AUTHOR=Caruso Giovanni , Klaus Colin , Hamm Heidi E. , Gurevich Vsevolod V. , Bisegna Paolo , Andreucci Daniele , DiBenedetto Emmanuele , Makino Clint L. TITLE=Pepperberg plot: Modeling flash response saturation in retinal rods of mouse JOURNAL=Frontiers in Molecular Neuroscience VOLUME=15 YEAR=2023 URL=https://www.frontiersin.org/journals/molecular-neuroscience/articles/10.3389/fnmol.2022.1054449 DOI=10.3389/fnmol.2022.1054449 ISSN=1662-5099 ABSTRACT=
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain “Pepperberg plots,” that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept (