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Editorial on the Research Topic

Regulation of synaptic structure and function

Introduction

Synaptic structure and function are fundamental for normal function of the

nervous system. Synapses contain pre-synaptic terminals, synaptic cleft, and post-

synaptic structures. Upon stimulation, synaptic vesicles in the pre-synaptic terminals

fuse with the plasma membrane and release neurotransmitters to the synaptic cleft. The

neurotransmitters then bind to their receptors on the post-synaptic membrane, leading

to excitation or inhibition of the post-synaptic neurons, determined by the types of

neurotransmitters and receptors. These brain functions require precise regulation of

synaptic connections. In this Research Topic, we collected 19 research and review papers

to address how synaptic structure and functions are regulated. Here we summarize these

papers to guide readers through this Research Topic.

Regulation of synaptic structure

During the process of synaptic development, neurons first form complex neurites

including axons and dendrites (Keyser, 1983; Gallo, 2013; Robichaux and Cowan, 2014).

Yang et al. discovered that a novel adaptor for the RING-domain type ubiquitin E3

ligase, CG5003, is required for the axon development in the Drosophila Mushroom

Body, providing further evidence that protein homeostasis is critical for axonal and

synaptic development. In addition to ubiquitination, synaptic proteins are subjected to

many other post-translational modifications such as small ubiquitin-like modification

(SUMO). SUMOylation has been shown to modify and regulate synaptic proteins (Loriol

et al., 2012; Daniel et al., 2017; Henley et al., 2021). To better understand the role of

SUMOylation in synaptic sites, Pronot et al. performed SUMOylation proteomic analysis
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with synaptic fraction in rat brains and found that about 18% of

synaptic proteins are SUMOylated, indicating SUMOylation in

synaptic structure is very common.

Synaptic formation is regulated by secreted and cell adhesion

molecules, such as Wnt, neurexin and Ephrin-Eph receptors

(Salinas, 1999; Contractor et al., 2002; Lai and Ip, 2009; Poon

et al., 2013; Sudhof, 2018). The role of Wnt signaling in

synaptic development has been shown to be highly conserved

(Salinas, 1999; Beretta et al., 2011; Shi et al., 2018). Teo and

Salinas reviewed the recently advance of Wnt function in

excitatory synaptogenesis, with focus on the role of Wnt5a

and Wnt7a. Additionally, they summarized the role of neural

activity in synaptic formation through Wnt7a/b. In mammals,

through alternative splicing, neurexin genes produce diverse

isoforms in different neuron types (Treutlein et al., 2014;

Sudhof, 2017; Lukacsovich et al., 2019; Gomez et al., 2021).

Previous studies indicated the alternative splicing of neurexin

is activity-dependent (Gorecki et al., 1999; Rozic-Kotliroff

and Zisapel, 2007; Iijima et al., 2011; Ding et al., 2017).

Liakath-Ali and Südhof found that in cortical cultures and in

vivo experiments, the previous finding about activity induced

Nrxn1-SS4 specific splicing is most likely a secondary effect

of activity-induced cell death. This study suggests that the

link between neuronal activity and Nrxn1-SS4 splicing requires

more sophisticated data. Li et al. found that EphB2-mediated

dendritic spinogenesis is regulated by a scaffold protein, ligand

of Numb protein X 1, which functions through maintaining

EphB membrane localization. These studies further reiterate

that secreted and cell adhesion molecules play vital roles in

synaptic formation.

Recent studies indicate that non-coding RNA plays various

roles in nervous system, including in synaptic formation.

Wakatsuki and Araki summarized their recent finding

about a special non-coding vault RNAs regulating synaptic

formation through upregulating MEK1-ERK signaling pathway

(Wakatsuki et al., 2021), which provides a novel synaptogenesis

signaling pathway.

In addition to genetic factors, synaptic connections are

also regulated by environmental conditions including ion

concentration or drug usage. Zinc homeostasis has been shown

to associate with neurologic disorders. Mo et al. found that

in cultured neurons, high concentration of zinc results in

synaptic formation and function defects through reducing the

expression of PTPRM. It would be interesting to ask how

PTPRM regulates synaptic formation. Drugs such as antibiotics

or psychedelics could potentially affect synaptic formation and

plasticity. Perna et al. found that perinatal penicillin exposure

results in excessive synaptic pruning and lower dendritic spine

density in the cortical region in mice, suggesting that the

usage of antibiotics in early-life has an important effect on

brain development and function. Consistently, Lukasiewics et

al. summarized the critical role of exposure to another drug,

psychedelics, in synaptic formation and neuronal plasticity.

These studies provide insights into the mechanisms underlying

the effects of drugs on the brain and will guide future drug

development and usage.

Sexual dimorphism is observed at different levels of nervous

system, which could explain the sex difference of neurological

disorders. Uhl et al. reviewed the sexual dimorphism,

with a special focus on synaptic density, morphology and

molecular composition. The review summarized an advanced

understanding of sexual synaptic dimorphism and potential

underlying regulatory mechanisms. Taking advantage of the

simplicity of the nematode C. elegans, Yan et al. analyzed the

sexual synaptic structure and function dimorphism in vivo

and revealed that at the neuromuscular junction (NMJ), the

cholinergic synaptic density, the frequency of spontaneous

neurotransmitter release, and the locomotory velocity of males

are higher than those of hermaphrodites. Those studies provide

cellular and molecular evidence underlying physiological and

pathological sexual difference.

Synaptic maintenance and regeneration are essential for

neural function. Huang et al. reviewed the mechanisms

underlying NMJ degeneration and regeneration after

denervation and the potential therapeutic strategies, which

summarized recent advances in the maintenance and repair of

NMJ synaptic connection.

Regulation of synaptic function

One of the most important functions of synaptic connection

is to relay information from pre-synaptic to post-synaptic

neurons. For example, in the sensory circuitry, sensory neurons

are activated upon stimulation, which triggers the pre-synaptic

synaptic vesicle fusion with the plasma membrane and the

release of neurotransmitters and neuromodulators, through

which the information from sensory neurons is passed onto their

downstream targets.

C. elegans has served as an excellent model in studying

neuronal activity and functional circuits (Bargmann et al.,

1990; Kaplan, 1996; Bargmann, 2006; Dixit and Bhattacharya,

2021; Ferkey et al., 2021). To understand how sensory

neurons respond differently to different odor concentrations,

Cheng et al. analyzed four olfactory neurons AWA, AWB,

AWC, and ASH. They found that while AWC shows

no difference in response to different concentrations of

isoamyl alcohol (IAA), the other three olfactory neurons

display concentration-dependent responses, which uncovers

the mechanisms underlying animal sensing different odor

concentrations. Olfactory sensory neurons can adapt long-

lasting or repetitive stimulation. Chen et al. found that

adaptation to odor stimuli requires L-type voltage-gated calcium

channel (L-VGCC) EGL-19 in Amsh glia in C. elegans,

which highlights the important role of VGCC and glia in

modulating sensory transduction. Ion channels are essential
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for depolarizing cell membrane and triggering behaviors.

Yu et al. showed that A-type motoneurons display intrinsic

rhythmic activity, which requires Na+ leak channels, VGCC

and voltage-gated K+ channel (Kv4). Bhat et al. reviewed the

important roles of neuropeptides in regulating neural activity

and various behaviors. Those studies demonstrate that neuronal

activity and therefore behaviors are regulated by external and

internal factors.

In muscles, upon plasma membrane depolarization,

L-VGCC undergoes conformation change and triggers

calcium release by opening ryanodine receptors (RyR) and

calcium channels on endoplasmic reticulum (ER). Muscle

cell plasma membrane invaginates deep into the cell forming

junctional membrane complex (JMC) with ER, which is

critical for depolarization-induced calcium release. Piggott

and Jin reviewed the key findings from both invertebrates

and vertebrates about the role of the highly conserved

junctophilins in JMC formation and function in muscles and

the afterhyperpolarization (AHP) in neurons, which provided a

comprehensive understanding of the function of junctophilins

and JMC.

Calcium influx in pre-synaptic terminals promotes

synaptic vesicle priming and fusion with the plasma

membrane mediated by the SNARE complex (Bargmann,

1993; DiAntonio et al., 1993; Sollner et al., 1993; Littleton

and Bellen, 1995; Sudhof and Rothman, 2009). During

the process of SNARE complex, the Munc18-1/syntaxin-1

complex is disassembled. Gong et al. showed that opening

syntaxin-1 linker is critical to initiate SNARE complex

assembly, and the extension of Munc18-1 domain 3a

regulated by Munc13 is required for synaptobrevin-2 and

syntaxin-1 interaction and SNARE complex assembly. In

addition to Munc18 and Munc13, there are a large cohort

of SNARE regulatory proteins (SRPs) regulating SNARE

assembly at the right time and right place. Sauvola and

Littleton summarized the current models about how SRPs

regulate SNARE assembly in the pre-synaptic sites to trigger

neurotransmitter releases, particularly emphasizing the

genetic findings from invertebrates such as C. elegans and

Drosophila. The review provided a detail picture of regulation

of pre-synaptic vesicle release.

Conclusion remarks

In summary, this Research Topic collected a series of

research and review articles that are related to synaptic structure

and function regulation, and advanced our knowledge on

synapses and neural circuitry.
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