethal vascular and cardiac disorders, 
resembling untreated hypertensive heart disease patients 
(Vellaichamy et  al., 2007; Sezai et  al., 2010; Zhao et  al., 2013; 
Vellaichamy et al., 2014; Kumar et al., 2017; Periyasamy et al., 
2019; Das et al., 2020; Sangaralingham et al., 2022), although Npr1 
gene duplication in mice showed significantly increased levels of 
cGMP and reduced BP with increasing Npr1 gene copy numbers 
in a gene-dose-dependent manner (Oliver et al., 1998; Pandey 
et al., 1999; Shi et al., 2003; Zhao et al., 2007; Vellaichamy et al., 
2014; Periyasamy et al., 2019; Das et al., 2020). ANP and BNP 
expression is increased in patients with cardiac hypertrophy and 
CHF; whether the protective role of NPs and the GC-A/NPRA 
system are activated by reducing the harmful effects of high BP 

caused by retention of sodium and fluid volume; by inhibiting the 
RAAS; or as a result of the hypertrophic and/or fibrotic remodeling 
in the kidney, heart, and vasculature (Cannone et  al., 2019; 
Rubattu et al., 2019). The GC-A/NPRA system is crucial to the 
regulation of systemic and intracellular components of RAAS (Shi 
et al., 2001; Pandey, 2008). ANP-BNP concentrations are usually 
found at much higher levels in the cardiac tissues and plasma of 
CHF patients (Wei et al., 1993a,b; Chen and Burnett, 1998). Both 
Nppa and Nppb are overexpressed in the hypertrophied heart and 
may act as endogenous protective mechanisms against 
maladaptive cardiac hypertrophy and cardiovascular disorders 
(Masciotra et  al., 1999; Knowles et  al., 2001; Volpe, 2014; 
Reginauld et al., 2019). GC-A/NPRA seems to be downregulated 
in the severe chronic CHF patients. Genetic disruption of Npr1 in 
mice increases the cardiac mass, leading to hypertrophic growth 
and disorders (John et al., 1995; Oliver et al., 1997; Vellaichamy 
et al., 2005; Ellmers et al., 2007; Zhao et al., 2013; Subramanian 
et al., 2016). There is evidence of a significant inverse relationship 
between left ventricular cardiac hypertrophy and myocardial Nppa 
and Nppb expression, suggesting that ANP and BNP expression 
play a protective role in cardiovascular disorders and CHF (Wei 
et  al., 1993b; Masciotra et  al., 1999; Kobayashi et  al., 2012; 
Sangaralingham et al., 2022). It has been recently suggested that 
CNP is synthesized in the cardiac myocytes and endothelial cells 
also preserves heart structure–function and coronary reactivity 
(Moyes et al., 2020).

GC-A/NPRA regulation of 
metabolic and immunogenic 
responses

Decreased plasma levels of ANP are known to be associated 
with obesity, insulin resistance, energy, and glucose metabolism 
in human patients (Wang et al., 2007; Birkenfeld et al., 2008; Coue 
and Moro, 2016; Cannone et al., 2019). Thus, ANP-BNP/GC-A/
NPRA signaling has been suggested as playing a role in the 
regulation of whole-body metabolism and diabetic conditions 
(Moro, 2013; Coue et al., 2015). The GC-A/NPRA system has been 
shown to enhance lipid mobilization, mitochondrial oxidative 
pathway, and fat oxidation, maintaining energy expenditure and 
fatty acid supply to cardiac and skeletal muscle metabolic 
processes (Tsukamoto et al., 2009; Birkenfeld et al., 2012; Engeli 
et al., 2012; Schlueter et al., 2014). On the other hand, NPRC 
exhibits a lipolytic effect of NPs (ANP, BNP). Mice challenged 
with low temperature were shown to have increased release of 
ANP but reduced levels of NPRC in both white and brown 
adipocytes (Sengenes et al., 2002; Bordicchia et al., 2012). In fact, 
insulin enhanced the NPRC expression in adipocytes in a glucose-
dependent manner (Bordicchia et al., 2016). Defective or absent 
NPs/GC-A/NPRA signaling may promote maladaptive metabolic 
disorders that lead in decreased mitochondrial function, 
hyperglycemia, insulin resistance, and lipid accumulation, in turn, 
leading to hypertension and CVD in humans. At balance, the 
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TABLE 1 Nomenclature, distribution, and gene-knockout phenotypes of natriuretic peptides and their specific receptors.

Peptide/Protein Gene Distribution Gene-KO phenotype 
in mice

Literature cited

ANP Nppa Heart, kidney, brain,ovary, testis, 

and pituitary

Hypertension, hypertrophy, 

heart failure hypertension

John et al. (1995), Steinhelper 

et al. (1990), Lin et al. (1995), 

Melo et al. (1999), Tankersley 

et al. (2010)

BNP Nppb Brain and heart Ventricular fibrosis, skeletal and 

vascular abnormalities

Tamura et al. (2000), Ogawa 

et al. (1994), Holditch et al. 

(2016)

CNP Nppc Vascular endothelium Brain, 

kidney, heart, and testis

Reduced long bone growth, 

dwarfism, abnormal chondrocyte 

growth

Chusho et al. (2001), Yasoda 

et al. (2004), Wang et al. (2007)

Guanylin Intestine, kidney, brain, liver Blockade of intestinal sodium 

and water excretion

Sangaralingham et al. (2022), 

Mattingly et al. (1994)

Uroguanylin Intestine, kidney, Brain, liver Disruption of intestinal fluid-ion 

balance, increase of BP

Sangaralingham et al. (2022), 

Mattingly et al. (1994)

GC-A/ NPRA Npr1 Heart, kidney, adrenal glands, 

brain, lung, ovary, testis, thymus, 

vasculature, pituitary gland

Volume regulation, 

hypertension, cardiac 

hypertrophy and fibrosis, 

inflammation, cardiac overload, 

reduced testosterone, decreased 

estrogen

Ellmers et al. (2007), Oliver et al. 

(1997), Shi et al. (2003), 

Vellaichamy et al. (2005), 

Vellaichamy et al. (2014), Lopez 

et al. (1995), Das et al. (2010), 

Periyasamy et al. (2019), Zhao 

et al. (2007), Das et al. (2020), 

Subramanian et al. (2016), 

Reinhart et al. (2006), Nakanishi 

et al. (2005)

GC-B/NPRB Npr2 Brain, heart, lung, ovary, pituitary 

gland, testis, cartilage, thymus, 

vasculature

Decreased adiposity, dwarfism, 

female sterility, seizures, vascular 

abnormalities

Tamura et al. (2004), 

Langenickel et al. (2006)

NPRC Npr3 Kidney, brain, heart, intestine, 

liver, vasculature

Skeletal over-growth, bone 

deformation, long bone 

overgrowth

Jaubert et al. (1999), Matsukawa 

et al. (1999)

GC-C Gc-c Intestine, kidney, liver, brain Resistance to exogenous E. coli 

heat-stable enterotoxin, 

disruption of intestinal fluid-ion 

homeostasis, unaffected BP

Schulz et al. (1997), Kuhn (2005)

ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CNP, C-type natriuretic peptide; Nppa, coding for pro-atrial natriuretic peptide; Nppb, coding for pro-brain natriuretic 
peptide; Nppc, coding for pro-C-type natriuretic peptide. GC-A/NPRA, guanylyl cyclase/natriuretic peptide receptor-A; GC-B/NPRB, guanylyl cyclase/natriuretic peptide receptor-B; 
NPRC, natriuretic peptide receptor-C; Npr1, coding for GC-A/NPRA; Npr2, coding for GC-B/NPRB; Npr3, coding for NPRC; GC-C, guanylyl cyclase C.

circulating concentrations of ANP may serve as a protective 
mechanism; however, low circulating levels of ANP may be related 
to cardiometabolic syndrome and an increased risk of diabetes 
(Pereira et al., 2015; Ceddia and Collins, 2020).

Circulating levels of harmful proinflammatory cytokines, 
including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor 
necrosis factor alpha (TNF-α) trigger to the development of 
hypertension and renal and cardiovascular disorders in humans 
(Testa et al., 1996; Vanderheyden et al., 2005). Studies from our 
laboratory have suggested that proinflammatory cytokines 
promote the onset of hypertension, kidney disorders, CHF, and 
cardiac hypertrophy in experimental animal models (Das et al., 

2010; Vellaichamy et al., 2014; Subramanian et al., 2016; Kumar 
et al., 2017; Gogulamudi et al., 2019; Periyasamy et al., 2019; Das 
et al., 2020; Subramanian et al., 2022). Enhanced activation of 
IL-1β, IL-6, and TNF-α, induce phenotypic changes in myocardial 
apoptosis, deposition of matrix proteins, myocyte hypertrophy, 
and contractile dysfunction (Thaik et al., 1995; Sekiguchi et al., 
2004; Vellaichamy et al., 2007, 2014; Subramanian et al., 2016). 
Furthermore, our previous findings have shown that the NPs/
GC-A/NPRA cascade inhibits inflammation and immunogenic 
responses in the heart and kidneys (Vellaichamy et al., 2005; Das 
et al., 2010; Vellaichamy et al., 2014; Subramanian et al., 2016; 
Kumar et  al., 2017; Das et  al., 2020). In macrophages, ANP 
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blocked TNF-α production as well as TNF-α-induced adhesion 
molecule expression in endothelial cells (Tsukagoshi et al., 2001; 
Vollmer, 2005). We have found that genetically based differences 
in the expression levels of Npr1 affect the contents of 
proinflammatory cytokine (Das et al., 2012; Zhao et al., 2013; 
Vellaichamy et al., 2014; Subramanian et al., 2016; Gogulamudi 
et al., 2019). Ablation of Npr1 activates proinflammatory cytokine 
gene expression in addition to protein levels involved in cardiac 
hypertrophy and exaggerated ventricular remodeling, leading to 
cardiac dysfunction and CHF (Vellaichamy et al., 2014). However, 
in mice, cardiac proinflammatory cytokine expression and tissue 
remodeling were attenuated by Npr1 gene duplication (Das et al., 
2012; Vellaichamy et al., 2014; Subramanian et al., 2016; Kumar 
et al., 2017). Npr1−/− mutant mice expressed elevated levels of 
TNF-α, IL-6, interferon-gamma (IFN-γ), and transforming 
growth factor beta 1 (TGF-β1) mRNAs and proteins compared to 
Npr1+/+ WT mice (Vellaichamy et al., 2014; Gogulamudi et al., 
2019). In contrast, levels of IL-6, TNF-α, IFN-γ, and TGF-β1 were 
significantly reduced in Npr1 gene-duplicated 3-copy and 4-copy 
mice compared to WT control mice.

The GC-A/NPRA-cGMP system exerts anti-inflammatory 
activity and inhibits the action of nuclear factor-kappa B (NF-κB) 
and proinflammatory cytokines (Tsukagoshi et al., 2001; Vollmer, 
2005; Ellmers et al., 2007; Das et al., 2012; Pandey, 2018). Ablation 
of Npr1 also enhances the expression of NF-kB, which seems to 
be involved in renal and cardiac disorders, fibrosis, hypertrophy, 
and extracellular matrix deposition (Vellaichamy et  al., 2007, 
2014; Kumar et al., 2017; Das et al., 2020). We speculated that 
activated NF-κB signaling triggers the production of 
proinflammatory cytokines, stimulating the development of tissue 
fibrosis and hypertrophy (Frantz et  al., 2003; Purcell and 
Molkentin, 2003; Li et  al., 2004; Vellaichamy et  al., 2014; 
Subramanian et al., 2016; Das et al., 2020). Pathological forms of 
cardiac and renal remodeling, along with exacerbated disease 
conditions, are associated with the sustained activation of 
proinflammatory cytokines in experimental animals (Hirota et al., 
1995; Baumgarten et al., 2002; Palmieri et al., 2002; Zhao et al., 
2013; Vellaichamy et al., 2014; Pandey, 2021). We speculate that 
enhanced NPs and GC-A/NPRA signaling may have a protective 
effect on the heart and kidneys by inhibiting the expression of 
NF-κB, which is known to be  a master regulator of 
proinflammatory cascade in health and disease.

NPs and sodium-glucose 
cotransporters inhibitors mediate 
renal homeostasis and 
hypertension

NPs (especially ANP and BNP) play critical and pleotropic 
roles in modulating the release of Na+ and water from the kidneys 
thus decrease BP and prevent renal dysfunction (de Bold, 1985; 
Genest and Cantin, 1988; Brenner et al., 1990; Christensen, 1993; 
Levin et  al., 1998; Pandey, 2005; Pandey, 2018). It was also 

reported that ANP restricted the intestinal absorption of water, 
Na+, and glucose (Martinez Seeber et al., 1986; O’Grady, 1989; 
O'Grady et al., 1989; Gonzalez Bosc et al., 1997). Subsequently, 
125I-ANP binding studies demonstrated the presence of 
biologically active ANP receptor in the intestine jejunum (Bianchi 
et al., 1989). Further, it was suggested that the effect of ANP on the 
intestinal absorption of Na+ could be  due to the blockade of 
sodium-glucose cotransporter (SGLT-2) in the intestine (Gonzalez 
Bosc et al., 2000). In fact, the greedy organs such as kidney and 
intestine play critical roles in contributing toward hypertension 
and type-2 diabetes melitus (T2 DM) (Itoh and Tanaka, 2022). 
These authors suggested that a new type of therapeutic 
intervention might be necessary for the multigate-greedy organ 
dysfunction. In the retrospect, SGLT-2 inhibitors might provide 
expected outcome for the treatment and prevention of both 
hypertension and T2 DM conditions.

SGLT-2 inhibitors effectively lower the glucose and Na+ levels, 
thus besides anti-diabetic effects, these agents may also exhibit 
renal and cardiac protective function (Maejima, 2019; Tsai et al., 
2021). Major approved SGLT-2 inhibitors lower blood glucose, 
renal sodium, body weight and BP; however, improve adiposity 
and normalize serum uric acid and lipid levels (Alicic et al., 2018; 
Thomas and Cherney, 2018; Bailey, 2019; Tsai et al., 2021). It is 
stipulated that the renal-and cardio-protective mechanisms of 
SGLT-2 inhibitors include improved GFR, reduced inflammation, 
fibrosis, and sympathetic tone; as well as show enhanced 
mitochondrial biogenesis and function (Lee et al., 2019; Maejima, 
2019; Zelniker and Braunwald, 2020; Margonato et al., 2021). It 
has been reported that SGLT-2 inhibitor treatment reduced the 
plasma ANP and BNP levels, thus reducing the cardiovascular risk 
in diabetic patients (Feng et  al., 2020). However, N-terminal 
pro-BNP (NT-proBNP) is a better prognostic marker for 
prediction of heart failure in T2 DM (Cosson et al., 2009; Fraty 
et al., 2018).

Conclusion and perspectives

Over the past four decades, new insights have emerged 
regarding the structure–function relationship, signaling 
cascades, and physiological functions of NPs and their receptor 
systems. Cellular, molecular, and genetic investigations have 
revealed the complex molecular signaling systems of GC-A/
NPRA and the significance of the intracellular cGMP in 
receptor biology, physiology/pathophysiology of hypertension, 
renal and cardiovascular disorders, and neurotransmission in 
CNS. Researchers have developed novel tools to delineate the 
domain structures, signaling mechanisms, internalization and 
cellular distribution, and downregulation and desensitization of 
GC-A/NPRA. Gene-targeting strategies (knockout and 
duplication) and transgenic approaches in mice have helped to 
clarify the role of NPs and GC-A/NPRA in creating and 
intervening in disease states using genetically modified mouse 
models. Molecular, cellular, and integrative approaches in vitro 
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and in vivo have provided revolutionary insights into the roles 
of NP/NPRA/cGMP signaling mechanisms in the regulation of 
hypertension and renal and cardiovascular diseases, paving the 
way toward discovery of effective therapeutics. The generation 
of the Npr1-deficient mouse model has contributed to advances 
in our understanding of the roles of GC-A/NPRA in the 
pathophysiology of hypertensive, endocrine, cardiovascular, 
and neurological dysfunction; however, the available models are 
still complex, partly due to the fact that the desired protein 
product is not present in the modified null animal models. As a 
result, the specific given phenotype may affect the degree of 
contribution of modifying gene products in disease conditions. 
In such situations, studies on haplotype or heterozygous mice 
might yield novel and useful information on disease states in 
animal models similar to those in genetic polymorphisms in 
human patients.

Despite the ample progress, there is still much to discover 
regarding the novel mechanisms of GC-coupled NP receptors 
and their ligands in relation to receptor activation mechanisms, 
cellular signaling, molecular modeling of structural 
determination, and physiological and pathophysiological 
functions. The mechanisms underlying ligand-dependent 
receptor activation and transmembrane signal transduction, 
which render the generation of second messenger cGMP, are not 
yet fully understood, nor are the molecular events that terminate 
the activated flow of receptor-mediated signal in the target cells. 
A more thorough understanding of the roles of NPs, GC-A/
NPRA, and cGMP-specific signaling mechanisms in disease 
states is still needed. The identification and delineation of discrete 
switch points in signal transduction of GC-A/NPRA that elicit 
certain responses, such as renal function, cardioprotection, 
neurotransmission, and directional functions in reducing adverse 
BP and cardiovascular events, will provide new opportunities to 
intervene and deter renal, cardiac, endocrine, vascular, and 
neurological disorders. Future investigations should lead to 
exciting and innovative research strategies and new discoveries 
in the field of NPs and GC-A/NPRA/cGMP signaling 
mechanisms toward the prevention, diagnosis, and treatment of 
hypertension and renal and cardiovascular diseases.
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Glossary

NPs natriuretic peptides

ANF/ANP atrial natriuretic factor/peptide

ANP, BNP, and CNP atrial, brain, and C-type NPs

GC-A/NPRA guanylyl cyclase/natriuretic peptide receptor-A

Npr1 Encoding GC-A/NPRA

BP blood pressure

BNP Brain natriuretic peptide

CNP C-type natriuretic peptide

DNP Dendroaspis natriuretic peptide or D-type NP

URO urodilatin

GC-A/NPRA Guanylyl cyclase NP receptor-A

GC-B/NPRB GC/NP receptor-B

NPRC NP receptor-C

PDs phosphodiesterases

CNGs cyclic-nucleotide gated ion channels

VSMCs vascular smooth muscle cells

c-ANF or AP I truncated ANF/ANP

MDCK Maiden-Darby canine kidney

NPRs NP receptors

CNS central nervous system

LBD ligand-binding domain

TD transmembrane domain

protein-KHD protein kinase-like homology domain

DD dimerization domain

GCCD guanylyl cyclase catalytic domain

RTKs receptor tyrosine kinases

ACII C2 adenylyl cyclase II C2

WT wild-type

JMHR juxtamembrane hinge region

IP3 inositol trisphosphates

RIMCDs renal inner medullary collecting duct cells

RMECs renal medullary epithelial cells

PKC protein kinase C

EGF epidermal growth factor

PDGF platelet-derived growth factor

ST heat-stable enterotoxin

MMCs mouse mesangial cells

miR micro-RNA

MDC monodansylcadaverine

CPZ chlorpromazine

KO knockout

JG juxtaglomerular cells

RBF renal blood flow

GFR glomerular filtration rate
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CHF congestive heart failure

IL-1β interleukin-1β

IL-6 interleukin-6

TNF-α tumor necrosis factor alpha

IFN-γ interferon-gamma

TGF-β1 transforming growth factor beta 1

NT-proBNP N-terminal pro-BNP
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